Complementary Superresolution Visualization of Composite Plant Microtubule Organization and Dynamics

. 2020 ; 11 () : 693. [epub] 20200605

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32582243

Microtubule bundling is an essential mechanism underlying the biased organization of interphase and mitotic microtubular systems of eukaryotes in ordered arrays. Microtubule bundle formation can be exemplified in plants, where the formation of parallel microtubule systems in the cell cortex or the spindle midzone is largely owing to the microtubule crosslinking activity of a family of microtubule associated proteins, designated as MAP65s. Among the nine members of this family in Arabidopsis thaliana, MAP65-1 and MAP65-2 are ubiquitous and functionally redundant. Crosslinked microtubules can form high-order arrays, which are difficult to track using widefield or confocal laser scanning microscopy approaches. Here, we followed spatiotemporal patterns of MAP65-2 localization in hypocotyl cells of Arabidopsis stably expressing fluorescent protein fusions of MAP65-2 and tubulin. To circumvent imaging difficulties arising from the density of cortical microtubule bundles, we use different superresolution approaches including Airyscan confocal laser scanning microscopy (ACLSM), structured illumination microscopy (SIM), total internal reflection SIM (TIRF-SIM), and photoactivation localization microscopy (PALM). We provide insights into spatiotemporal relations between microtubules and MAP65-2 crossbridges by combining SIM and ACLSM. We obtain further details on MAP65-2 distribution by single molecule localization microscopy (SMLM) imaging of either mEos3.2-MAP65-2 stochastic photoconversion, or eGFP-MAP65-2 stochastic emission fluctuations under specific illumination conditions. Time-dependent dynamics of MAP65-2 were tracked at variable time resolution using SIM, TIRF-SIM, and ACLSM and post-acquisition kymograph analysis. ACLSM imaging further allowed to track end-wise dynamics of microtubules labeled with TUA6-GFP and to correlate them with concomitant fluctuations of MAP65-2 tagged with tagRFP. All different microscopy modules examined herein are accompanied by restrictions in either the spatial resolution achieved, or in the frame rates of image acquisition. PALM imaging is compromised by speed of acquisition. This limitation was partially compensated by exploiting emission fluctuations of eGFP which allowed much higher photon counts at substantially smaller time series compared to mEos3.2. SIM, TIRF-SIM, and ACLSM were the methods of choice to follow the dynamics of MAP65-2 in bundles of different complexity. Conclusively, the combination of different superresolution methods allowed for inferences on the distribution and dynamics of MAP65-2 within microtubule bundles of living A. thaliana cells.

Zobrazit více v PubMed

Adamowski M., Li L., Friml J. (2019). Reorientation of cortical microtubule arrays in the hypocotyl of Arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling. Int. J. Mol. Sci. 20:3337. 10.3390/ijms20133337 PubMed DOI PMC

Bagshaw C. R., Cherny D. (2006). Blinking fluorophores: what do they tell us about protein dynamics? Biochem. Soc. Trans. 34 979–982. 10.1042/BST0340979 PubMed DOI

Bannigan A., Lizotte-Waniewski M., Riley M., Baskin T. I. (2008). Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants. Cell Motil. 65 1–11. 10.1002/cm.20247 PubMed DOI

Beck M., Komis G., Müller J., Menzel D., Šamaj J. (2010). Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22 755–771. 10.1105/tpc.109.071746 PubMed DOI PMC

Beck M., Komis G., Ziemann A., Menzel D., Šamaj J. (2011). Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol. 189 1069–1083. 10.1111/j.1469-8137.2010.03565.x PubMed DOI

Boruc J., Weimer A. K., Stoppin-Mellet V., Mylle E., Kosetsu K., Cedeño C., et al. (2017). Phosphorylation of MAP65-1 by Arabidopsis aurora kinases is required for efficient cell cycle progression. Plant Physiol. 173 582–599. 10.1104/pp.16.01602 PubMed DOI PMC

Bratman S. V., Chang F. (2007). Stabilization of overlapping microtubules by fission yeast CLASP. Dev. Cell 13 812–827. 10.1016/j.devcel.2007.10.015 PubMed DOI PMC

Burkart G., Dixit R. (2019). Microtubule bundling by MAP65-1 protects against severing by inhibiting the binding of katanin. bioRxiv [Preprint] 10.1101/520445 PubMed DOI PMC

Buschmann H., Sambade A., Pesquet E., Calder G., Lloyd C. W. (2010). “Chapter 20 - microtubule dynamics in plant cells,” in Methods in Cell Biology Microtubules: in vivo, eds Cassimeris L., Tran P. (Cambridge, MA: Academic Press; ), 373–400. 10.1016/S0091-679X(10)97020-9 PubMed DOI

Buschmann H., Zachgo S. (2016). The evolution of cell division: from streptophyte algae to land plants. Trends Plant Sci. 21 872–883. 10.1016/j.tplants.2016.07.004 PubMed DOI

Caillaud M.-C., Lecomte P., Jammes F., Quentin M., Pagnotta S., Andrio E., et al. (2008). MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant Cell 20 423–437. 10.1105/tpc.107.057422 PubMed DOI PMC

Celler K., Fujita M., Kawamura E., Ambrose C., Herburger K., Holzinger A., et al. (2016). “Microtubules in plant cells: strategies and methods for immunofluorescence, transmission electron microscopy, and live cell imaging,” in Cytoskeleton Methods and Protocols, ed. Gavin R. H. (New York, NY: Springer; ), 155–184. 10.1007/978-1-4939-3124-8_8 PubMed DOI PMC

Chan J., Jensen C. G., Jensen L. C. W., Bush M., Lloyd C. W. (1999). The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc. Natl. Acad. Sci. U.S.A. 96 14931–14936. 10.1073/pnas.96.26.14931 PubMed DOI PMC

Chen X., Grandont L., Li H., Hauschild R., Paque S., Abuzeineh A., et al. (2014). Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules. Nature 516, 90–93. 10.1038/nature13889 PubMed DOI PMC

Chen X., Wu S., Liu Z., Friml J. (2016). Environmental and endogenous control of cortical microtubule orientation. Trends Cell Biol. 26 409–419. 10.1016/j.tcb.2016.02.003 PubMed DOI

Chi Z., Ambrose C. (2016). Microtubule encounter-based catastrophe in Arabidopsis cortical microtubule arrays. BMC Plant Biol. 16:18. 10.1186/s12870-016-0703-x PubMed DOI PMC

Costes S. V., Daelemans D., Cho E. H., Dobbin Z., Pavlakis G., Lockett S. (2004). Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 86 3993–4003. PubMed PMC

Cox S., Rosten E., Monypenny J., Jovanovic-Talisman T., Burnette D. T., Lippincott-Schwartz J., et al. (2012). Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Methods 9 195–200. 10.1038/nmeth.1812 PubMed DOI PMC

Deinum E. E., Tindemans S. H., Lindeboom J. J., Mulder B. M. (2017). How selective severing by katanin promotes order in the plant cortical microtubule array. Proc. Natl. Acad. Sci. U.S.A. 114 6942–6947. 10.1073/pnas.1702650114 PubMed DOI PMC

Demmerle J., Innocent C., North A. J., Ball G., Müller M., Miron E., et al. (2017). Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc. 12 988–1010. 10.1038/nprot.2017.019 PubMed DOI

Derbyshire P., Ménard D., Green P., Saalbach G., Buschmann H., Lloyd C. W., et al. (2015). Proteomic analysis of microtubule interacting proteins over the course of xylem tracheary element formation in Arabidopsis. Plant Cell 27 2709–2726. 10.1105/tpc.15.00314 PubMed DOI PMC

Dertinger T., Colyer R., Iyer G., Weiss S., Enderlein J. (2009). Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. U.S.A. 106 22287–22292. 10.1073/pnas.0907866106 PubMed DOI PMC

Dixit R., Cyr R. (2004). Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16 3274–3284. 10.1105/tpc.104.026930 PubMed DOI PMC

Dong B., Yang X., Zhu S., Bassham D. C., Fang N. (2015). Stochastic optical reconstruction microscopy imaging of microtubule arrays in intact Arabidopsis thaliana seedling roots. Sci. Rep. 5:15694. 10.1038/srep15694 PubMed DOI PMC

Dunn K. W., Kamocka M. M., McDonald J. H. (2011). A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300 C723–C742. 10.1152/ajpcell.00462.2010 PubMed DOI PMC

Durst S., Hedde P. N., Brochhausen L., Nick P., Nienhaus G. U., Maisch J. (2014). Organization of perinuclear actin in live tobacco cells observed by PALM with optical sectioning. J. Plant Physiol. 171 97–108. 10.1016/j.jplph.2013.10.007 PubMed DOI

Elliott A., Shaw S. L. (2018a). A cycloheximide-sensitive step in transverse microtubule array patterning. Plant Physiol. 178 684–698. 10.1104/pp.18.00672 PubMed DOI PMC

Elliott A., Shaw S. L. (2018b). Update: plant cortical microtubule arrays. Plant Physiol. 176 94–105. 10.1104/pp.17.01329 PubMed DOI PMC

Eng R. C., Sampathkumar A. (2018). Getting into shape: the mechanics behind plant morphogenesis. Curr. Opin. Plant Biol. 46 25–31. 10.1016/j.pbi.2018.07.002 PubMed DOI

Gaillard J., Neumann E., Van Damme D., Stoppin-Mellet V., Ebel C., Barbier E., et al. (2008). Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling. Mol. Biol. Cell 19 4534–4544. 10.1091/mbc.e08-04-0341 PubMed DOI PMC

Galva C., Kirik V., Lindeboom J. J., Kaloriti D., Rancour D. M., Hussey P. J., et al. (2014). The microtubule plus-end tracking proteins SPR1 and EB1b interact to maintain polar cell elongation and directional organ growth in Arabidopsis. Plant Cell 26 4409–4425. 10.1105/tpc.114.131482 PubMed DOI PMC

Gardner M. K., Zanic M., Howard J. (2013). Microtubule catastrophe and rescue. Curr. Opin. Cell Biol. 25 14–22. 10.1016/j.ceb.2012.09.006 PubMed DOI PMC

Hamada T. (2014). “Chapter one - microtubule organization and microtubule-associated proteins in plant cells,” in International Review of Cell and Molecular Biology, ed. Jeon K. W. (Cambridge, MA: Academic Press; ), 1–52. 10.1016/B978-0-12-800178-3.00001-4 PubMed DOI

Hamant O., Inoue D., Bouchez D., Dumais J., Mjolsness E. (2019). Are microtubules tension sensors? Nat. Commun. 10:2360. 10.1038/s41467-019-10207-y PubMed DOI PMC

Haupts U., Maiti S., Schwille P., Webb W. W. (1998). Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 95 13573–13578. PubMed PMC

Havelková L., Nanda G., Martinek J., Bellinvia E., Sikorová L., Šlajcherová K., et al. (2015). Arp2/3 complex subunit ARPC2 binds to microtubules. Plant Sci. 241 96–108. 10.1016/j.plantsci.2015.10.001 PubMed DOI

Ho C.-M. K., Lee Y.-R. J., Kiyama L. D., Dinesh-Kumar S. P., Liu B. (2012). Arabidopsis microtubule-associated protein MAP65-3 cross-links antiparallel microtubules toward their plus ends in the phragmoplast via its distinct C-terminal microtubule binding domain. Plant Cell 24 2071–2085. 10.1105/tpc.111.092569 PubMed DOI PMC

Hoogendoorn E., Crosby K. C., Leyton-Puig D., Breedijk R. M. P., Jalink K., Gadella T. W. J., et al. (2014). The fidelity of stochastic single-molecule super-resolution reconstructions critically depends upon robust background estimation. Sci. Rep. 4:3854. 10.1038/srep03854 PubMed DOI PMC

Hosy E., Martiničre A., Choquet D., Maurel C., Luu D.-T. (2015). Super-resolved and dynamic imaging of membrane proteins in plant cells reveal contrasting kinetic profiles and multiple confinement mechanisms. Mol. Plant 8 339–342. 10.1016/j.molp.2014.10.006 PubMed DOI

Huff J. (2016). The fast mode for ZEISS LSM 880 with airyscan: high-speed confocal imaging with super-resolution and improved signal-to-noise ratio. Nat. Methods 13 i–ii. 10.1038/nmeth.f.398 DOI

Hussey P. J., Hawkins T. J., Igarashi H., Kaloriti D., Smertenko A. (2002). The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol. Biol. 50 915–924. 10.1023/A:1021236307508 PubMed DOI

Janson M. E., Loughlin R., Loïodice I., Fu C., Brunner D., Nédélec F. J., et al. (2007). Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128 357–368. 10.1016/j.cell.2006.12.030 PubMed DOI

Jradi F. M., Lavis L. D. (2019). Chemistry of photosensitive fluorophores for single-molecule localization microscopy. ACS Chem. Biol. 14 1077–1090. 10.1021/acschembio.9b00197 PubMed DOI

Kapoor V., Hirst W. G., Hentschel C., Preibisch S., Reber S. (2019). MTrack: automated detection, tracking, and analysis of dynamic microtubules. Sci. Rep. 9:3794. 10.1038/s41598-018-37767-1 PubMed DOI PMC

Kawamura E., Himmelspach R., Rashbrooke M. C., Whittington A. T., Gale K. R., Collings D. A., et al. (2006). MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol. 140 102–114. 10.1104/pp.105.069989 PubMed DOI PMC

Kner P., Chhun B. B., Griffis E. R., Winoto L., Gustafsson M. G. L. (2009). Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6 339–342. 10.1038/nmeth.1324 PubMed DOI PMC

Kollárová E., Baquero Forero A., Stillerová L., Přerostová S., Cvrčková F. (2020). Arabidopsis class II formins AtFH13 and AtFH14 can form heterodimers but exhibit distinct patterns of cellular localization. Int. J. Mol. Sci. 21:348. 10.3390/ijms21010348 PubMed DOI PMC

Komis G., Illés P., Beck M., Šamaj J. (2011). Microtubules and mitogen-activated protein kinase signalling. Curr. Opin. Plant Biol. 14 650–657. 10.1016/j.pbi.2011.07.008 PubMed DOI

Komis G., Mistrik M., Šamajová O., Doskočilová A., Ovečka M., Illés P., et al. (2014). Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy. Plant Physiol. 165 129–148. 10.1104/pp.114.238477 PubMed DOI PMC

Komis G., Mistrik M., Šamajová O., Ovečka M., Bartek J., Šamaj J. (2015). Superresolution live imaging of plant cells using structured illumination microscopy. Nat. Protoc. 10 1248–1263. 10.1038/nprot.2015.083 PubMed DOI

Komis G., Novák D., Ovečka M., Šamajová O., Šamaj J. (2018). Advances in imaging plant cell dynamics. Plant Physiol. 176 80–93. 10.1104/pp.17.00962 PubMed DOI PMC

Korobchevskaya K., Lagerholm B. C., Colin-York H., Fritzsche M. (2017). Exploring the potential of airyscan microscopy for live cell imaging. Photonics 4:41 10.3390/photonics4030041 DOI

Korolev A. V., Buschmann H., Doonan J. H., Lloyd C. W. (2007). AtMAP70-5, a divergent member of the MAP70 family of microtubule-associated proteins, is required for anisotropic cell growth in Arabidopsis. J. Cell Sci. 120 2241–2247. 10.1242/jcs.007393 PubMed DOI

Korolev A. V., Chan J., Naldrett M. J., Doonan J. H., Lloyd C. W. (2005). Identification of a novel family of 70 kDa microtubule-associated proteins in Arabidopsis cells. Plant J. 42 547–555. 10.1111/j.1365-313X.2005.02393.x PubMed DOI

Kosetsu K., Matsunaga S., Nakagami H., Colcombet J., Sasabe M., Soyano T., et al. (2010). The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22 3778–3790. 10.1105/tpc.110.077164 PubMed DOI PMC

Krtková J., Benáková M., Schwarzerová K. (2016). Multifunctional microtubule-associated proteins in plants. Front. Plant Sci. 7:474. 10.3389/fpls.2016.00474 PubMed DOI PMC

Lazzaro M. D., Wu S., Snouffer A., Wang Y., van der Knaap E. (2018). Plant organ shapes are regulated by protein interactions and associations with microtubules. Front. Plant Sci. 9:1766. 10.3389/fpls.2018.01766 PubMed DOI PMC

Ledbetter M. C., Porter K. R. (1963). A “microtubule” in plant cell fine structure. J. Cell Biol. 19 239–250. 10.1083/jcb.19.1.239 PubMed DOI PMC

Lee Y.-R. J., Liu B. (2013). The rise and fall of the phragmoplast microtubule array. Curr. Opin. Plant Biol. 16 757–763. 10.1016/j.pbi.2013.10.008 PubMed DOI

Li H., Sun B., Sasabe M., Deng X., Machida Y., Lin H., et al. (2017). Arabidopsis MAP65-4 plays a role in phragmoplast microtubule organization and marks the cortical cell division site. New Phytol. 215 187–201. 10.1111/nph.14532 PubMed DOI

Li H., Vaughan J. C. (2018). Switchable fluorophores for single-molecule localization microscopy. Chem. Rev. 118 9412–9454. 10.1021/acs.chemrev.7b00767 PubMed DOI PMC

Liesche J., Ziomkiewicz I., Schulz A. (2013). Super-resolution imaging with pontamine fast scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells. BMC Plant Biol. 13:226. 10.1186/1471-2229-13-226 PubMed DOI PMC

Lindeboom J. J., Nakamura M., Hibbel A., Shundyak K., Gutierrez R., Ketelaar T., et al. (2013). A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science 342:1245533. 10.1126/science.1245533 PubMed DOI

Lindeboom J. J., Nakamura M., Saltini M., Hibbel A., Walia A., Ketelaar T., et al. (2019). CLASP stabilization of plus ends created by severing promotes microtubule creation and reorientation. J. Cell Biol. 218 190–205. 10.1083/jcb.201805047 PubMed DOI PMC

Lucas J. R., Courtney S., Hassfurder M., Dhingra S., Bryant A., Shaw S. L. (2011). Microtubule-associated proteins MAP65-1 and MAP65-2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls. Plant Cell 23 1889–1903. 10.1105/tpc.111.084970 PubMed DOI PMC

Lucas J. R., Shaw S. L. (2012). MAP65-1 and MAP65-2 promote cell proliferation and axial growth in Arabidopsis roots. Plant J. 71 454–463. 10.1111/j.1365-313X.2012.05002.x PubMed DOI

Luptovčiak I., Komis G., Takáč T., Ovečka M., Šamaj J. (2017). Katanin: a sword cutting microtubules for cellular, developmental, and physiological purposes. Front. Plant Sci. 8:1982. 10.3389/fpls.2017.01982 PubMed DOI PMC

Ma Q., Sun J., Mao T. (2016). Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls. J. Cell Sci. 129 2043–2051. 10.1242/jcs.184408 PubMed DOI

Manders E. M. M., Stap J., Brakenhoff G. J., Van Driel R., Aten J. A. (1992). Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J. Cell Sci. 103 857–862. PubMed

Mao G. (2006). The role of MAP65-1 in microtubule bundling during Zinnia tracheary element formation. J. Cell Sci. 119 753–758. 10.1242/jcs.02813 PubMed DOI

Marcus A., Raulet D. H. (2013). A simple and effective method for differentiating GFP and YFP by flow cytometry using the violet laser. Cytometry A 83 973–974. 10.1002/cyto.a.22347 PubMed DOI PMC

Molines A. T., Marion J., Chabout S., Besse L., Dompierre J. P., Mouille G., et al. (2018). EB1 contributes to microtubule bundling and organization, along with root growth, in Arabidopsis thaliana. Biol. Open 7:bio030510. 10.1242/bio.030510 PubMed DOI PMC

Müller S., Wright A. J., Smith L. G. (2009). Division plane control in plants: new players in the band. Trends Cell Biol. 19 180–188. 10.1016/j.tcb.2009.02.002 PubMed DOI

Nakagawa T., Suzuki T., Murata S., Nakamura S., Hino T., Maeo K., et al. (2007). Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 71 2095–2100. 10.1271/bbb.70216 PubMed DOI

Nakamura M. (2015). Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues. New Phytol. 205 1022–1027. 10.1111/nph.12932 PubMed DOI

Nakamura M., Ehrhardt D. W., Hashimoto T. (2010). Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat. Cell Biol. 12 1064–1070. 10.1038/ncb2110 PubMed DOI

Nakamura M., Lindeboom J. J., Saltini M., Mulder B. M., Ehrhardt D. W. (2018). SPR2 protects minus ends to promote severing and reorientation of plant cortical microtubule arrays. J. Cell Biol. 217 915–927. 10.1083/jcb.201708130 PubMed DOI PMC

Oda Y. (2018). Emerging roles of cortical microtubule–membrane interactions. J. Plant Res. 131 5–14. 10.1007/s10265-017-0995-4 PubMed DOI

Panteris E., Galatis B. (2005). The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments. New Phytol. 167 721–732. 10.1111/j.1469-8137.2005.01464.x PubMed DOI

Pastuglia M., Azimzadeh J., Goussot M., Camilleri C., Belcram K., Evrard J.-L., et al. (2006). γ-tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18 1412–1425. 10.1105/tpc.105.039644 PubMed DOI PMC

Pesquet E., Korolev A. V., Calder G., Lloyd C. W. (2010). The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr. Biol. 20 744–749. 10.1016/j.cub.2010.02.057 PubMed DOI

Sahl S. J., Hell S. W., Jakobs S. (2017). Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18 685–701. 10.1038/nrm.2017.71 PubMed DOI

Sapala A., Runions A., Routier-Kierzkowska A.-L., Das Gupta M., Hong L., Hofhuis H., et al. (2018). Why plants make puzzle cells, and how their shape emerges. eLife 7:e32794. 10.7554/eLife.32794 PubMed DOI PMC

Sasabe M., Kosetsu K., Hidaka M., Murase A., Machida Y. (2011). Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal. Behav. 6 743–747. 10.4161/psb.6.5.15146 PubMed DOI PMC

Sassi M., Ali O., Boudon F., Cloarec G., Abad U., Cellier C., et al. (2014). An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr. Biol. 24, 2335–2342. 10.1016/j.cub.2014.08.036 PubMed DOI

Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9 671–675. 10.1038/nmeth.2089 PubMed DOI PMC

Schneider R., Klooster K., van’t, Picard K., van der Gucht J., Demura T., Janson M., et al. (2020). Long-term single-cell imaging and simulations of microtubules reveal driving forces for wall pattering during proto-xylem development. bioRxiv [Preprint] 10.1101/2020.02.13.938258 PubMed DOI PMC

Schneider R., Persson S. (2015). Connecting two arrays: the emerging role of actin-microtubule cross-linking motor proteins. Front. Plant Sci. 6:415. 10.3389/fpls.2015.00415 PubMed DOI PMC

Schubert V. (2017). Super-resolution microscopy – applications in plant cell research. Front. Plant Sci. 8:531. 10.3389/fpls.2017.00531 PubMed DOI PMC

Schubert V., Weisshart K. (2015). Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. J. Exp. Bot. 66 1687–1698. 10.1093/jxb/erv091 PubMed DOI PMC

Sen T., Mamontova A. V., Titelmayer A. V., Shakhov A. M., Astafiev A. A., Acharya A., et al. (2019). Influence of the first chromophore-forming residue on photobleaching and oxidative photoconversion of EGFP and EYFP. Int. J. Mol. Sci. 20:5229. 10.3390/ijms20205229 PubMed DOI PMC

Shaw S. L., Kamyar R., Ehrhardt D. W. (2003). Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300 1715–1718. 10.1126/science.1083529 PubMed DOI

Shcherbakova D. M., Sengupta P., Lippincott-Schwartz J., Verkhusha V. V. (2014). Photocontrollable fluorescent proteins for superresolution imaging. Annu. Rev. Biophys. 43 303–329. 10.1146/annurev-biophys-051013-022836 PubMed DOI PMC

Smal I., Grigoriev I., Akhmanova A., Niessen W. J., Meijering E. (2010). Microtubule dynamics analysis using kymographs and variable-rate particle filters. IEEE Trans. Image Process. 19 1861–1876. 10.1109/TIP.2010.2045031 PubMed DOI

Smertenko A. (2018). Phragmoplast expansion: the four-stroke engine that powers plant cytokinesis. Curr. Opin. Plant Biol. 46 130–137. 10.1016/j.pbi.2018.07.011 PubMed DOI

Smertenko A. P., Chang H.-Y., Wagner V., Kaloriti D., Fenyk S., Sonobe S., et al. (2004). The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16 2035–2047. 10.1105/tpc.104.023937 PubMed DOI PMC

Smertenko A. P., Cheng H.-Y., Sosobe S., Fenyk S. I., Weingartner M., Bögre L., et al. (2006). Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J. Cell Sci. 119 3227–3237. 10.1242/jcs.03051 PubMed DOI

Smertenko A. P., Kaloriti D., Chang H.-Y., Fiserova J., Opatrny Z., Hussey P. J. (2008). The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20 3346–3358. 10.1105/tpc.108.063362 PubMed DOI PMC

Stoppin-Mellet V., Fache V., Portran D., Martiel J. L., Vantard M. (2013). MAP65 coordinate microtubule growth during bundle formation. PLoS One 8:e56808. 10.1371/journal.pone.0056808 PubMed DOI PMC

Subramanian R., Wilson-Kubalek E. M., Arthur C. P., Bick M. J., Campbell E. A., Darst S. A., et al. (2010). Insights into antiparallel microtubule crosslinking by PRC1, a conserved nonmotor microtubule binding protein. Cell 142 433–443. 10.1016/j.cell.2010.07.012 PubMed DOI PMC

Sun H., Furt F., Vidali L. (2018). Myosin XI localizes at the mitotic spindle and along the cell plate during plant cell division in Physcomitrella patens. Biochem. Biophys. Res. Commun. 506 409–421. 10.1016/j.bbrc.2018.01.082 PubMed DOI

Sun T., Li S., Ren H. (2017). OsFH15, a class I formin, interacts with microfilaments and microtubules to regulate grain size via affecting cell expansion in rice. Sci. Rep. 7:6538. 10.1038/s41598-017-06431-5 PubMed DOI PMC

Tian J., Kong Z. (2019). The role of the augmin complex in establishing microtubule arrays. J. Exp. Bot. 70 3035–3041. 10.1093/jxb/erz123 PubMed DOI

Tokunaga M., Imamoto N., Sakata-Sogawa K. (2008). Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5 159–161. 10.1038/nmeth1171 PubMed DOI

True J. H., Shaw S. L. (2020). Exogenous auxin induces transverse microtubule arrays through TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX receptors. Plant Physiol. 182 892–907. 10.1104/pp.19.00928 PubMed DOI PMC

Tulin A., McClerklin S., Huang Y., Dixit R. (2012). Single-molecule analysis of the microtubule cross-linking protein MAP65-1 reveals a molecular mechanism for contact-angle-dependent microtubule bundling. Biophys. J. 102 802–809. 10.1016/j.bpj.2012.01.008 PubMed DOI PMC

van Damme D., van Poucke K., Boutant E., Ritzenthaler C., Inzé D., Geelen D. (2004). In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol. 136 3956–3967. 10.1104/pp.104.051623 PubMed DOI PMC

Vavrdová T., Šamaj J., Komis G. (2019a). Phosphorylation of plant microtubule-associated proteins during cell division. Front. Plant Sci. 10:238. 10.3389/fpls.2019.00238 PubMed DOI PMC

Vavrdová T., Šamajová O., Křenek P., Ovečka M., Floková P., Šnaurová R., et al. (2019b). Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins. Plant Methods 15:22. 10.1186/s13007-019-0406-z PubMed DOI PMC

Vineyard L., Elliott A., Dhingra S., Lucas J. R., Shaw S. L. (2013). Progressive transverse microtubule array organization in hormone-induced Arabidopsis hypocotyl cells. Plant Cell 25 662–676. 10.1105/tpc.112.107326 PubMed DOI PMC

Vizcay-Barrena G., Webb S. E. D., Martin-Fernandez M. L., Wilson Z. A. (2011). Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM). J. Exp. Bot. 62 5419–5428. 10.1093/jxb/err212 PubMed DOI PMC

Walia A., Nakamura M., Moss D., Kirik V., Hashimoto T., Ehrhardt D. W. (2014). GCP-WD mediates γ-TuRC recruitment and the geometry of microtubule nucleation in interphase arrays of Arabidopsis. Curr. Biol. 24 2548–2555. 10.1016/j.cub.2014.09.013 PubMed DOI

Wang B., Liu G., Zhang J., Li Y., Yang H., Ren D. (2018). The RAF-like mitogen-activated protein kinase kinase kinases RAF22 and RAF28 are required for the regulation of embryogenesis in Arabidopsis. Plant J. 96 734–747. 10.1111/tpj.14063 PubMed DOI

Werner S., Marillonnet S., Hause G., Klimyuk V., Gleba Y. (2006). Immunoabsorbent nanoparticles based on a tobamovirus displaying protein A. Proc. Natl. Acad. Sci. U.S.A. 103 17678–17683. 10.1073/pnas.0608869103 PubMed DOI PMC

Wightman R., Turner S. R. (2007). Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays. Plant J. 52 742–751. 10.1111/j.1365-313X.2007.03271.x PubMed DOI

Wu S.-Z., Bezanilla M. (2014). Myosin VIII associates with microtubule ends and together with actin plays a role in guiding plant cell division. eLife 3:e03498. 10.7554/eLife.03498 PubMed DOI PMC

Wu S.-Z., Bezanilla M. (2018). Actin and microtubule cross talk mediates persistent polarized growth. J. Cell Biol. 217 3531–3544. 10.1083/jcb.201802039 PubMed DOI PMC

Xu T., Qu Z., Yang X., Qin X., Xiong J., Wang Y., et al. (2009). A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem. J. 421 171–180. 10.1042/BJ20082020 PubMed DOI

Yamada M., Goshima G. (2017). Mitotic spindle assembly in land plants: molecules and mechanisms. Biology 6:6. 10.3390/biology6010006 PubMed DOI PMC

Zhang M., Chang H., Zhang Y., Yu J., Wu L., Ji W., et al. (2012). Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat. Methods 9 727–729. 10.1038/nmeth.2021 PubMed DOI

Zhang Q., Fishel E., Bertroche T., Dixit R. (2013). Microtubule severing at crossover sites by katanin generates ordered cortical microtubule arrays in Arabidopsis. Curr. Biol. 23 2191–2195. 10.1016/j.cub.2013.09.018 PubMed DOI

Zhu C., Ganguly A., Baskin T. I., McClosky D. D., Anderson C. T., Foster C., et al. (2015). The fragile Fiber1 kinesin contributes to cortical microtubule-mediated trafficking of cell wall components. Plant Physiol. 167 780–792. 10.1104/pp.114.251462 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...