Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25741350
PubMed Central
PMC4332306
DOI
10.3389/fpls.2015.00059
Knihovny.cz E-zdroje
- Klíčová slova
- NPR1, PR-1, metabolome, n-butanol, phospholipase D, salicylic acid, signaling,
- Publikační typ
- časopisecké články MeSH
Phytohormone salicylic acid (SA) is a crucial component of plant-induced defense against biotrophic pathogens. Although the key players of the SA pathway are known, there are still gaps in the understanding of the molecular mechanism and the regulation of particular steps. In our previous research, we showed in Arabidopsis suspension cells that n-butanol, which specifically modulates phospholipase D activity, significantly suppresses the transcription of the pathogenesis related (PR-1) gene, which is generally accepted as the SA pathway marker. In the presented study, we have investigated the site of n-butanol action in the SA pathway. We were able to show in Arabidopsis plants treated with SA that n-butanol inhibits the transcription of defense genes (PR-1, WRKY38). Fluorescence microscopy of Arabidopsis thaliana mutants expressing 35S::NPR1-GFP (nonexpressor pathogenesis related 1) revealed significantly decreased nuclear localization of NPR1 in the presence of n-butanol. On the other hand, n-butanol did not decrease the nuclear localization of NPR1 in 35S::npr1C82A-GFP and 35S::npr1C216A-GFP mutants constitutively expressing NPR1 monomers. Mass spectrometric analysis of plant extracts showed that n-butanol significantly changes the metabolic fingerprinting while t-butanol had no effect. We found groups of the plant metabolites, influenced differently by SA and n-butanol treatment. Thus, we proposed several metabolites as markers for n-butanol action.
Zobrazit více v PubMed
Blanco F., Salinas P., Cecchini N. M., Jordana X., Van Hummelen P., Alvarez M. E., et al. . (2009). Early genomic responses to salicylic acid in Arabidopsis. Plant Mol. Biol. 70, 79–102. 10.1007/s11103-009-9458-1 PubMed DOI
Cao H., Bowling S. A., Gordon A. S., Dong X. N. (1994). Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired-resistance. Plant Cell 6, 1583–1592. PubMed PMC
Clay N. K., Adio A. M., Denoux C., Jander G., Ausubel F. M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323, 95–101. 10.1126/science.1164627 PubMed DOI PMC
Czechowski T., Stitt M., Altmann T., Udvardi M. K., Scheible W.-R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17. 10.1104/pp.105.063743 PubMed DOI PMC
De Torres Zabela M., Fernandez-Delmond I., Niittyla T., Sanchez P., Grant M. (2002). Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol. Plant Microbe Interact. 15, 808–816. 10.1094/MPMI.2002.15.8.808 PubMed DOI
Dhonukshe P., Laxalt A. M., Goedhart J., Gadella T. W., Munnik T. (2003). Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell 15, 2666–2679. 10.1105/tpc.014977 PubMed DOI PMC
Fu Z. Q., Yan S., Saleh A., Wang W., Ruble J., Oka N., et al. . (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486, 228–232. 10.1038/nature11162 PubMed DOI PMC
Gardiner J., Collings D. A., Harper J. D., Marc J. (2003). The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol. 44, 687–696. 10.1093/pcp/pcg095 PubMed DOI
Glazebrook J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227. 10.1146/annurev.phyto.43.040204.135923 PubMed DOI
Hien Dao T. T., Puig R. C., Kim H. K., Erkelens C., Lefeber A. W., Linthorst H. J., et al. . (2009). Effect of benzothiadiazole on the metabolome of Arabidopsis thaliana. Plant Physiol. Biochem. 47, 146–152. 10.1016/j.plaphy.2008.10.001 PubMed DOI
Hirase A., Hamada T., Itoh T. J., Shimmen T., Sonobe S. (2006). n-Butanol induces depolymerization of microtubules in vivo and in vitro. Plant Cell Physiol. 47, 1004–1009. 10.1093/pcp/pcj055 PubMed DOI
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. . (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics 2008:420747. 10.1155/2008/420747 PubMed DOI PMC
Jakoby M., Weisshaar B., Droge-Laser W., Vicente-Carbajosa J., Tiedemann J., Kroj T., et al. . (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106–111. 10.1016/S1360-1385(01)02223-3 PubMed DOI
Janda M., Planchais S., Djafi N., Martinec J., Burketova L., Valentova O., et al. . (2013). Phosphoglycerolipids are master players in plant hormone signal transduction. Plant Cell Rep. 32, 839–851. 10.1007/s00299-013-1399-0 PubMed DOI
Janda M., Ruelland E. (2014). Magical mystery tour: salicylic acid signalling. Environ. Exp. Bot. (inpress). 10.1016/j.envexpbot.2014.07.003 DOI
Johansson O. N., Fahlberg P., Karimi E., Nilsson A. K., Ellerström M., Andersson M. X. (2014). Redundancy among phospholipase D isoforms in resistance triggered by recognition of the Pseudomonas syringae effector AvrRpm1 in Arabidopsis thaliana. Front. Plant Sci. 5:639. 10.3389/fpls.2014.00639 PubMed DOI PMC
Kalachova T., Lakovenko O., Kretinin S., Kravets V. (2013). Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade. Plant Physiol. Biochem. 66, 127–133. 10.1016/j.plaphy.2013.02.006 PubMed DOI
Kalachova T. A., Iakovenko O. M., Kretinin S. V., Kravets V. S. (2012). Effects of salicylic and jasmonic acid on Phospholipase D activity and the level of active oxygen species in soybean seedlings. Biochemistry (Moscow) 29, 169–176 10.1134/S1990747812030099 DOI
Kim K. C., Lai Z., Fan B., Chen Z. (2008). Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20, 2357–2371. 10.1105/tpc.107.055566 PubMed DOI PMC
Kinkema M., Fan W. H., Dong X. N. (2000). Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12, 2339–2350. 10.1105/tpc.12.12.2339 PubMed DOI PMC
Krinke O., Ruelland E., Valentova O., Vergnolle C., Renou J. P., Taconnat L., et al. . (2007). Phosphatidylinositol 4-kinase activation is an early response to salicylic acid in arabidopsis suspension cells. Plant Physiol. 144, 1347–1359. 10.1104/pp.107.100842 PubMed DOI PMC
Krinke O., Flemr M., Vergnolle C., Collin S., Renou J. P., Taconnat L., et al. . (2009). Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions. Plant Physiol. 150, 424–436. 10.1104/pp.108.133595 PubMed DOI PMC
Lee S. M., Suh S., Kim S., Crain R. C., Kwak J. M., Nam H. G., et al. (1997). Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J. 12, 547–556 10.1046/j.1365-313X.1997.00547.x DOI
Liscovitch M., Czarny M., Fiucci G., Tang X. (2000). Phospholipase D: molecular and cell biology of a novel gene family. Biochem. J. 345(Pt 3), 401–415. 10.1042/0264-6021:3450401 PubMed DOI PMC
Marshall O. J. (2004). PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20, 2471–2472. 10.1093/bioinformatics/bth254 PubMed DOI
Matouskova J., Janda M., Fiser R., Sasek V., Kocourkova D., Burketova L., et al. . (2014). Changes in actin dynamics are involved in salicylic acid signaling pathway. Plant Sci. 223, 36–44. 10.1016/j.plantsci.2014.03.002 PubMed DOI
McGee J. D., Roe J. L., Sweat T. A., Wang X. M., Guikema J. A., Leach J. E. (2003). Rice phospholipase D isoforms show differential cellular location and gene induction. Plant Cell Physiol. 44, 1013–1026. 10.1093/pcp/pcg125 PubMed DOI
Motes C. M., Pechter P., Yoo C. M., Wang Y. S., Chapman K. D., Blancaflor E. B. (2005). Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma 226, 109–123. 10.1007/s00709-005-0124-4 PubMed DOI
Mou Z., Fan W., Dong X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935–944. 10.1016/S0092-8674(03)00429-X PubMed DOI
Munnik T., Arisz S. A., De Vrije T., Musgrave A. (1995). G Protein activation stimulates phospholipase D signaling in plants. Plant Cell 7, 2197–2210. 10.1105/tpc.7.12.2197 PubMed DOI PMC
Novakova M., Sasek V., Dobrev P. I., Valentova O., Burketova L. (2014). Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum - reassessing the role of salicylic acid in the interaction with a necrotroph. Plant Physiol. Biochem. 80, 308–317. 10.1016/j.plaphy.2014.04.019 PubMed DOI
Pleskot R., Pejchar P., Bezvoda R., Lichtscheidl I. K., Wolters-Arts M., Marc J., et al. . (2012). Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front. Plant Sci. 3:54. 10.3389/fpls.2012.00054 PubMed DOI PMC
Pleskot R., Pejchar P., Staiger C. J., Potocky M. (2014). When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. Front. Plant Sci. 5:5. 10.3389/fpls.2014.00005 PubMed DOI PMC
Pleskot R., Potocky M., Pejchar P., Linek J., Bezvoda R., Martinec J., et al. . (2010). Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J. 62, 494–507. 10.1111/j.1365-313X.2010.04168.x PubMed DOI
Potocky M., Elias M., Profotova B., Novotna Z., Valentova O., Zarsky V. (2003). Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217, 122–130. 10.1007/s00425-002-0965-4 PubMed DOI
Potocky M., Pleskot R., Pejchar P., Vitale N., Kost B., Zarsky V. (2014). Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytol. 203, 483–494. 10.1111/nph.12814 PubMed DOI
Profotova B., Burketova L., Novotna Z., Martinec J., Valentova O. (2006). Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiol. Biochem. 44, 143–151. 10.1016/j.plaphy.2006.02.003 PubMed DOI
Rainteau D., Humbert L., Delage E., Vergnolle C., Cantrel C., Maubert M. A., et al. . (2012). Acyl Chains of Phospholipase D transphosphatidylation products in arabidopsis cells: a study using multiple reaction monitoring mass spectrometry. PLoS ONE 7:e41985. 10.1371/journal.pone.0041985 PubMed DOI PMC
Ritchie S., Gilroy S. (1998). Abscisic acid signal transduction in the barley aleurone is mediated by phospholipase D activity. Proc. Natl. Acad. Sci. U.S.A. 95, 2697–2702. 10.1073/pnas.95.5.2697 PubMed DOI PMC
Sasek V., Janda M., Delage E., Puyaubert J., Guivarc'h A., Lopez Maseda E., et al. . (2014). Constitutive salicylic acid accumulation in pi4kIIIbeta1beta2 Arabidopsis plants stunts rosette but not root growth. New Phytol. 203, 805–816. 10.1111/nph.12822 PubMed DOI
Sasek V., Novakova M., Jindrichova B., Boka K., Valentova O., Burketova L. (2012). Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus. Mol. Plant Microbe Interact. 25, 1238–1250. 10.1094/MPMI-02-12-0033-R PubMed DOI
Spoel S. H., Mou Z. L., Tada Y., Spivey N. W., Genschik P., Dong X. N. A. (2009). Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137, 860–872. 10.1016/j.cell.2009.03.038 PubMed DOI PMC
Thiery L., Leprince A. S., Lefebvre D., Ghars M. A., Debarbieux E., Savoure A. (2004). Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. J. Biol. Chem. 279, 14812–14818. 10.1074/jbc.M308456200 PubMed DOI
Tsuda K., Katagiri F. (2010). Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 13, 459–465. 10.1016/j.pbi.2010.04.006 PubMed DOI
Tsuda K., Sato M., Glazebrook J., Cohen J. D., Katagiri F. (2008). Interplay between MAMP-triggered and SA-mediated defense responses (vol 53, pg 763, 2008). Plant J. 55, 1061–1061. 10.1111/j.1365-313X.2008.03589.x PubMed DOI
Vaclavik L., Mishra A., Mishra K. B., Hajslova J. (2013). Mass spectrometry-based metabolomic fingerprinting for screening cold tolerance in Arabidopsis thaliana accessions. Anal. Bioanal. Chem. 405, 2671–2683. 10.1007/s00216-012-6692-1 PubMed DOI
Vlot A. C., Dempsey D. A., Klessig D. F. (2009). Salicylic Acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47, 177–206. 10.1146/annurev.phyto.050908.135202 PubMed DOI
Wang D., Weaver N. D., Kesarwani M., Dong X. (2005). Induction of protein secretory pathway is required for systemic acquired resistance. Science 308, 1036–1040. 10.1126/science.1108791 PubMed DOI
Wildermuth M. C., Dewdney J., Wu G., Ausubel F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562–565. 10.1038/35107108 PubMed DOI
Yang S. F., Freer S., Benson A. A. (1967). Transphosphatidylation by Phospholipase D. J. Biol. Chem. 242, 477. PubMed
Yao H., Wang G., Guo L., Wang X. (2013). Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis. Plant Cell 25, 5030–5042. 10.1105/tpc.113.120162 PubMed DOI PMC
Young S. A., Wang X. M., Leach J. E. (1996). Changes in the plasma membrane distribution of rice phospholipase D during resistant interactions with Xanthomonas oryzae pv oryzae. Plant Cell 8, 1079–1090. PubMed PMC
Zhang K., Halitschke R., Yin C., Liu C. J., Gan S. S. (2013). Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc. Natl. Acad. Sci. U.S.A. 110, 14807–14812. 10.1073/pnas.1302702110 PubMed DOI PMC
Zhang X., Chen S., Mou Z. (2010). Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis. J. Plant Physiol. 167, 144–148. 10.1016/j.jplph.2009.08.002 PubMed DOI
Zhang Y. L., Fan W. H., Kinkema M., Li X., Dong X. N. (1999). Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. U.S.A. 96, 6523–6528. 10.1073/pnas.96.11.6523 PubMed DOI PMC
Zhao J., Devaiah S. P., Wang C. X., Li M. Y., Welti R., Wang X. M. (2013). Arabidopsis phospholipase D1 modulates defense responses to bacterial and fungal pathogens. New Phytol. 199, 228–240. 10.1111/Nph.12256 PubMed DOI PMC
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations
Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants