When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
24478785
PubMed Central
PMC3899574
DOI
10.3389/fpls.2014.00005
Knihovny.cz E-zdroje
- Klíčová slova
- actin, actin-binding proteins, capping protein, cytoskeleton, phosphatidic acid, phosphatidylinositol 4,5-bisphosphate, phospholipase D, signaling,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The actin cytoskeleton plays a key role in the plant morphogenesis and is involved in polar cell growth, movement of subcellular organelles, cell division, and plant defense. Organization of actin cytoskeleton undergoes dynamic remodeling in response to internal developmental cues and diverse environmental signals. This dynamic behavior is regulated by numerous actin-binding proteins (ABPs) that integrate various signaling pathways. Production of the signaling lipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid affects the activity and subcellular distribution of several ABPs, and typically correlates with increased actin polymerization. Here we review current knowledge of the inter-regulatory dynamics between signaling phospholipids and the actin cytoskeleton in plant cells.
Zobrazit více v PubMed
Allwood E. G., Anthony R. G., Smertenko A. P., Reichelt S., Drobak B. K., Doonan J. H., et al. (2002). Regulation of the pollen-specific actin-depolymerizing factor LlADF1. Plant Cell 14 2915–2927 10.1105/tpc.005363 PubMed DOI PMC
Andrianantoandro E., Pollard T. D. (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol. Cell 24 13–23 10.1016/j.molcel.2006.08.006 PubMed DOI
Apostolakos P., Panteris E., Galatis B. (2008). The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays. Cell Motil. Cytoskeleton 65 863–875 10.1002/cm.20308 PubMed DOI
Blanchoin L., Boujemaa-Paterski R., Henty J. L., Khurana P., Staiger C. J. (2010). Actin dynamics in plant cells: a team effort from multiple proteins orchestrates this very fast-paced game. Curr. Opin. Plant Biol. 13 714–723 10.1016/j.pbi.2010.09.013 PubMed DOI
Braun M., Baluška F., von Witsch M., Menzel D. (1999). Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209 435–443 10.1007/s004250050746 PubMed DOI
Brown J., Auger K. (2011). Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery. BMC Evol. Biol. 11:4 10.1186/1471-2148-11-4 PubMed DOI PMC
Colón-González F., Kazanietz M. G. (2006). C1 domains exposed: from diacylglycerol binding to protein-protein interactions. Biochim. Biophys. Acta 1761 827–837 10.1016/j.bbalip.2006.05.001 PubMed DOI
Day B., Henty J. L., Porter K. J., Staiger C. J. (2011). The pathogen-actin connection: a platform for defense signaling in plants. Annu. Rev. Phytopathol. 49 483–506 10.1146/annurev-phyto-072910-095426 PubMed DOI
Dong C.-H., Xia G.-X., Hong Y., Ramachandran S., Kost B., Chua N.-H. (2001). ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13 1333–1346 10.1105/tpc.010051 PubMed DOI PMC
Dowd P. E., Coursol S., Skirpan A. L., Kao T.-H., Gilroy S. (2006). Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell 18 1438–1453 10.1105/tpc.106.041582 PubMed DOI PMC
Drøbak B. K. (1993). Plant phosphoinositides and intracellular signaling. Plant Physiol. 102 705–709 10.1104/pp.102.3.705 PubMed DOI PMC
Eliáš M., Potocký M., Cvrčková F., Žárský V. (2002). Molecular diversity of phospholipase D in angiosperms. BMC Genomics 3:2 10.1186/1471-2164-3-2 PubMed DOI PMC
Furt F., König S., Bessoule J.-J., Sargueil F., Zallot R., Stanislas T., et al. (2010). Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane. Plant Physiol. 152 2173–2187 10.1104/pp.109.149823 PubMed DOI PMC
