The explanation of educational disparities in adiposity by lifestyle, socioeconomic and mental health mediators: a multiple mediation model
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
857487
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
857560
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
LM2018121
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/17_043/0009632
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5104
European Commission (EC)
PubMed
38245616
PubMed Central
PMC11078717
DOI
10.1038/s41430-024-01403-1
PII: 10.1038/s41430-024-01403-1
Knihovny.cz E-zdroje
- MeSH
- adipozita * MeSH
- analýza mediace MeSH
- disparity zdravotního stavu MeSH
- dospělí MeSH
- duševní zdraví * MeSH
- lidé středního věku MeSH
- lidé MeSH
- obezita epidemiologie psychologie MeSH
- průřezové studie MeSH
- sedavý životní styl MeSH
- socioekonomické faktory * MeSH
- stupeň vzdělání * MeSH
- životní styl * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: The inverse association between education and obesity was previously found in numerous studies. This study aims to assess several possible mediators in the educational disparities in adiposity. We hypothesize the potential mediating role of lifestyle, socioeconomic, and mental health factors in the association between education and adiposity. METHODS: Cross-sectional population-based sample from Czechia included 2,154 25-64 years old subjects (54.6% women). Education was classified as high, middle, and low. Adiposity was assessed as a latent variable based on body fat percentage, BMI, waist circumference, and visceral fat. The mediation potential of unhealthy dietary behavior, alcohol intake, smoking, sedentary behaviors, income, stress, depression, and quality of life was assessed in age-adjusted sex-specific multiple mediation models. RESULTS: The negative direct effect of education on adiposity was statistically significant at 5% level of significance in both sexes. For men, the indirect effect was statistically significant via sedentary behavior (β = 0.041; 95% CI [0.025-0.062]) with a mediation ratio of 23.7%. In women, the indirect effect was statistically significant via dietary risk (β = -0.023, 95% CI [-0.037, -0.013]), alcohol intake (β = -0.006; 95% CI [-0.014, -0.001]), sedentary behavior (β = 0.012, 95% CI [0.004,0.023]), income (β = -0.022; 95% CI [-0.041, -0.004]), and mental health (β = -0.007; 95% CI [-0.019, -0.001]). The total mediation ratio in women was 30.5%. CONCLUSIONS: Sedentary behaviors had mediating role in the association between education and adiposity in both sexes, with more important role in men. In addition, unhealthy diet and lower income partially mediated the educational gradient in adiposity in women.
International Clinical Research Centre Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno Czech Republic
Research Department of Epidemiology and Public Health University College London London UK
Zobrazit více v PubMed
Cífková R, Bruthans J, Wohlfahrt P, Krajčoviechová A, Šulc P, Jozífová M, et al. 30-year trends in major cardiovascular risk factors in the Czech population, Czech MONICA and Czech post-MONICA, 1985 - 2016/17. PLoS One. 2020;15:e0232845. doi: 10.1371/journal.pone.0232845. PubMed DOI PMC
Pikhart H, Bobak M, Malyutina S, Pajak A, Kubínová R, Marmot M. Obesity and Education in Three Countries of the Central and Eastern Europe: The HAPIEE Study. Cent Eur J Public Health. 2007;15:140–2. doi: 10.21101/cejph.a3452. PubMed DOI
Gonzalez-Rivas JP, Mechanick JI, Hernandez JP, Infante-Garcia MM, Pavlovska I, Medina-Inojosa JR, et al. Prevalence of adiposity-based chronic disease in middle-aged adults from Czech Republic: The Kardiovize study. Obes Sci Pr. 2021;7:535–44. doi: 10.1002/osp4.496. PubMed DOI PMC
Brož J, Malinovská J, Nunes MA, Kučera K, Rožeková K, Žejglicová K, et al. Prevalence of diabetes and prediabetes and its risk factors in adults aged 25–64 in the Czech Republic: A cross-sectional study. Diabetes Res Clin Pr. 2020;170:108470. doi: 10.1016/j.diabres.2020.108470. PubMed DOI
Lustigova M, Dzurova D, Pikhart H, Kubinova R, Bobak M. Cardiovascular health among the Czech population at the beginning of the 21st century: a 12-year follow-up study. J Epidemiol Community Health. 2018;72:442–8. doi: 10.1136/jech-2017-209967. PubMed DOI PMC
Marmot M, Bell R. Social determinants and non-communicable diseases: time for integrated action. BMJ. 2019;28:l251. doi: 10.1136/bmj.l251. PubMed DOI PMC
Maugeri A, Barchitta M, Kunzova S, Bauerova H, Agodi A, Vinciguerra M. The association of social and behavioral factors with dietary risks in adults: Evidence from the Kardiovize Brno 2030 study. Nutr, Metab Cardiovasc Dis. 2020;30:896–906. doi: 10.1016/j.numecd.2020.02.009. PubMed DOI
OECD and European Observatory on Health Systems and Policies. Czech Republic: Country Health Profile 2021. Paris: OECD Publishing; 2021.
Marmot M, Allen JJ. Social Determinants of Health Equity. Am J Public Health. 2014;104:S517–9. doi: 10.2105/AJPH.2014.302200. PubMed DOI PMC
Kuklová M, Kagstrom A, Kučera M, Mladá K, Winkler P, Cermakova P. Educational inequalities in mental disorders in the Czech Republic: data from CZEch Mental health Study (CZEMS) Soc Psychiatry Psychiatr Epidemiol. 2021;56:867–77. doi: 10.1007/s00127-020-01930-9. PubMed DOI
Mechanick JI, Farkouh ME, Newman JD, Garvey WT. Cardiometabolic-Based Chronic Disease, Adiposity and Dysglycemia Drivers. J Am Coll Cardiol. 2020;75:525–38. doi: 10.1016/j.jacc.2019.11.044. PubMed DOI PMC
Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BWJH, et al. Overweight, Obesity, and Depression. Arch Gen Psychiatry. 2010;67:220. doi: 10.1001/archgenpsychiatry.2010.2. PubMed DOI
OECD and European Observatory on Health Systems and Policies. Czech Republic: Country Health Profile 2019. Paris: OECD Publishing; 2019.
Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med. 2019;25:1657–66. PubMed
Thomas YT, Newman CB, Faynshtayn NG, McGregor AJ. Exploring Obesity as a Gendered Contagion: Impact on Lifestyle Interventions to Improve Cardiovascular Health. Clin Ther. 2022;44:23–32. doi: 10.1016/j.clinthera.2021.11.011. PubMed DOI
Movsisyan NK, Vinciguerra M, Lopez-Jimenez F, Kunzová Š, Homolka M, Jaresova J, et al. Kardiovize Brno 2030, a prospective cardiovascular health study in Central Europe: Methods, baseline findings and future directions. Eur J Prev Cardiol. 2018;25:54–64. doi: 10.1177/2047487317726623. PubMed DOI
Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393:1958–72. doi: 10.1016/S0140-6736(19)30041-8. PubMed DOI PMC
Fiala J, Sochor O. Methodology for Measurement of Alcohol Consumption in Epidemiological Studies of Risk Factors of Non-Communicable Diseases and the Kardiovize 2030 Project. Hygiena. 2014;59:167–78. doi: 10.21101/hygiena.a1288. DOI
Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med Sci Sports Exerc. 2003;35:1381–95. doi: 10.1249/01.MSS.0000078924.61453.FB. PubMed DOI
Eurostat. Glossary: equivalised disposable income. Eurostat; 2021.
Cohen S. Perceived stress in a probability sample of the United States. In: The social psychology of health. Thousand Oaks, CA, US: Sage Publications, Inc; 1988. p. 31–67. (The Claremont Symposium on Applied Social Psychology).
Kroenke K, Spitzer RL, Williams JBW. The PHQ-9. J Gen Intern Med. 2001;16:606–13. doi: 10.1046/j.1525-1497.2001.016009606.x. PubMed DOI PMC
StataCorp. Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC; 2019.
Muthén LK, Muthén BO. Statistical Analysis With Latent Variables User’s Guide [Internet]. 2017. Available from: www.StatModel.com.
López-Valenciano A, Mayo X, Liguori G, Copeland RJ, Lamb M, Jimenez A. Changes in sedentary behaviour in European Union adults between 2002 and 2017. BMC Public Health. 2020;20:1206. doi: 10.1186/s12889-020-09293-1. PubMed DOI PMC
Stamatakis E, Grunseit AC, Coombs N, Ding D, Chau JY, Phongsavan P, et al. Associations between socio-economic position and sedentary behaviour in a large population sample of Australian middle and older-aged adults: The Social, Economic, and Environmental Factor (SEEF) Study. Prev Med (Balt) 2014;63:72–80. doi: 10.1016/j.ypmed.2014.03.009. PubMed DOI
Svendsen MT, Bak CK, Sørensen K, Pelikan J, Riddersholm SJ, Skals RK, et al. Associations of health literacy with socioeconomic position, health risk behavior, and health status: A large national population-based survey among Danish adults. BMC Public Health. 2020;20:565. doi: 10.1186/s12889-020-08498-8. PubMed DOI PMC
Sørensen K, van den Broucke S, Pelikan JM, Fullam J, Doyle G, Slonska Z, et al. Measuring health literacy in populations: Illuminating the design and development process of the European Health Literacy Survey Questionnaire (HLS-EU-Q) BMC Public Health. 2013;13:948. doi: 10.1186/1471-2458-13-948. PubMed DOI PMC
Krijnen HK, Hoveling LA, Liefbroer AC, Bültmann U, Smidt N. Socioeconomic differences in metabolic syndrome development among males and females, and the mediating role of health literacy and self-management skills. Prev Med (Balt) 2022;161:107140. doi: 10.1016/j.ypmed.2022.107140. PubMed DOI
Pigeyre M, Rousseaux J, Trouiller P, Dumont J, Goumidi L, Bonte D, et al. How obesity relates to socio-economic status: Identification of eating behavior mediators. Int J Obes. 2016;40:1794–801. doi: 10.1038/ijo.2016.109. PubMed DOI
Psaltopoulou T, Hatzis G, Papageorgiou N, Androulakis E, Briasoulis A, Tousoulis D. Socioeconomic status and risk factors for cardiovascular disease: Impact of dietary mediators. Hellenic J Cardiol. 2017;58:32–42. PubMed
Mechanick JI, Farkouh ME, Newman JD, Garvey WT. Cardiometabolic-Based Chronic Disease, Adiposity and Dysglycemia Drivers: JACC State-of-the-Art Review. J Am Coll Cardio. 2020;75:525–38. PubMed PMC
Tremblay A, Chaput JP. Obesity: The allostatic load of weight loss dieting. Physiol Behav. 2012;106:16–21. doi: 10.1016/j.physbeh.2011.05.020. PubMed DOI
Ribeiro CM, Beserra BTS, Silva NG, Lima CL, Rocha PRS, Coelho MS, et al. Exposure to endocrine-disrupting chemicals and anthropometric measures of obesity: A systematic review and meta-analysis. BMJ Open. 2020;10:1–30. doi: 10.1136/bmjopen-2019-033509. PubMed DOI PMC
Huang S, Zhang X, Huang J, Lu X, Liu F, Gu D. Ambient air pollution and body weight status in adults: A systematic review and meta-analysis. Environ Pollut. 2020;265:114999. doi: 10.1016/j.envpol.2020.114999. PubMed DOI
Cade J, Thompson R, Burley V, Warm D. Development, validation and utilisation of food-frequency questionnaires – a review. Public Health Nutr. 2002;5:567–87. doi: 10.1079/PHN2001318. PubMed DOI