Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24686112
PubMed Central
PMC4012574
DOI
10.1104/pp.114.238477
PII: pp.114.238477
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis metabolismus MeSH
- epidermis rostlin cytologie metabolismus MeSH
- hypokotyl cytologie metabolismus MeSH
- konfokální mikroskopie MeSH
- mikroskopie metody MeSH
- mikrotubuly metabolismus MeSH
- mutace genetika MeSH
- osvětlení * MeSH
- proteiny huseníčku genetika metabolismus MeSH
- rekombinantní fúzní proteiny metabolismus MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny huseníčku MeSH
- rekombinantní fúzní proteiny MeSH
- zelené fluorescenční proteiny MeSH
Plants employ acentrosomal mechanisms to organize cortical microtubule arrays essential for cell growth and differentiation. Using structured illumination microscopy (SIM) adopted for the optimal documentation of Arabidopsis (Arabidopsis thaliana) hypocotyl epidermal cells, dynamic cortical microtubules labeled with green fluorescent protein fused to the microtubule-binding domain of the mammalian microtubule-associated protein MAP4 and with green fluorescent protein-fused to the alpha tubulin6 were comparatively recorded in wild-type Arabidopsis plants and in the mitogen-activated protein kinase mutant mpk4 possessing the former microtubule marker. The mpk4 mutant exhibits extensive microtubule bundling, due to increased abundance and reduced phosphorylation of the microtubule-associated protein MAP65-1, thus providing a very useful genetic tool to record intrabundle microtubule dynamics at the subdiffraction level. SIM imaging revealed nano-sized defects in microtubule bundling, spatially resolved microtubule branching and release, and finally allowed the quantification of individual microtubules within cortical bundles. Time-lapse SIM imaging allowed the visualization of subdiffraction, short-lived excursions of the microtubule plus end, and dynamic instability behavior of both ends during free, intrabundle, or microtubule-templated microtubule growth and shrinkage. Finally, short, rigid, and nondynamic microtubule bundles in the mpk4 mutant were observed to glide along the parent microtubule in a tip-wise manner. In conclusion, this study demonstrates the potential of SIM for superresolution time-lapse imaging of plant cells, showing unprecedented details accompanying microtubule dynamic organization.
Zobrazit více v PubMed
Allen JR, Ross ST, Davidson MW. (2014) Structured illumination microscopy for superresolution. ChemPhysChem 15: 566–576 10.1002/cphc.201301086 PubMed DOI
Allen RD, Allen NS, Travis JL. (1981) Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticonaris. Cell Motil 1: 291–302 PubMed
Beck M, Komis G, Müller J, Menzel D, Šamaj J. (2010) Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22: 755–771 PubMed PMC
Binarová P, Cenklová V, Procházková J, Doskocilová A, Volc J, Vrlík M, Bögre L. (2006) γ-Tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis. Plant Cell 18: 1199–1212 PubMed PMC
Buschmann H, Sambade A, Pesquet E, Calder G, Lloyd CW. (2010) Microtubule dynamics in plant cells. Methods Cell Biol 97: 373–400 PubMed
Chan J, Sambade A, Calder G, Lloyd C. (2009) Arabidopsis cortical microtubules are initiated along, as well as branching from, existing microtubules. Plant Cell 21: 2298–2306 PubMed PMC
Clough SJ, Bent AF. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743 PubMed
Cox S, Jones GE. (2013) Imaging cells at the nanoscale. Int J Biochem Cell Biol 45: 1669–1678 PubMed
Desai A, Mitchison TJ. (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13: 83–117 PubMed
Dhonukshe P, Gadella TW., Jr (2003) Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15: 597–611 PubMed PMC
Dixit R, Cyr R. (2004) Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16: 3274–3284 PubMed PMC
Dogterom M, Surrey T. (2013) Microtubule organization in vitro. Curr Opin Cell Biol 25: 23–29 PubMed
Ehrhardt DW. (2008) Straighten up and fly right: microtubule dynamics and organization of non-centrosomal arrays in higher plants. Curr Opin Cell Biol 20: 107–116 PubMed
Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MG. (2012) Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Natl Acad Sci USA 109: 5311–5315 PubMed PMC
Fishel EA, Dixit R. (2013) Role of nucleation in cortical microtubule array organization: variations on a theme. Plant J 75: 270–277 PubMed
Fitzgibbon J, Beck M, Zhou J, Faulkner C, Robatzek S, Oparka K. (2013) A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis. Plant Cell 25: 57–70 PubMed PMC
Fitzgibbon J, Bell K, King E, Oparka K. (2010) Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol 153: 1453–1463 PubMed PMC
Gardner MK, Zanic M, Howard J. (2013) Microtubule catastrophe and rescue. Curr Opin Cell Biol 25: 14–22 PubMed PMC
Gustafsson MG. (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198: 82–87 PubMed
Hell SW. (2007) Far-field optical nanoscopy. Science 316: 1153–1158 PubMed
Hensel M, Klingauf J, Piehler J. (2013) Imaging the invisible: resolving cellular microcompartments by superresolution microscopy techniques. Biol Chem 394: 1097–1113 PubMed
Kamiyama D, Huang B. (2012) Development in the STORM. Dev Cell 23: 1103–1110 PubMed PMC
Kang BH. (2010) Electron microscopy and high-pressure freezing of Arabidopsis. Methods Cell Biol 96: 259–283 PubMed
Kirik A, Ehrhardt DW, Kirik V. (2012) TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells. Plant Cell 24: 1158–1170 PubMed PMC
Kleine-Vehn J, Wabnik K, Martinière A, Łangowski Ł, Willig K, Naramoto S, Leitner J, Tanaka H, Jakobs S, Robert S, et al. (2011) Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol 7: 540 10.1038/msb.2011.72 PubMed DOI PMC
Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG. (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6: 339–342 PubMed PMC
Kutschera U. (2008) The growing outer epidermal wall: design and physiological role of a composite structure. Ann Bot (Lond) 101: 615–621 PubMed PMC
Leung BO, Chou KC. (2011) Review of super-resolution fluorescence microscopy for biology. Appl Spectrosc 65: 967–980 PubMed
Li W, Moriwaki T, Tani T, Watanabe T, Kaibuchi K, Goshima G. (2012) Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin. J Cell Biol 199: 849–862 PubMed PMC
Liesche J, Ziomkiewicz I, Schulz A. (2013) Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells. BMC Plant Biol 13: 226 10.1186/1471-2229-13-226 PubMed DOI PMC
Linnik O, Liesche J, Tilsner J, Oparka KJ. (2013) Unraveling the structure of viral replication complexes at super-resolution. Front Plant Sci 4: 6 10.3389/fpls.2013.00006 PubMed DOI PMC
Lucas JR, Shaw SL. (2012) MAP65-1 and MAP65-2 promote cell proliferation and axial growth in Arabidopsis roots. Plant J 71: 454–463 PubMed
Marc J, Granger CL, Brincat J, Fisher DD, Kao T, McCubbin AG, Cyr RJ. (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10: 1927–1940 PubMed PMC
Martin-Fernandez ML, Tynan CJ, Webb SE. (2013) A ‘pocket guide’ to total internal reflection fluorescence. J Microsc 252: 16–22 PubMed PMC
Mattheyses AL, Simon SM, Rappoport JZ. (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123: 3621–3628 PubMed PMC
Moore RC, Zhang M, Cassimeris L, Cyr RJ. (1997) In vitro assembled plant microtubules exhibit a high state of dynamic instability. Cell Motil Cytoskeleton 38: 278–286 PubMed
Müller S, Wright AJ, Smith LG. (2009) Division plane control in plants: new players in the band. Trends Cell Biol 19: 180–188 PubMed
Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M. (2005) Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nat Cell Biol 7: 961–968 PubMed
Nakamura M, Ehrhardt DW, Hashimoto T. (2010) Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat Cell Biol 12: 1064–1070 PubMed
Nakamura M, Hashimoto T. (2009) A mutation in the Arabidopsis gamma-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 122: 2208–2217 PubMed
Portran D, Zoccoler M, Gaillard J, Stoppin-Mellet V, Neumann E, Arnal I, Martiel JL, Vantard M. (2013) MAP65/Ase1 promote microtubule flexibility. Mol Biol Cell 24: 1964–1973 PubMed PMC
Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MG. (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci USA 109: E135–E143 PubMed PMC
Rosero A, Zárský V, Cvrčková F. (2014) Visualizing and quantifying the in vivo structure and dynamics of the Arabidopsis cortical cytoskeleton using CLSM and VAEM. Methods Mol Biol 1080: 87–97 PubMed
Salmon ED, Waterman CM. (2011) How we discovered fluorescent speckle microscopy. Mol Biol Cell 22: 3940–3942 PubMed PMC
Šamajová O, Komis G, Šamaj J. (2013) Emerging topics in the cell biology of mitogen-activated protein kinases. Trends Plant Sci 18: 140–148 PubMed
Sasabe M, Kosetsu K, Hidaka M, Murase A, Machida Y. (2011) Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal Behav 6: 743–747 PubMed PMC
Sengupta P, Van Engelenburg S, Lippincott-Schwartz J. (2012) Visualizing cell structure and function with point-localization superresolution imaging. Dev Cell 23: 1092–1102 PubMed PMC
Shao L, Kner P, Rego EH, Gustafsson MG. (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8: 1044–1046 PubMed
Shaw SL, Ehrhardt DW. (2013) Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu Rev Plant Biol 64: 351–375 PubMed
Shaw SL, Kamyar R, Ehrhardt DW. (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300: 1715–1718 PubMed
Shaw SL, Lucas J. (2011) Intrabundle microtubule dynamics in the Arabidopsis cortical array. Cytoskeleton (Hoboken) 68: 56–67 PubMed
Small AR, Parthasarathy R. (2014) Superresolution localization methods. Annu Rev Phys Chem 65: 107–125 PubMed
Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bögre L, Hussey PJ. (2006) Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J Cell Sci 119: 3227–3237 PubMed
Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ. (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16: 2035–2047 PubMed PMC
Smertenko AP, Kaloriti D, Chang HY, Fiserova J, Opatrny Z, Hussey PJ. (2008) The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20: 3346–3358 PubMed PMC
Smertenko AP, Piette B, Hussey PJ. (2011) The origin of phragmoplast asymmetry. Curr Biol 21: 1924–1930 PubMed
Song H, Golovkin M, Reddy AS, Endow SA. (1997) In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. Proc Natl Acad Sci USA 94: 322–327 PubMed PMC
Stoppin-Mellet V, Fache V, Portran D, Martiel JL, Vantard M. (2013) MAP65 coordinate microtubule growth during bundle formation. PLoS ONE 8: e56808 10.1371/journal.pone.0056808 PubMed DOI PMC
Stoppin-Mellet V, Gaillard J, Timmers T, Neumann E, Conway J, Vantard M. (2007) Arabidopsis katanin binds microtubules using a multimeric microtubule-binding domain. Plant Physiol Biochem 45: 867–877 PubMed
Tiwari DK, Nagai T. (2013) Smart fluorescent proteins: innovation for barrier-free superresolution imaging in living cells. Dev Growth Differ 55: 491–507 PubMed
Tulin A, McClerklin S, Huang Y, Dixit R. (2012) Single-molecule analysis of the microtubule cross-linking protein MAP65-1 reveals a molecular mechanism for contact-angle-dependent microtubule bundling. Biophys J 102: 802–809 PubMed PMC
Vallotton P, Ponti A, Waterman-Storer CM, Salmon ED, Danuser G. (2003) Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: a fluorescent speckle microscopy study. Biophys J 85: 1289–1306 PubMed PMC
Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inzé D, Geelen D. (2004) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136: 3956–3967 PubMed PMC
Verdaasdonk JS, Stephens AD, Haase J, Bloom K. (2014) Bending the rules: widefield microscopy and the Abbe limit of resolution. J Cell Physiol 229: 132–138 PubMed PMC
Vizcay-Barrena G, Webb SE, Martin-Fernandez ML, Wilson ZA. (2011) Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM). J Exp Bot 62: 5419–5428 PubMed PMC
Vos JW, Dogterom M, Emons AM. (2004) Microtubules become more dynamic but not shorter during preprophase band formation: a possible “search-and-capture” mechanism for microtubule translocation. Cell Motil Cytoskeleton 57: 246–258 PubMed
Wan Y, Ash WM, III, Fan L, Hao H, Kim MK, Lin J. (2011) Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana. Plant Methods 7: 27 10.1186/1746-4811-7-27 PubMed DOI PMC
Wang E, Babbey CM, Dunn KW. (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218: 148–159 PubMed
Wasteneys GO, Ambrose JC. (2009) Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol 19: 62–71 PubMed
Waterman-Storer CM. (1998) Microtubules and microscopes: how the development of light microscopic imaging technologies has contributed to discoveries about microtubule dynamics in living cells. Mol Biol Cell 9: 3263–3271 PubMed PMC
Waterman-Storer CM, Salmon ED. (1997) Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 139: 417–434 PubMed PMC
Waterman-Storer CM, Salmon ED. (1998) How microtubules get fluorescent speckles. Biophys J 75: 2059–2069 PubMed PMC
Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320: 246–249 PubMed
Wightman R, Turner SR. (2007) Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays. Plant J 52: 742–751 PubMed
Zanic M, Widlund PO, Hyman AA, Howard J. (2013) Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels. Nat Cell Biol 15: 688–693 PubMed
Zhang D, Wadsworth P, Hepler PK. (1990) Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87: 8820–8824 PubMed PMC
Zhang H, Dawe RK. (2011) Mechanisms of plant spindle formation. Chromosome Res 19: 335–344 PubMed
Zucker RM, Price OT. (1999) Practical confocal microscopy and the evaluation of system performance. Methods 18: 447–458 PubMed
Complementary Superresolution Visualization of Composite Plant Microtubule Organization and Dynamics
Advances in Imaging Plant Cell Dynamics
Preparation of plants for developmental and cellular imaging by light-sheet microscopy
Superresolution live imaging of plant cells using structured illumination microscopy
Endosomal Interactions during Root Hair Growth