Fu Y. (2010). The actin cytoskeleton and signaling network during pollen tube tip growth. J. Integr. Plant Biol. 52 131–137 10.1111/j.1744-7909.2010.00922.x PubMed DOI
Gungabissoon R. A., Jiang C.-J., Drøbak B. K., Maciver S. K., Hussey P. J. (1998). Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J. 16 689–696 10.1046/j.1365-313x.1998.00339.x DOI
Henty J. L., Bledsoe S. W., Khurana P., Meagher R. B., Day B., Blanchoin L., et al. (2011). Arabidopsis actin depolymerizing factor4 modulates the stochastic dynamic behavior of actin filaments in the cortical array of epidermal cells. Plant Cell 23 3711–3726 10.1105/tpc.111.090670 PubMed DOI PMC
Henty-Ridilla J. L., Li J., Blanchoin L., Staiger C. J. (2013). Actin dynamics in the cortical array of plant cells. Curr. Opin. Plant Biol. 16 678–687 10.1016/j.pbi.2013.10.012 PubMed DOI
Heo W. D., Inoue T., Park W. S., Kim M. L., Park B. O., Wandless T. J., et al. (2006). PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314 1458–1461 10.1126/science.1134389 PubMed DOI PMC
Higaki T., Sano T., Hasezawa S. (2007). Actin microfilament dynamics and actin side-binding proteins in plants. Curr. Opin. Plant Biol. 10 549–556 10.1016/j.pbi.2007.08.012 PubMed DOI
Huang S., Blanchoin L., Kovar D. R., Staiger C. J. (2003). Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J. Biol. Chem. 278 44832–44842 10.1074/jbc.M306670200 PubMed DOI
Huang S., Gao L., Blanchoin L., Staiger C. J. (2006). Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol. Biol. Cell 17 1946–1958 10.1091/mbc.E05-09-0840 PubMed DOI PMC
Hussey P. J., Allwood E. G., Smertenko A. P. (2002). Actin-binding proteins in the Arabidopsis genome database: properties of functionally distinct plant actin-depolymerizing factors/cofilins. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357 791–798 10.1098/rstb.2002.1086 PubMed DOI PMC
Ischebeck T., Seiler S., Heilmann I. (2010). At the poles across kingdoms: phosphoinositides and polar tip growth. Protoplasma 240 13–31 10.1007/s00709-009-0093-0 PubMed DOI PMC
Ischebeck T., Stenzel I., Hempel F., Jin X., Mosblech A., Heilmann I. (2011). Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J. 65 453–468 10.1111/j.1365-313X.2010.04435.x PubMed DOI
Kim K., McCully M. E., Bhattacharya N., Butler B., Sept D., Cooper J. A. (2007). Structure/function analysis of the interaction of phosphatidylinositol 4,5-bisphosphate with actin-capping protein. J. Biol. Chem. 282 5871–5879 10.1074/jbc.M609850200 PubMed DOI PMC
Kooijman E. E., Chupin V., de Kruijff B, Burger K. N. J. (2003). Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4 162–174 10.1034/j.1600-0854.2003.00086.x PubMed DOI
Kooijman E. E., Tieleman D. P., Testerink C., Munnik T., Rijkers D. T. S., Burger K. N. J., et al. (2007). An electrostatic/hydrogen bond switch as the basis for the specific interaction of phosphatidic acid with proteins. J. Biol. Chem. 282 11356–11364 10.1074/jbc.M609737200 PubMed DOI
Kost B., Lemichez E., Spielhofer P., Hong Y., Tolias K., Carpenter C., et al. (1999). Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 145 317–330 10.1083/jcb.145.2.317 PubMed DOI PMC
Kovar D. R., Drøbak B. K., Collings D. A., Staiger C. J. (2001). The characterization of ligand-specific maize (Zea mays) profilin mutants. Biochem. J. 358 49–57 10.1042/0264-6021:3580049 PubMed DOI PMC
Kovar D. R., Drøbak B. K., Staiger C. J. (2000). Maize profilin isoforms are functionally distinct. Plant Cell 12 583–598 10.1105/tpc.12.4.583 PubMed DOI PMC
Kusner D. J., Barton J. A., Qin C., Wang X., Iyer S. S. (2003). Evolutionary conservation of physical and functional interactions between phospholipase D and actin. Arch. Biochem. Biophys. 412 231–241 10.1016/S0003-9861(03)00052-3 PubMed DOI
Lavy M., Yalovsky S. (2006). Association of Arabidopsis type-II ROPs with the plasma membrane requires a conserved C-terminal sequence motif and a proximal polybasic domain. Plant J. 46 934–947 10.1111/j.1365-313X.2006.02749.x PubMed DOI
Lee S., Park J., Lee Y. (2003). Phosphatidic acid induces actin polymerization by activating protein kinases in soybean cells. Mol. Cells 15 313–319 PubMed
Li J., Henty-Ridilla J. L., Huang S., Wang X., Blanchoin L., Staiger C. J. (2012a). Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell 24 3742–3754 10.1105/tpc.112.103945 PubMed DOI PMC
Li J., Pleskot R., Henty-Ridilla J. L., Blanchoin L., Potocký M., Staiger C. J. (2012b). Arabidopsis capping protein senses cellular phosphatidic acid levels and transduces these into changes in actin cytoskeleton dynamics. Plant Signal. Behav. 7 1727–1730 10.4161/psb.22472 PubMed DOI PMC
Li M., Hong Y., Wang X. (2009). Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim. Biophys. Acta 1791 927–935 10.1016/j.bbalip.2009.02.017 PubMed DOI
Löfke C., Ischebeck T., König S., Freitag S., Heilmann I. (2008). Alternative metabolic fates of phosphatidylinositol produced by phosphatidylinositol synthase isoforms in Arabidopsis thaliana. Biochem. J. 413 115–124 10.1042/bj20071371 PubMed DOI
Lumb C. N., He J., Xue Y., Stansfeld P. J., Stahelin R. V., Kutateladze T. G., et al. (2011). Biophysical and computational studies of membrane penetration by the GRP1 pleckstrin homology domain. Structure 19 1338–1346 10.1016/j.str.2011.04.010 PubMed DOI PMC
Moravcevic K., Oxley C. L., Lemmon M. A. (2012). Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20 15–27 10.1016/j.str.2011.11.012 PubMed DOI PMC
Motes C. M., Pechter P., Yoo C. M., Wang Y.-S., Chapman K. D., Blancaflor E. B. (2005). Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma 226 109–123 10.1007/s00709-005-0124-4 PubMed DOI
Mucha E., Fricke I., Schaefer A., Wittinghofer A., Berken A. (2011). Rho proteins of plants – Functional cycle and regulation of cytoskeletal dynamics. Eur. J. Cell Biol. 90 934–943 10.1016/j.ejcb.2010.11.009 PubMed DOI
Mueller-Roeber B., Pical C. (2002). Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol. 130 22–46 10.1104/pp.004770 PubMed DOI PMC
Munnik T., Nielsen E. (2011). Green light for polyphosphoinositide signals in plants. Curr. Opin. Plant Biol. 14 489–497 10.1016/j.pbi.2011.06.007 PubMed DOI
Perera I. Y., Davis A. J., Galanopoulou D., Im Y. J., Boss W. F. (2005). Characterization and comparative analysis of Arabidopsis phosphatidylinositol phosphate 5-kinase 10 reveals differences in Arabidopsis and human phosphatidylinositol phosphate kinases. FEBS Lett. 579 3427–3432 10.1016/j.febslet.2005.05.018 PubMed DOI
Pleskot R., Li J., Žárský V., Potocký M., Staiger C. J. (2013). Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci. 18 496–504 10.1016/j.tplants.2013.04.005 PubMed DOI
Pleskot R., Pejchar P., Bezvoda R., Lichtscheidl I. K., Wolters-Arts M., Marc J., et al. (2012a). Turnover of phosphatidic acid through distinct signalling pathways affects multiple aspects of tobacco pollen tube tip growth. Front. Plant Sci. 3:54 10.3389/fpls.2012.00054 PubMed DOI PMC
Pleskot R., Pejchar P., Žárský V., Staiger C. J., Potocký M. (2012b). Structural insights into the inhibition of actin-capping protein by interactions with phosphatidic acid and phosphatidylinositol (4,5)-bisphosphate. PLoS Comput. Biol. 8:e1002765 10.1371/journal.pcbi.1002765 PubMed DOI PMC
Pleskot R., Potocký M., Pejchar P., Linek J., Bezvoda R., Martinec J., et al. (2010). Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J. 62 494–507 10.1111/j.1365-313X.2010.04168.x PubMed DOI
Pokotylo I., Pejchar P., Potocký M., Kocourková D., Krčková Z., Ruelland E., et al. (2013). The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog. Lipid Res. 52 62–79 10.1016/j.plipres.2012.09.001 PubMed DOI
Psachoulia E, Sansom M. S. P. (2008). Interactions of the pleckstrin homology domain with phosphatidylinositol phosphate and membranes: characterization via molecular dynamics simulations. Biochemistry 47 4211–4220 10.1021/bi702319k. PubMed DOI
Psachoulia E, Sansom M. S. P. (2009). PX- and FYVE-mediated interactions with membranes: simulation studies. Biochemistry 48 5090–5095 10.1021/bi900435m PubMed DOI
Roach A. N., Wang Z., Wu P., Zhang F., Chan R. B., Yonekubo Y., et al. (2012). Phosphatidic acid regulation of PIPKI is critical for actin cytoskeletal reorganization. J. Lipid Res. 53 2598–2609 10.1194/jlr.M028597 PubMed DOI PMC
Saarikangas J., Zhao H., Lappalainen P. (2010). Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol. Rev. 90 259–289 10.1152/physrev.00036.2009 PubMed DOI
Staiger C. J., Blanchoin L. (2006). Actin dynamics: old friends with new stories. Curr. Opin. Plant Biol. 9 554–562 10.1016/j.pbi.2006.09.013 PubMed DOI
Tan Z., Boss W. F. (1992). Association of phosphatidylinositol kinase, phosphatidylinositol monophosphate kinase, and diacylglycerol kinase with the cytoskeleton and F-actin fractions of carrot (Daucus carota L.) cells grown in suspension culture. Plant Physiol. 100 2116–2120 10.1104/pp.100.4.2116 PubMed DOI PMC
Testerink C., Munnik T. (2011). Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 62 2349–2361 10.1093/jxb/err079 PubMed DOI
Thomas C., Tholl S., Moes D., Dieterle M., Papuga J., Moreau F., et al. (2009). Actin bundling in plants. Cell Motil. Cytoskeleton 66 940–957 10.1002/cm.20389 PubMed DOI
Witke W. (2004). The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol. 14 461–469 10.1016/j.tcb.2004.07.003 PubMed DOI
Xiang Y., Huang X., Wang T., Zhang Y., Liu Q., Hussey P. J., et al. (2007). ACTIN BINDING PROTEIN29 from Lilium pollen plays an important role in dynamic actin remodeling. Plant Cell 19 1930–1946 10.1105/tpc.106.048413 PubMed DOI PMC
Yalovsky S., Bloch D., Sorek N., Kost B. (2008). Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. Plant Physiol. 147 1527–1543 10.1104/pp.108.122150 PubMed DOI PMC
Zhang L., Mao Y. S., Janmey P. A., Yin H. L. (2012). “Phosphatidylinositol 4, 5 bisphosphate and the actin cytoskeleton,” in Phosphoinositides II: The Diverse Biological Functions eds Balla T., Wymann M., York J. D. (Netherlands:Springer; ) 177–215 PubMed
Zhong R., Burk D. H., Morrison W. H., Ye Z.-H. (2004). FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell 16 3242–3259 10.1105/tpc.104.027466 PubMed DOI PMC
Zhong R., Burk D. H., Nairn C. J., Wood-Jones A., Morrison W. H., Ye Z.-H. (2005). Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell 17 1449–1466 10.1105/tpc.105.031377 PubMed DOI PMC
Zonia L., Munnik T. (2004). Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol. 134 813–823 10.1104/pp.103.029454 PubMed DOI PMC
Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit
Multifunctional Microtubule-Associated Proteins in Plants
Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana