Preparation of plants for developmental and cellular imaging by light-sheet microscopy
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26203821
DOI
10.1038/nprot.2015.081
PII: nprot.2015.081
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis MeSH
- fluorescenční mikroskopie * MeSH
- rostlinné buňky * MeSH
- vývoj rostlin * MeSH
- zalévání tkání metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Long-term fluorescence live-cell imaging experiments have long been limited by the effects of excitation-induced phototoxicity. The advent of light-sheet microscopy now allows users to overcome this limitation by restricting excitation to a narrow illumination plane. In addition, light-sheet imaging allows for high-speed image acquisition with uniform illumination of samples composed of multiple cell layers. The majority of studies conducted thus far have used custom-built platforms with specialized hardware and software, along with specific sample handling approaches. The first versatile commercially available light-sheet microscope, Lightsheet Z.1, offers a number of innovative solutions, but it requires specific strategies for sample handling during long-term imaging experiments. There are currently no standard procedures describing the preparation of plant specimens for imaging with the Lightsheet Z.1. Here we describe a detailed protocol to prepare plant specimens for light-sheet microscopy, in which Arabidopsis seeds or seedlings are placed in solid medium within glass capillaries or fluorinated ethylene propylene tubes. Preparation of plant material for imaging may be completed within one working day.
Zobrazit více v PubMed
Curr Opin Genet Dev. 2011 Oct;21(5):566-72 PubMed
Nat Methods. 2010 Jun;7(6):418-9 PubMed
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5229-34 PubMed
Opt Express. 2013 Jun 3;21(11):13824-39 PubMed
Protoplasma. 2007;230(3-4):231-42 PubMed
Nat Methods. 2012 Jun 28;9(7):676-82 PubMed
PLoS One. 2011;6(6):e21303 PubMed
Development. 2009 Jun;136(12):1963-75 PubMed
Science. 2014 Jan 10;343(6167):178-83 PubMed
New Phytol. 2014 Sep;203(4):1175-93 PubMed
Biomed Opt Express. 2014 Mar 31;5(5):1296-308 PubMed
Development. 2012 Sep;139(17):3242-7 PubMed
Trends Plant Sci. 2013 Mar;18(3):117-9 PubMed
Opt Express. 2007 Jun 25;15(13):8029-42 PubMed
Plant Cell. 2011 Jun;23(6):2302-13 PubMed
Science. 2003 Jun 13;300(5626):1715-8 PubMed
Nat Protoc. 2014 May;9(5):1083-101 PubMed
Science. 2014 Oct 24;346(6208):1257998 PubMed
Plant Signal Behav. 2011 Oct;6(10):1460-4 PubMed
Plant Cell. 1998 Nov;10(11):1927-40 PubMed
J Vis Exp. 2014 Feb 27;(84):e51119 PubMed
Nat Methods. 2014 Jun;11(6):645-8 PubMed
Nat Protoc. 2014 Mar;9(3):575-85 PubMed
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9511-6 PubMed
Plant J. 2011 Oct;68(2):377-85 PubMed
Plant Physiol. 2014 May;165(1):129-48 PubMed
Sci Rep. 2013;3:1273 PubMed
Nat Methods. 2013 Jul;10(7):598-9 PubMed
BMC Plant Biol. 2014 Sep 27;14:252 PubMed
Methods Mol Biol. 2014;1062:539-50 PubMed
Science. 2004 Aug 13;305(5686):1007-9 PubMed
Curr Biol. 2013 May 6;23(9):817-22 PubMed
ACORBA: Automated workflow to measure Arabidopsis thaliana root tip angle dynamics
Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy
Advances in Imaging Plant Cell Dynamics
What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo