Multifunctional Microtubule-Associated Proteins in Plants

. 2016 ; 7 () : 474. [epub] 20160421

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid27148302

Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.

Zobrazit více v PubMed

Akhmanova A., Steinmetz M. O. (2008). Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9, 309–322. 10.1038/nrm2369 PubMed DOI

Ambrose J. C., Li W. X., Marcus A., Ma H., Cyr R. (2005). A minus-end-directed kinesin with plus-end trackin protein activity is involved in spindle morphogenesis. Mol. Biol. Cell 16, 1584–1592. 10.1091/mbc.E04-10-0935 PubMed DOI PMC

Ambrose J. C., Shoji T., Kotzer A. M., Pighin J. A., Wasteneys G. O. (2007). The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19, 2763–2775. 10.1105/tpc.107.053777 PubMed DOI PMC

Andrade J., Pearce S. T., Zhao H., Barros M. (2004). Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules. Biochem. J. 384, 327–336. 10.1042/BJ20040622 PubMed DOI PMC

Asada T., Kuriyama R., Shibaoka H. (1997). TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J. Cell Sci. 110, 179–189. PubMed

Azama K., Abe S., Sugimoto H., Davis E. (2003). Lysine-containing proteins in maize endosperm: a major contribution from cytoskeleton-associated carbohydrate-metabolizing enzymes. Planta 217, 628–638. 10.1007/s00425-003-1016-5 PubMed DOI

Baluska F., Hlavacka A. (2005). Plant formins come of age: something special about cross-walls. New Phytol. 168, 499–503. 10.1111/j.1469-8137.2005.01595.x PubMed DOI

Barroso C., Chan J., Allan V., Doonan J., Hussey P., Lloyd C. (2000). Two kinesin-related proteins associated with the cold-stable cytoskeleton of carrot cells: characterization of a novel kinesin, DcKRP120-2. Plant J. 24, 859–868. 10.1046/j.1365-313x.2000.00937.x PubMed DOI

Basto R., Gergely F., Draviam V. M., Ohkura H., Liley K., Raff J. W. (2007). Hsp90 is required to localise cyclin B and Msps/ch-TOG to the mitotic spindle in Drosophila and humans. J. Cell Sci. 120, 1278–1287. 10.1242/jcs.000604 PubMed DOI

Blanchoin L., Staiger C. J. (2010). Plant formins: diverse isoforms and unique molecular mechanism. Biochim. Biophys. Acta. Mol. Cell Res. 1803, 201–206. 10.1016/j.bbamcr.2008.09.015 PubMed DOI

Boter M., Amigues B., Peart J., Breuer C., Kadota Y., Casais C., et al. . (2007). Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19, 3791–3804. 10.1105/tpc.107.050427 PubMed DOI PMC

Bouquin T., Mattsson O., Naested H., Foster R., Mundy J. (2003). The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J. Cell Sci. 116, 791–801. 10.1242/jcs.00274 PubMed DOI

Burk D. H., Liu B., Zhong R. Q., Morrison W. H., Ye Z. H. (2001). A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13, 807–827. 10.1105/tpc.13.4.807 PubMed DOI PMC

Buschmann H., Chan J., Sanchez-Pulido L., Andrade-Navarro M. A., Doonan J. H., Lloyd C. W. (2006). Microtubule-associated AIR9 recognizes the cortical division site at preprophase and cell-plate insertion. Curr. Biol. 16, 1938–1943. 10.1016/j.cub.2006.08.028 PubMed DOI

Buschmann H., Lloyd C. W. (2008). Arabidopsis mutants and the network of microtubute-associated functions. Mol. Plant 1, 888–898. 10.1093/mp/ssn060 PubMed DOI

Cao L., Wang L., Zheng M., Cao H., Ding L., Zhang X., et al. . (2013). Arabidopsis AUGMIN subunit8 is a microtubule plus-end binding protein that promotes microtubule reorientation in hypocotyls. Plant Cell 25, 2187–2201. 10.1105/tpc.113.113472 PubMed DOI PMC

Carneiro N. P., Hughes P. A., Larkins B. A. (1999). The eEFlA gene family is differentially expressed in maize endosperm. Plant Mol. Biol. 41, 801–813. 10.1023/A:1006391207980 PubMed DOI

Chan J., Calder G. M., Doonan J. H., Lloyd C. W. (2003). EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat. Cell Biol. 5, 967–971. 10.1038/ncb1057 PubMed DOI

Chuong S. D. X., Good A. G., Taylor G. J., Freeman M. C., Moorhead G. B. G., Muench D. G. (2004). Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol. Cell. Proteomics 3, 970–983. 10.1074/mcp.M400053-MCP200 PubMed DOI

Collings D. A. (2008). Crossed-wires: interactions and cross-talk between the microtubule and microfilament networks in plants, in Plant Microtubules: Development and Flexibility, 2nd Edn., Vol. 11, ed Nick P. (Berlin; Heidelberg: Springer; ), 47–79.

Cueille N., Blanc C. T., Riederer I. M., Riederer B. M. (2007). Microtubule-associated protein 1B binds glyceraldehyde-3-phosphate dehydrogenase. J. Proteome Res. 6, 2640–2647. 10.1021/pr070081z PubMed DOI

Cvrckova F. (2013). Formins and membranes: anchoring cortical actin to the cell wall and beyond. Front. Plant Sci. 4:436. 10.3389/fpls.2013.00436 PubMed DOI PMC

Cvrckova F., Oulehlova D., Zarsky V. (2015). Formins: linking cytoskeleton and endomembranes in plant cells. Int. J. Mol. Sci. 16, 1–18. 10.3390/ijms16010001 PubMed DOI PMC

de Carcer G., Avides M. D., Lallena M. J., Glover D. M., Gonzalez C. (2001). Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability. EMBO J. 20, 2878–2884. 10.1093/emboj/20.11.2878 PubMed DOI PMC

Deeks M. J., Cvrckova F., Machesky L. M., Mikitova V., Ketelaar T., Zarsky V., et al. . (2005). Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol. 168, 529–540. 10.1111/j.1469-8137.2005.01582.x PubMed DOI

Deeks M. J., Fendrych M., Smertenko A., Bell K. S., Oparka K., Cvrckova F., et al. . (2010). The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J. Cell Sci. 123, 1209–1215. 10.1242/jcs.065557 PubMed DOI

Deeks M. J., Hussey P. J. (2005). Arp2/3 and scar: plants move to the fore. Nat. Rev. Mol. Cell Biol. 6, 954–964. 10.1038/nrm1765 PubMed DOI

Derbyshire P., Menard D., Green P., Saalbach G., Buschmann H., Lloyd C. W., et al. . (2015). Proteomic analysis of microtubule interacting proteins over the course of xylem tracheary element formation in Arabidopsis. Plant Cell 27, 2709–2726. 10.1105/tpc.15.00314 PubMed DOI PMC

Dhonukshe P., Laxalt A. M., Goedhart J., Gadella T. W. J., Munnik T. (2003). Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15, 2666–2679. 10.1105/tpc.014977 PubMed DOI PMC

Dixit R., Cyr R. (2004). The cortical microtubule array: from dynamics to organization. Plant Cell 16, 2546–2552. 10.1105/tpc.104.161030 PubMed DOI PMC

Dunkley T. P. J., Hester S., Shadforth I. P., Runions J., Weimar T., Hanton S. L., et al. . (2006). Mapping the Arabidopsis organelle proteome. Proc. Natl. Acad. Sci. U.S.A. 103, 6518–6523. 10.1073/pnas.0506958103 PubMed DOI PMC

Durso N. A., Cyr R. J. (1994). A Calmodulin-sensitive interaction between microtubules and a higher-plant homolog of elongation factor-1-alpha. Plant Cell 6, 893–905. 10.1105/tpc.6.6.893 PubMed DOI PMC

Elias M., Potocky M., Cvrckova F., Zarsky V. (2002). Molecular diversity of phospholipase D in angiosperms. BMC Genomics 3:2. 10.1186/1471-2164-3-2 PubMed DOI PMC

Erhardt M., Stoppin-Mellet V., Campagne S., Canaday J., Mutterer J., Fabian T., et al. . (2002). The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J. Cell Sci. 115, 2423–2431. PubMed

Fostinis Y., Theodoropoulos P. A., Gravanis A., Stournaras C. (1992). Heat-shock protein HSP90 and its association with the cytoskeleton - a morphological-study. Biochem. Cell Biol. 70, 779–786. 10.1139/o92-118 PubMed DOI

Freudenreich A., Nick P. (1998). Microtubular organization in tobacco cells: heat-shock protein 90 can bind to tubulin in vitro. Bot. Acta 111, 273–279. 10.1111/j.1438-8677.1998.tb00708.x DOI

Frey N., Klotz J., Nick P. (2009). Dynamic bridges a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. Plant Cell Physiol. 50, 1493–1506. 10.1093/pcp/pcp094 PubMed DOI

Furutani I., Watanabe Y., Prieto R., Masukawa M., Suzuki K., Naoi K., et al. . (2000). The SPIRAL genes are required for directional central of cell elongation in Arabidopsis thaliana. Development 127, 4443–4453. PubMed

Gaillard J., Neumann E., Van Damme D., Stoppin-Mellet V., Ebel C., Barbier E., et al. . (2008). Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling. Mol. Biol. Cell 19, 4534–4544. 10.1091/mbc.E08-04-0341 PubMed DOI PMC

Gantet P., Masson F., Domergue O., Marquismention M., Bauw G., Inze D., et al. . (1996). Cloning of a cDNA encoding a developmentally regulated 22 kDa polypeptide from tobacco leaf plasma membrane. Biochem. Mol. Biol. Int. 40, 469–477. 10.1080/15216549600201033 PubMed DOI

Gardiner J. (2013). The evolution and diversification of plant microtubule-associated proteins. Plant J. 75, 219–229. 10.1111/tpj.12189 PubMed DOI

Gardiner J. C., Harper J. D. I., Weerakoon N. D., Collings D. A., Ritchie S., Gilroy S., et al. . (2001). A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13, 2143–2158. 10.1105/tpc.13.9.2143 PubMed DOI PMC

Garnier C., Barbier P., Gilli R., Lopez C., Peyrot V., Briand C. (1998). Heat-shock protein 90 (hsp90) binds in vitro to tubulin dimer and inhibits microtubule formation. Biochem. Biophys. Res. Commun. 250, 414–419. 10.1006/bbrc.1998.9319 PubMed DOI

Glover D. M. (2005). Polo kinase and progression through M phase in Drosophila: a perspective from the spindle poles. Oncogene 24, 230–237. 10.1038/sj.onc.1208279 PubMed DOI

Hamada T. (2014). Microtubule organization and microtubule-associated proteins in plant cells. Int. Rev. Cell Mol. Biol. 312, 1–52. 10.1016/B978-0-12-800178-3.00001-4 PubMed DOI

Hamada T., Igarashi H., Itoh T. J., Shimmen T., Sonobe S. (2004). Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/MOR1 family. Plant Cell Physiol. 45, 1233–1242. 10.1093/pcp/pch145 PubMed DOI

Hamada T., Igarashi H., Taguchi R., Fujiwara M., Fukao Y., Shimmen T., et al. . (2009). The Putative RNA-processing protein, THO2, is a microtubule-associated protein in tobacco. Plant Cell Physiol. 50, 801–811. 10.1093/pcp/pcp024 PubMed DOI

Hamada T., Nagasaki-Takeuchi N., Kato T., Fujiwara M., Sonobe S., Fukao Y., et al. . (2013). Purification and characterization of novel microtubule-associated proteins from arabidopsis cell suspension cultures. Plant Physiol. 163, 1804–1816. 10.1104/pp.113.225607 PubMed DOI PMC

Hammer J. A., Wu X. F. S. (2002). Rabs grab motors: defining the connections between Rab GTPases and motor proteins. Curr. Opin. Cell Biol. 14, 69–75. 10.1016/S0955-0674(01)00296-4 PubMed DOI

Harrell J. M., Kurek I., Breiman A., Radanyi C., Renoir J. M., Pratt W. B., et al. . (2002). All of the protein interactions that link steroid receptor center dot hsp90 center dot immunophilin heterocomplexes to cytoplasmic dynein are common to plant and animal cells. Biochemistry 41, 5581–5587. 10.1021/bi020073q PubMed DOI

Hashimoto T. (2015). Microtubules in plants. Arabidopsis Book 13, e0179. 10.1199/tab.0179 PubMed DOI PMC

Havelková L., Nanda G., Martinek J., Bellinvia E., Sikorová L., Šlajcherová K., et al. . (2015). Arp2/3 complex subunit ARPC2 binds to microtubules. Plant Sci. 241, 96–108. 10.1016/j.plantsci.2015.10.001 PubMed DOI

Hiwatashi Y., Sato Y., Doonan J. H. (2014). Kinesins have a dual function in organizing microtubules during both tip growth and cytokinesis in Physcomitrella patens. Plant Cell 26, 1256–1266. 10.1105/tpc.113.121723 PubMed DOI PMC

Ho A. Y. Y., Day D. A., Brown M. H., Marc J. (2009). Arabidopsis phospholipase D delta as an initiator of cytoskeleton-mediated signalling to fundamental cellular processes. Funct. Plant Biol. 36, 190–198. 10.1071/FP08222 PubMed DOI

Howard J., Hyman A. A. (2003). Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758. 10.1038/nature01600 PubMed DOI

Huang S. L., Jin L. F., Du J. Z., Li H., Zha Q., Ou G. S., et al. . (2007). SB401, a pollen-specific protein from Solanum berthaultii, binds to and bundles microtubules and F-actin. Plant J. 51, 406–418. 10.1111/j.1365-313X.2007.03153.x PubMed DOI

Ide Y., Nagasaki N., Tomioka R., Suito M., Kamiya T., Maeshima M. (2007). Molecular properties of a novel, hydrophilic cation-binding protein associated with the plasma membrane. J. Exp. Bot. 58, 1173–1183. 10.1093/jxb/erl284 PubMed DOI

Igarashi H., Orii H., Mori H., Shimmen T., Sonobe S. (2000). Isolation of a novel 190 kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol. 41, 920–931. 10.1093/pcp/pcd015 PubMed DOI

Ingouff M., Gerald J. N. F., Guerin C., Robert H., Sorensen M. B., Van Damme D., et al. . (2005). Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat. Cell Biol. 7, 374–380. 10.1038/ncb1238 PubMed DOI

Jiang C. J., Sonobe S. (1993). Identification and preliminary characterization of A 65-kDA higher-plant microtubule-associated protein. J. Cell Sci. 105, 891–901. PubMed

Kato M., Nagasaki-Takeuchi N., Ide Y., Maeshima M. (2010). An Arabidopsis hydrophilic Ca-2-binding protein with a PEVK-rich domain, PCaP2, is associated with the plasma membrane and interacts with calmodulin and phosphatidylinositol phosphates. Plant Cell Physiol. 51, 366–379. 10.1093/pcp/pcq003 PubMed DOI

Keech O., Pesquet E., Gutierrez L., Ahad A., Bellini C., Smith S. M., et al. . (2010). Leaf senescence is accompanied by an early disruption of the microtubule network in Arabidopsis. Plant Physiol. 154, 1710–1720. 10.1104/pp.110.163402 PubMed DOI PMC

Ketelaar T., Voss C., Dimmock S. A., Thumm M., Hussey P. J. (2004). Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett. 567, 302–306. 10.1016/j.febslet.2004.04.088 PubMed DOI

Kim S., Coulombe P. A. (2010). OPINION Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat. Rev. Mol. Cell Biol. 11, 75–81. 10.1038/nrm2818 PubMed DOI

Kirik V., Herrmann U., Parupalli C., Sedbrook J. C., Ehrhardt D. W., Hulskamp M. (2007). CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis. J. Cell Sci. 120, 4416–4425. 10.1242/jcs.024950 PubMed DOI

Klotz J., Nick P. (2012). A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division. New Phytol. 193, 576–589. 10.1111/j.1469-8137.2011.03944.x PubMed DOI

Koehler A., Hurt E. (2007). Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8, 761–773. 10.1038/nrm2255 PubMed DOI

Korolev A. V., Buschmann H., Doonan J. H., Lloyd C. W. (2007). AtMAP70-5, a divergent member of the MAP70 family of microtubule-associated proteins, is required for anisotropic cell growth in Arabidopsis. J. Cell Sci. 120, 2241–2247. 10.1242/jcs.007393 PubMed DOI

Korolev A. V., Chan J., Naldrett M. J., Doonan J. H., Lloyd C. W. (2005). Identification of a novel family of 70 kDa microtubule-associated proteins in Arabidopsis cells. Plant J. 42, 547–555. 10.1111/j.1365-313X.2005.02393.x PubMed DOI

Kovar D. R., Pollard T. D. (2004). Progressing actin: sFormin as a processive elongation machine. Nat. Cell Biol. 6, 1158–1159. 10.1038/ncb1204-1158 PubMed DOI

Koyasu S., Nishida E., Kadowaki T., Matsuzaki F., Iida K., Harada F., et al. . (1986). 2 Mammalian heat-shock proteins, HSP90 and HSP100, Are Actin-Binding Proteins. Proc. Natl. Acad. Sci. U.S.A. 83, 8054–8058. 10.1073/pnas.83.21.8054 PubMed DOI PMC

Krishnakumar S., Oppenheimer D. G. (1999). Extragenic suppressors of the Arabidopsis zwi-3 mutation identify new genes that function in trichome branch formation sand pollen tube growth. Development 126, 3079–3088. PubMed

Krtkova J., Zimmermann A., Schwarzerova K., Nick P. (2012). Hsp90 binds microtubules and is involved in the reorganization of the microtubular network in angiosperms. J. Plant Physiol. 169, 1329–1339. 10.1016/j.jplph.2012.06.010 PubMed DOI

Krupnova T., Sasabe M., Ghebreghiorghis L., Gruber C. W., Hamada T., Dehmel, et al. . (2009). Microtubule-associated kinase-like protein RUNKEL needed for cell plate expansion in Arabidopsis cytokinesis. Curr. Biol. 19, 518–523. 10.1016/j.cub.2009.02.021 PubMed DOI

Kumagai H., Sakai H. (1983). A porcine brain protein (35K-protein) which bundles microtubules and its identification as glyceraldehyde-3-phosphate dehydrogenase. J. Biochem. 93, 1259–1269. PubMed

Kusner D. J., Barton J. A., Qin C. B., Wang X. M., Iyer S. S. (2003). Evolutionary conservation of physical and functional interactions between phospholipase D and actin. Arch. Biochem. Biophys. 412, 231–241. 10.1016/S0003-9861(03)00052-3 PubMed DOI

Lange B. M. H., Bachi A., Wilm M., Gonzalez C. (2000). Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J. 19, 1252–1262. 10.1093/emboj/19.6.1252 PubMed DOI PMC

Lee Y., Kim Y.-W., Jeon B. W., Park K.-Y., Suh S. J., Seo J., et al. . (2007). Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening. Plant J. 52, 803–816. 10.1111/j.1365-313X.2007.03277.x PubMed DOI

Lee Y. R. J., Liu B. (2000). Identification of a phragmoplast-associated kinesin-related protein in higher plants. Curr. Biol. 10, 797–800. 10.1016/S0960-9822(00)00564-9 PubMed DOI

Lewis S. A., Tian G. L., Cowan N. J. (1997). The alpha- and beta-tubulin folding pathways. Trends Cell Biol. 7, 479–484. 10.1016/S0962-8924(97)01168-9 PubMed DOI

Li H., Zeng X., Liu Z. Q., Meng Q. T., Yuan M., Mao T. L. (2009). Arabidopsis microtubule-associated protein AtMAP65-2 acts as a microtubule stabilizer. Plant Mol. Biol. 69, 313–324. 10.1007/s11103-008-9426-1 PubMed DOI

Li J., Wang X., Qin T., Zhang Y., Liu X., Sun J., et al. . (2011). MDP25, A novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. Plant Cell 23, 4411–4427. 10.1105/tpc.111.092684 PubMed DOI PMC

Li S., Sun T., Ren H. (2015). The functions of the cytoskeleton and associated proteins during mitosis and cytokinesis in plant cells. Front. Plant Sci. 6:282. 10.3389/fpls.2015.00282 PubMed DOI PMC

Li Y. H., Shen Y. A., Cai C., Zhong C. C., Zhu L., Yuan M., et al. . (2010). The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell 22, 2710–2726. 10.1105/tpc.110.075507 PubMed DOI PMC

Liu B., Cyr R. J., Palevitz B. A. (1996). A kinesin-like protein, KatAp, in the cells of arabidopsis and other plants. Plant Cell 8, 119–132. PubMed PMC

Liu C., Qi X., Zhao Q., Yu J. (2013). Characterization and functional analysis of the potato pollen-specific microtubule-associated protein SBgLR in tobacco. PLoS ONE 8:e60543. 10.1371/journal.pone.0060543 PubMed DOI PMC

Liu G., Tang J. Z., Edmonds B. T., Murray J., Levin S., Condeelis J. (1996). F-actin sequesters elongation factor 1 alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction. J. Cell Biol. 135, 953–963. PubMed PMC

Lloyd C., Hussey P. (2001). Microtubule-associated proteins in plants - why we need a map. Nat. Rev. Mol. Cell Biol. 2, 40–47. 10.1038/35048005 PubMed DOI

Mao G. J., Chan J., Calder G., Doonan J. H., Lloyd C. W. (2005). Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division. Plant J. 43, 469–478. 10.1111/j.1365-313X.2005.02464.x PubMed DOI

Marc J., Sharkey D. E., Durso N. A., Zhang M., Cyr R. J. (1996). Isolation of a 90-kD microtubule-associated protein from tobacco membranes. Plant Cell 8, 2127–2138. 10.1105/tpc.8.11.2127 PubMed DOI PMC

Martin S. W., Glover B. J., Davies J. M. (2005). Lipid microdomains - plant membranes get organized. Trends Plant Sci. 10, 263–265. 10.1016/j.tplants.2005.04.004 PubMed DOI

Mathur J., Mathur N., Kernebeck B., Srinivas B. P., Hulskamp M. (2003). A novel localization pattern for an EB1-like protein links microtubule dynamics to endomembrane organization. Curr. Biol. 13, 1991–1997. 10.1016/j.cub.2003.10.033 PubMed DOI

Matsui K., Collings D., Asada T. (2001). Identification of a novel plant-specific kinesin-like protein that is highly expressed in interphase tobacco BY-2 cells. Protoplasma 215, 105–115. 10.1007/BF01280307 PubMed DOI

Meijer H. J. G., Munnik T. (2003). Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 54, 265–306. 10.1146/annurev.arplant.54.031902.134748 PubMed DOI

Mineyuki Y. (1999). The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants. Int. Rev. Cytol. 187, 1–49. 10.1016/S0074-7696(08)62415-8 DOI

Moore R. C., Durso N. A., Cyr R. J. (1998). Elongation factor-1 alpha stabilizes microtubules in a calcium/calmodulin-dependent manner. Cell Motil. Cytoskeleton 41, 168–180. PubMed

Moser M., Schafer E., Ehmann B. (2000). Characterization of protein and transcript levels of the chaperonin containing tailless complex protein-1 and tubulin during light-regulated growth of oat seedlings. Plant Physiol. 124, 313–320. 10.1104/pp.124.1.313 PubMed DOI PMC

Muench D. G., Park N.-I. (2006). Messages on the move: the role of the cytoskeleton in mRNA localization and translation in plant cells. Can. J. Bot. 572–580. 10.1139/b05-167 DOI

Muller S., Smertenko A., Wagner V., Heinrich M., Hussey P. J., Hauser M. T. (2004). The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr. Biol. 14, 412–417. 10.1016/j.cub.2004.02.032 PubMed DOI PMC

Munnik T. (2001). Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci. 6, 227–233. 10.1016/S1360-1385(01)01918-5 PubMed DOI

Murray J. W., Edmonds B. T., Liu G., Condeelis J. (1996). Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends. J. Cell Biol. 135, 1309–1321. 10.1083/jcb.135.5.1309 PubMed DOI PMC

Nakajima K., Furutani I., Tachimoto H., Matsubara H., Hashimoto T. (2004). SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16, 1178–1190. 10.1105/tpc.017830 PubMed DOI PMC

Nick P., Heuing A., Ehmann B. (2000). Plant chaperonins: a role in microtubule-dependent wall formation? Protoplasma 211, 234–244. 10.1007/bf01304491 DOI

Oda Y., Iida Y., Kondo Y., Fukuda H. (2010). Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein. Curr. Biol. 20, 1197–1202. 10.1016/j.cub.2010.05.038 PubMed DOI

Paredez A. R., Somerville C. R., Ehrhardt D. W. (2006). Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495. 10.1126/science.1126551 PubMed DOI

Parrotta L., Cresti M., Cai G. (2013). Heat-shock protein 70 binds microtubules and interacts with kinesin in tobacco pollen tubes. Cytoskeleton 70, 522–537. 10.1002/cm.21134 PubMed DOI

Perez F., Pernet-Gallay K., Nizak C., Goodson H. V., Kreis T. E., Goud B. (2002). CLIPR-59, a new trans-Golgi/TGN cytoplasmic linker protein belonging to the CLIP-170 family. J. Cell Biol. 156, 631–642. 10.1083/jcb.200111003 PubMed DOI PMC

Perrin R. M., Wang Y., Yuen C. Y. L., Will J., Masson P. H. (2007). WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. Plant J. 49, 961–971. 10.1111/j.1365-313X.2006.03015.x PubMed DOI

Pesquet E., Korolev A. V., Calder G., Lloyd C. W. (2010). The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr. Biol. 20, 744–749. 10.1016/j.cub.2010.02.057 PubMed DOI

Petrasek J., Freudenreich A., Heuing A., Opatrny Z., Nick P. (1998). Heat-shock protein 90 is associated with microtubules in tobacco cells. Protoplasma 202, 161–174. 10.1007/BF01282544 DOI

Petrasek J., Schwarzerova K. (2009). Actin and microtubule cytoskeleton interactions. Curr. Opin. Plant Biol. 12, 728–734. 10.1016/j.pbi.2009.09.010 PubMed DOI

Pleskot R., Pejchar P., Staiger C. J., Potocky M. (2014). When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. Front. Plant Sci. 5:5. 10.3389/fpls.2014.00005 PubMed DOI PMC

Pratt W. B., Krishna P., Olsen L. J. (2001). Hsp90-binding immunophilins in plants: the protein movers. Trends Plant Sci. 6, 54–58. 10.1016/S1360-1385(00)01843-4 PubMed DOI

Pratt W. B., Morishima Y., Peng H. M., Osawa Y. (2010). Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp. Biol. Med. 235, 278–289. 10.1258/ebm.2009.009250 PubMed DOI PMC

Pratt W. B., Silverstein A. M., Galigniana M. D. (1999). A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50(cdc37). Cell. Signal. 11, 839–851. 10.1016/S0898-6568(99)00064-9 PubMed DOI

Preuss M. L., Kovar D. R., Lee Y. R. J., Staiger C. J., Delmer D. P., Liu B. (2004). A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol. 136, 3945–3955. 10.1104/pp.104.052340 PubMed DOI PMC

Pruyne D., Gao L., Bi E. F., Bretscher A. (2004). Stable and dynamic axes of polarity use distinct formin isoforms in budding yeast. Mol. Biol. Cell 15, 4971–4989. 10.1091/mbc.E04-04-0296 PubMed DOI PMC

Qin T., Liu X., Li J., Sun J., Song L., Mao T. (2014). Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. Plant Cell 26, 325–339. 10.1105/tpc.113.119768 PubMed DOI PMC

Rosero A., Zarsky V., Cvrckova F. (2013). AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. J. Exp. Bot. 64, 585–597. 10.1093/jxb/ers351 PubMed DOI PMC

Ruggenthaler P., Fichtenbauer D., Krasensky J., Jonak C., Waigmann E. (2009). Microtubule-associated protein AtMPB2C plays a role in organization of cortical microtubules, stomata patterning, and tobamovirus infectivity. Plant Physiol. 149, 1354–1365. 10.1104/pp.108.130450 PubMed DOI PMC

Rutherford S. L., Lindquist S. (1998). Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342. 10.1038/24550 PubMed DOI

Rutherford S. L., Zuker C. S. (1994). Protein-folding and the regulation of signaling pathways. Cell 79, 1129–1132. 10.1016/0092-8674(94)90003-5 PubMed DOI

Sagot I., Klee S. K., Pellman D. (2002). Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat. Cell Biol. 4, 42–50. 10.1038/ncb719 PubMed DOI

Sampathkumar A., Lindeboom J. J., Debolt S., Gutierrez R., Ehrhardt D. W., Ketelaar T., et al. . (2011). Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell 23, 2302–2313. 10.1105/tpc.111.087940 PubMed DOI PMC

Sanchez E. R., Redmond T., Scherrer L. C., Bresnick E. H., Welsh M. J., Pratt W. B. (1988). Evidence that the 90-kilodalton heat-shock protein is associated with tubulin-containing complexes in L-cell cytosol and in intact Ptk cells. Mol. Endocrinol. 2, 756–760. 10.1210/mend-2-8-756 PubMed DOI

Sano T., Higaki T., Oda Y., Hayashi T., Hasezawa S. (2005). Appearance of actin microfilament ‘twin peaks’ in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin. Plant J. 44, 595–605. 10.1111/j.1365-313X.2005.02558.x PubMed DOI

Schneider R., Persson S. (2015). Connecting two arrays: the emerging role of actin-microtubule cross-linking motor proteins. Front. Plant Sci. 6:415. 10.3389/fpls.2015.00415 PubMed DOI PMC

Sedbrook J. C. (2004). MAPs in plant cells: delineating microtubule growth dynamics and organization. Curr. Opin. Plant Biol. 7, 632–640. 10.1016/j.pbi.2004.09.017 PubMed DOI

Sedbrook J. C., Kaloriti D. (2008). Microtubules, MAPs and plant directional cell expansion. Trends Plant Sci. 13, 303–310. 10.1016/j.tplants.2008.04.002 PubMed DOI

Shiina N., Gotoh Y., Kubomura N., Iwamatsu A., Nishida E. (1994). Microtubule severing by elongation-factor 1-alpha. Science 266, 282–285. 10.1126/science.7939665 PubMed DOI

Silflow C. D., Sun X., Haas N. A., Foley J. W., Lefebvre P. A. (2011). The Hsp70 and Hsp40 chaperones influence microtubule stability in Chlamydomonas. Genetics 189, 1249–1260. 10.1534/genetics.111.133587 PubMed DOI PMC

Sirover M. A. (1999). New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1432, 159–184. 10.1016/S0167-4838(99)00119-3 PubMed DOI

Smertenko A. P., Chang H. Y., Wagner V., Kaloriti D., Fenyk S., Sonobe S., et al. . (2004). The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16, 2035–2047. 10.1105/tpc.104.023937 PubMed DOI PMC

Smertenko A. P., Deeks M. J., Hussey P. J. (2010). Strategies of actin reorganisation in plant cells. J. Cell Sci. 123, 3029–3029. 10.1242/jcs.079749 PubMed DOI

Smertenko A. P., Kaloriti D., Chang H. Y., Fiserova J., Opatrny Z., Hussey P. J. (2008). The C-terminal variable region specifies the dynamic properties of arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20, 3346–3358. 10.1105/tpc.108.063362 PubMed DOI PMC

Smith L. G., Gerttula S. M., Han S. C., Levy J. (2001). TANGLED1: a microtubule binding protein required for the spatial control of cytokinesis in maize. J. Cell Biol. 152, 231–236. 10.1083/jcb.152.1.231 PubMed DOI PMC

Somers M., Engelborghs Y., Baert J. (1990). Analysis of the binding of glyceraldehyde-3-phosphate dehydrogenase to microtubules, the mechanism of bundle formation and the linkage effect. Eur. J. Biochem. 193, 437–444. 10.1111/j.1432-1033.1990.tb19357.x PubMed DOI

Suh B.-C., Hille B. (2008). PIP(2) is a necessary cofactor for ion channel function: how and why? Annu. Rev. Biophys. 37, 175–195. 10.1146/annurev.biophys.37.032807.125859 PubMed DOI PMC

Takabatake R., Ando Y., Seo S., Katou S., Tsuda S., Ohashi Y., et al. . (2007). MAP kinases function downstream of HSP90 and upstream of mitochondria in TMV resistance grene N-mediated hypersensitive cell death. Plant Cell Physiol. 48, 498–510. 10.1093/pcp/pcm021 PubMed DOI

Takahashi H., Hirota K., Kawahara A., Hayakawa E., Inoue Y. (2003). Randomization of cortical microtubules in root epidermal cells induces root hair initiation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Physiol. 44, 350–359. 10.1093/pcp/pcg043 PubMed DOI

Tamura K., Nakatani K., Mitsui H., Ohashi Y., Takahashi H. (1999). Characterization of katD, a kinesin-like protein gene specifically expressed in floral tissues of Arabidopsis thaliana. Gene 230, 23–32. 10.1016/S0378-1119(99)00070-0 PubMed DOI

Tapken W., Murphy A. S. (2015). Membrane nanodomains in plants: capturing form, function, and movement. J. Exp. Bot. 66, 1573–1586. 10.1093/jxb/erv054 PubMed DOI

Terada S., Kinjo M., Aihara M., Takei Y., Hirokawa N. (2010). Kinesin-1/Hsc70-dependent mechanism of slow axonal transport and its relation to fast axonal transport. EMBO J. 29, 843–854. 10.1038/emboj.2009.389 PubMed DOI PMC

Theologis A., Ecker J. R., Palm C. J., Federspiel N. A., Kaul S., White O., et al. . (2000). Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408, 816–820. 10.1038/35048500 PubMed DOI

Thomas C., Tholl S., Moes D., Dieterle M., Papuga J., Moreau F., et al. . (2009). Actin bundling in plants. Cell Motil. Cytoskeleton 66, 940–957. 10.1002/cm.20389 PubMed DOI

Tisdale E. J. (2002). Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase c mu lambda and plays a role in microtubule dynamics in the early secretory pathway. J. Biol. Chem. 277, 3334–3341. 10.1074/jbc.M109744200 PubMed DOI

Tisdale E. J., Azizi F., Artalejo C. R. (2009). Rab2 utilizes glyceraldehyde-3-phosphate dehydrogenase and protein kinase C iota to associate with microtubules and to recruit dynein. J. Biol. Chem. 284, 5876–5884. 10.1074/jbc.M807756200 PubMed DOI PMC

Traas J. A., Doonan J. H., Rawlins D. J., Shaw P. J., Watts J., Lloyd C. W. (1987). An actin network is present in the cytoplasm throughout the cell-cycle of carrot cells and associates with the dividing nucleus. J. Cell Biol. 105, 387–395. 10.1083/jcb.105.1.387 PubMed DOI PMC

Umezu N., Umeki N., Mitsui T., Kondo K., Maruta S. (2011). Characterization of a novel rice kinesin O12 with a calponin homology domain. J. Biochem. 149, 91–101. 10.1093/jb/mvq122 PubMed DOI

Van Damme D., Van Poucke K., Boutant E., Ritzenthaler C., Inze D., Geelen D. (2004). In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol. 136, 3956–3967. 10.1104/pp.104.051623 PubMed DOI PMC

Volker K. W., Knull H. R. (1997). A glycolytic enzyme binding domain on tubulin. Arch. Biochem. Biophys. 338, 237–243. 10.1006/abbi.1996.9819 PubMed DOI

Walsh J. L., Keith T. J., Knull H. R. (1989). Glycolytic enzyme interactions with tubulin and microtubules. Biochim. Biophys. Acta 999, 64–70. 10.1016/0167-4838(89)90031-9 PubMed DOI

Wang C. X., Wang X. M. (2001). A novel phospholipase D of arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol. 127, 1102–1112. 10.1104/pp.010444 PubMed DOI PMC

Wang X. M. (2002). Phospholipase D in hormonal and stress signaling. Curr. Opin. Plant Biol. 5, 408–414. 10.1016/S1369-5266(02)00283-2 PubMed DOI

Wang X., Vinocur B., Shoseyov O., Altman A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9, 244–252. 10.1016/j.tplants.2004.03.006 PubMed DOI

Wang X., Zhang J., Yuan M., Ehrhardt D. W., Wang Z., Mao T. (2012). Arabidopsis microtubule destabilizing protein40 is involved in brassinosteroid regulation of hypocotyl elongation. Plant Cell 24, 5193–5193. 10.1105/tpc.112.103838 PubMed DOI PMC

Wang X., Zhu L., Liu B. Q., Wang C., Jin L. F., Zhao Q., et al. . (2007). Arabidopsis Microtubule-associated protein18 functions in directional cell growth by destabilizing cortical microtubules. Plant Cell 19, 877–889. 10.1105/tpc.106.048579 PubMed DOI PMC

Wegele H., Muller L., Buchner J. (2004). Hsp70 and Hsp90 - a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol. 151, 1–44. 10.1007/s10254-003-0021-1 PubMed DOI

Wei L. Q., Liu B., Li Y. (2005). Distribution of a kinesin-related protein on Golgi apparatus of tobacco pollen tubes. Chinese Sci. Bull. 50, 2175–2181. 10.1007/bf03182668 DOI

Weis F., Moullintraffort L., Heichette C., Chretien D., Garnier C. (2010). The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation. J. Biol. Chem. 285, 9525–9534. 10.1074/jbc.M109.096586 PubMed DOI PMC

Welch M. D., Depace A. H., Verma S., Iwamatsu A., Mitchison T. J. (1997). The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138, 375–384. 10.1083/jcb.138.2.375 PubMed DOI PMC

Whittington A. T., Vugrek O., Wei K. J., Hasenbein N. G., Sugimoto K., Rashbrooke M. C., et al. . (2001). MOR1 is essential for organizing cortical microtubules in plants. Nature 411, 610–613. 10.1038/35079128 PubMed DOI

Williams N. E., Nelsen E. M. (1997). HSP70 and HSP90 homologs are associated with tubulin in hetero-oligomeric complexes, cilia and the cortex of Tetrahymena. J. Cell Sci. 110, 1665–1672. PubMed

Wu S.-Z., Bezanilla M. (2014). Myosin VIII associates with microtubule ends and together with actin plays a role in guiding plant cell division. Elife 3:e03498. 10.7554/eLife.03498 PubMed DOI PMC

Xu T., Qu Z., Yang X., Qin X., Xiong J., Wang Y., et al. . (2009). A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem. J. 421, 171–180. 10.1042/BJ20082020 PubMed DOI

Yanagisawa M., Zhang C., Szymanski D. B. (2013). ARP2/3-dependent growth in the plant kingdom: SCARs for life. Front. Plant Sci. 4:166. 10.3389/fpls.2013.00166 PubMed DOI PMC

Yasuhara H., Muraoka M., Shogaki H., Mori H., Sonobe S. (2002). TMBP200, a microtubule bundling polypeptide isolated from telophase tobacco BY-2 cells is a MOR1 homologue. Plant Cell Physiol. 43, 595–603. 10.1093/pcp/pcf074 PubMed DOI

Zeng C. J. T., Lee Y. R. J., Liu B. (2009). The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell 21, 1129–1140. 10.1105/tpc.109.065953 PubMed DOI PMC

Zhang X. P., Glaser E. (2002). Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends Plant Sci. 7, 14–21. 10.1016/S1360-1385(01)02180-X PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...