Molecular diversity of phospholipase D in angiosperms
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
11876823
PubMed Central
PMC77410
DOI
10.1186/1471-2164-3-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The phospholipase D (PLD) family has been identified in plants by recent molecular studies, fostered by the emerging importance of plant PLDs in stress physiology and signal transduction. However, the presence of multiple isoforms limits the power of conventional biochemical and pharmacological approaches, and calls for a wider application of genetic methodology. RESULTS: Taking advantage of sequence data available in public databases, we attempted to provide a prerequisite for such an approach. We made a complete inventory of the Arabidopsis thaliana PLD family, which was found to comprise 12 distinct genes. The current nomenclature of Arabidopsis PLDs was refined and expanded to include five newly described genes. To assess the degree of plant PLD diversity beyond Arabidopsis we explored data from rice (including the genome draft by Monsanto) as well as cDNA and EST sequences from several other plants. Our analysis revealed two major PLD subfamilies in plants. The first, designated C2-PLD, is characterised by presence of the C2 domain and comprises previously known plant PLDs as well as new isoforms with possibly unusual features catalytically inactive or independent on Ca2+. The second subfamily (denoted PXPH-PLD) is novel in plants but is related to animal and fungal enzymes possessing the PX and PH domains. CONCLUSIONS: The evolutionary dynamics, and inter-specific diversity, of plant PLDs inferred from our phylogenetic analysis, call for more plant species to be employed in PLD research. This will enable us to obtain generally valid conclusions.
Zobrazit více v PubMed
Liscovitch M, Czarny M, Fiucci G, Tang X. Phospholipase D: molecular and cell biology of a novel gene family. Biochem. 2000;345:401–415. doi: 10.1042/0264-6021:3450401. PubMed DOI PMC
Wang X. Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog Lipid Res. 2000;39:109–149. doi: 10.1016/S0163-7827(00)00002-3. PubMed DOI
Hanahan DJ, Chaikoff IL. A new phospholipide-splitting enzyme specific for the ester linkage between the nitrogenous base and the phosphoric acid grouping. J Biol Chem. 1947;169:699–705. PubMed
Wang X, Xu L, Zheng L. Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. J Biol Chem. 1994;269:20312–20317. PubMed
den Hartog M, Musgrave A, Munnik T. Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant J. 2001;25:55–65. doi: 10.1046/j.1365-313X.2001.00931.x. PubMed DOI
Munnik T, Irvine RF, Musgrave A. Phospholipid signalling in plants. Biochim Biophys Acta. 1998;1389:222–272. doi: 10.1016/S0005-2760(97)00158-6. PubMed DOI
Lein W, Saalbach G. Cloning and direct G-protein regulation of phospholipase D from tobacco. Biochim Biophys Acta. 2001;1530:172–183. doi: 10.1016/S1388-1981(00)00182-7. PubMed DOI
Chapman KD. Emerging physiological roles for N-acylphosphatidylethanolamine metabolism in plants: signal transduction and membrane protection. Chem Phys Lipids. 2000;108:221–229. doi: 10.1016/S0009-3084(00)00198-5. PubMed DOI
Munnik T. Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci. 2001;6:227–233. doi: 10.1016/S1360-1385(01)01918-5. PubMed DOI
Fan L, Zheng S, Wang X. Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell. 1997;9:2183–2196. doi: 10.1105/tpc.9.12.2183. PubMed DOI PMC
Pappan K, Qin W, Dyer JH, Zheng L, Wang X. Molecular cloning and functional analysis of polyphosphoinositide-dependent phospholipase D, PLDbeta, from Arabidopsis. J Biol Chem. 1997;272:7055–7061. doi: 10.1074/jbc.272.11.7055. PubMed DOI
AGI Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. doi: 10.1038/35048692. PubMed DOI
Barry GF. The use of the Monsanto draft rice genome sequence in research. Plant Physiol. 2001;125:1164–1165. doi: 10.1104/pp.125.3.1164. PubMed DOI PMC
Ponting CP, Kerr ID. A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: Identification of duplicated repeats and potential active site residues. Protein Sci. 1996;5:914–922. PubMed PMC
Katagiri T, Takahashi S, Shinozaki S. Involvement of a novel Arabidopsis phospholipase D, AtPLDδ, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J. 2001;26:595–606. doi: 10.1046/j.1365-313X.2001.01060.x. PubMed DOI
Wang C, Wang X. A Novel Phospholipase D of Arabidopsis That Is Activated by Oleic Acid and Associated with the Plasma Membrane. Plant Physiol. 2001;127:1102–12. doi: 10.1104/pp.127.3.1102. PubMed DOI PMC
Wang X. Plant phospholipases. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:211–231. doi: 10.1146/annurev.arplant.52.1.211. PubMed DOI
Qin W, Dyer JH, Zheng Z, Wang X. Isolation and nucleotide sequence of the fourth phospholipase D (accession no. Af138281), PLD-gamma 2, from Arabidopsis thaliana. (PGR99-084) Plant Physiol. 1999;120:635.
Laxalt AM, ter Riet B, Verdonk JC, Parigi L, Tameling WIL, Vossen J, Haring M, Musgrave A, Munnik T. Characterization of five tomato phospholipase D cDNAs: rapid and specific expression of LePLDbeta1 on elicitation with xylanase. Plant. 2001;26:237–247. doi: 10.1046/j.1365-313X.2001.01023.x. PubMed DOI
Ueki J, Morioka S, Komari T, Kumashiro T. Purification and characterization of phospholipase-D (PLD) from rice (Oryza-sativa L) and cloning of cDNA for PLD from rice and maize (Zea-mays L). Plant Cell Physiol. 1995;36:903–914. PubMed
Morioka S, Ueki J, Komari T. Characterization of two distinctive genomic clones (accession nos. AB001919 and AB001920) for phospholipase D from rice (PGR97-076). Plant Physiol. 1997;114:396.
Almquist KC, Paliyath G. Cloning and sequencing of a full-length cDNA coding for phospholipase D alpha (Accession Number 201661) from Lycopersicon esculentum Mill. (PGR00-013) Plant Physiol. 2000;122:292.
Whitaker BD, Smith DL, Green KC. Cloning, characterization and functional expression of a phospholipase D alpha cDNA from tomato fruit. Physiol Plant. 2001;112:87–94. doi: 10.1034/j.1399-3054.2001.1120112.x. PubMed DOI
Ewing RM, Ben Kahla A, Poirot O, Lopez F, Audic S, Claverie JM. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res. 1999;9:950–959. doi: 10.1101/gr.9.10.950. PubMed DOI PMC
Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell. 2000;12:111–124. doi: 10.1105/tpc.12.1.111. PubMed DOI PMC
Rizo J, Sudhof TC. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem. 1998;273:15879–15882. doi: 10.1074/jbc.273.26.15879. PubMed DOI
Qin W, Pappan K, Wang X. Molecular heterogeneity of phospholipase D (PLD). Cloning of PLDgamma and regulation of plant PLDgamma, -beta, and -alpha by polyphosphoinositides and calcium. J Biol Chem. 1997;272:28267–28273. doi: 10.1074/jbc.272.45.28267. PubMed DOI
Zheng L, Krishnamoorthi R, Zolkiewski M, Wang X. Distinct Ca2+ binding properties of novel C2 domains of plant phospholipase dalpha and beta. J Biol Chem. 2000;275:19700–19706. doi: 10.1074/jbc.M001945200. PubMed DOI
Pappan K, Wang X. Plant phospholipase Dalpha is an acidic phospholipase active at near-physiological Ca(2+) concentrations. Arch Biochem Biophys. 1999;368:347–353. doi: 10.1006/abbi.1999.1325. PubMed DOI
Hodgkin MN, Masson MR, Powner D, Saqib KM, Ponting CP, Wakelam MJ. Phospholipase D regulation and localisation is dependent upon a phosphatidylinositol 4,5-biphosphate-specific PH domain. Curr Biol. 2000;10:43–46. doi: 10.1016/S0960-9822(99)00264-X. PubMed DOI
Sciorra VA, Rudge SA, Prestwich GD, Frohman MA, Engebrecht J, Morris AJ. Identification of a phosphoinositide binding motif that mediates activation of mammalian and yeast phospholipase D isoenzymes. EMBO J. 1999;18:5911–5921. doi: 10.1093/emboj/18.21.5911. PubMed DOI PMC
Munnik T, Musgrave A. Phospholipid signaling in plants: holding on to phospholipase D. Sci STKE. 2001;111:PE42. PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1006/jmbi.1990.9999. PubMed DOI
Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Thompson JD, Higgins DG, Gibson TJ. Clustal-W – improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. PubMed PMC
Schuler GD, Altschul SF, Lipman DJ. A workbench for multiple alignment construction and analysis. Prot Struct Fund Genet. 1991;9:180–190. PubMed
Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997;268:78–94. doi: 10.1006/jmbi.1997.0951. PubMed DOI
Schultz J, Copley RR, Doerks T, Ponting CP, Bork P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 2000;28:231–234. doi: 10.1093/nar/28.1.231. PubMed DOI PMC
Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL. The Pfam protein families database. Nucleic Acids Res. 2000;28:263–266. doi: 10.1093/nar/28.1.263. PubMed DOI PMC
Felsenstein J. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 1996;266:418–427. PubMed
Cvrckova F. Are plant formins integral membrane proteins? Genome Biology. 2000;1:1–001. PubMed PMC
Tatusova TA, Madden TL. Blast 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiology Letters. 1999;174:247–250. doi: 10.1016/S0378-1097(99)00149-4. PubMed DOI
Dyer JH, Zheng L, Wang X. Cloning and nucleotide sequence of a cDNA (Accession No. U36381) encoding phospholipase D from Arabidopsis. (PGR95-096) Plant Physiol. 1995;109:1497. doi: 10.1104/pp.109.4.1497. PubMed DOI PMC
Gardiner JC, Harper JD, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J. A 90-kd phospholipase d from tobacco binds to microtubules and the plasma membrane. Plant Cell. 2001;13:2143–58. doi: 10.1105/tpc.13.9.2143. PubMed DOI PMC
Nalefski AE, Falke JJ. The C2 domain calcium-binding motif: Structural and functional diversity. Protein Sci. 1996;12:2375–2390. PubMed PMC
Multifunctional Microtubule-Associated Proteins in Plants
When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules
Formin homology 2 domains occur in multiple contexts in angiosperms
Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth