Spatiotemporal Pattern of Ectopic Cell Divisions Contribute to Mis-Shaped Phenotype of Primary and Lateral Roots of katanin1 Mutant
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
32582258
PubMed Central
PMC7296145
DOI
10.3389/fpls.2020.00734
Knihovny.cz E-resources
- Keywords
- Arabidopsis, ectopic cell division, katanin, light-sheet fluorescence microscopy, live cell imaging, microtubules, root development,
- Publication type
- Journal Article MeSH
Pattern formation, cell proliferation, and directional cell growth, are driving factors of plant organ shape, size, and overall vegetative development. The establishment of vegetative morphogenesis strongly depends on spatiotemporal control and synchronization of formative and proliferative cell division patterns. In this context, the progression of cell division and the regulation of cell division plane orientation are defined by molecular mechanisms converging to the proper positioning and temporal reorganization of microtubule arrays such as the preprophase microtubule band, the mitotic spindle and the cytokinetic phragmoplast. By focusing on the tractable example of primary root development and lateral root emergence in Arabidopsis thaliana, genetic studies have highlighted the importance of mechanisms underlying microtubule reorganization in the establishment of the root system. In this regard, severe alterations of root growth, and development found in extensively studied katanin1 mutants of A. thaliana (fra2, lue1, and ktn1-2), were previously attributed to defective rearrangements of cortical microtubules and aberrant cell division plane reorientation. How KATANIN1-mediated microtubule severing contributes to tissue patterning and organ morphogenesis, ultimately leading to anisotropy in microtubule organization is a trending topic under vigorous investigation. Here we addressed this issue during root development, using advanced light-sheet fluorescence microscopy (LSFM) and long-term imaging of ktn1-2 mutant expressing the GFP-TUA6 microtubule marker. This method allowed spatial and temporal monitoring of cell division patterns in growing roots. Analysis of acquired multidimensional data sets revealed the occurrence of ectopic cell divisions in various tissues including the calyptrogen and the protoxylem of the main root, as well as in lateral root primordia. Notably the ktn1-2 mutant exhibited excessive longitudinal cell divisions (parallel to the root axis) at ectopic positions. This suggested that changes in the cell division pattern and the occurrence of ectopic cell divisions contributed significantly to pleiotropic root phenotypes of ktn1-2 mutant. LSFM provided evidence that KATANIN1 is required for the spatiotemporal control of cell divisions and establishment of tissue patterns in living A. thaliana roots.
See more in PubMed
Abu-Abied M., Mordehaev I., Sunil Kumar G. B., Ophir R., Wasteneys G. O., Sadot E. (2015a). Analysis of microtubule-associated-proteins during IBA-mediated adventitious root induction reveals KATANIN dependent and independent alterations of expression patterns. PLoS ONE 10:e0143828. 10.1371/journal.pone.0143828 PubMed DOI PMC
Abu-Abied M., RogovoyStelmakh O., Mordehaev I., Grumberg M., Elbaum R., Wasteneys G. O., et al. . (2015b). Dissecting the contribution of microtubule behaviour in adventitious root induction. J. Exp. Bot. 66, 2813–2824. 10.1093/jxb/erv097 PubMed DOI PMC
Beck M., Komis G., Müller J., Menzel D., Šamaj J. (2010). Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22, 755–771. 10.1105/tpc.109.071746 PubMed DOI PMC
Beck M., Komis G., Ziemann A., Menzel D., Šamaj J. (2011). Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol. 189, 1069–1083. 10.1111/j.1469-8137.2010.03565.x PubMed DOI
Besson S., Dumais J. (2011). Universal rule for the symmetric division of plant cells. Proc. Natl. Acad. Sci. U. S. A. 108, 6294–6299. 10.1073/pnas.1011866108 PubMed DOI PMC
Bichet A., Desnos T., Turner S., Grandjean O., Höfte H. (2001). BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in arabidopsis. Plant J. 25, 137–148. 10.1046/j.1365-313x.2001.00946.x PubMed DOI
Bouquin T., Mattsson O., Naested H., Foster R., Mundy J. (2003). The arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J. Cell Sci.116, 791–801. 10.1242/jcs.00274 PubMed DOI
Burk D. H., Liu B., Zhong R., Morrison W. H., Ye Z. H. (2001). A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13, 807–827. 10.2307/3871342 PubMed DOI PMC
Burk D. H., Ye Z. H. (2002). Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell 14, 2145–2160. 10.1105/tpc.003947 PubMed DOI PMC
Buschmann H., Chan J., Sanchez-Pulido L., Andrade-Navarro M. A., Doonan J. H., Lloyd C. W. (2006). Microtubule-associated AIR9 recognizes the cortical division site at preprophase and cell-plate insertion. Curr. Biol. 16, 1938–1943. 10.1016/j.cub.2006.08.028 PubMed DOI
Camilleri C., Azimzadeh J., Pastuglia M., Bellini C., Grandjean O., Bouchez D. (2002). The arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14, 833–845. 10.1105/tpc.010402 PubMed DOI PMC
Campos R., Goff J., Rodriguez-Furlan C., Van Norman J. M. (2020). The arabidopsis receptor kinase IRK is polarized and represses specific cell divisions in roots. Dev. Cell 52, 183–195. 10.1016/j.devcel.2019.12.001 PubMed DOI
Costa A., Candeo A., Fieramonti L., Valentini G., Bassi A. (2013). Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy. PLoS ONE 8:e75646. 10.1371/journal.pone.0075646 PubMed DOI PMC
Deinum E. E., Mulder B. M. (2013). Modelling the role of microtubules in plant cell morphology. Curr. Opin. Plant Biol. 16, 688–692. 10.1016/j.pbi.2013.10.001 PubMed DOI
Ditengou F. A., Teale W. D., Kochersperger P., Flittner K. A., Kneuper I., van der Graaff E., et al. . (2008). Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 105, 18818–18823. 10.1073/pnas.0807814105 PubMed DOI PMC
Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., et al. . (1993). Cellular organisation of the Arabidopsis thaliana root. Development 119, 71–84. PubMed
Gutierrez R., Lindeboom J. J., Paredez A. R., Emons A. M., Ehrhardt D. W. (2009). Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11, 797–806. 10.1038/ncb1886 PubMed DOI
Hamada T. (2014). Microtubule organization and microtubule-associated proteins in plant cells. Int. Rev. Cell Mol. Biol. 312, 1–52. 10.1016/B978-0-12-800178-3.00001-4 PubMed DOI
Hartman J. J., Mahr J., McNally K., Okawa K., Iwamatsu A., Thomas S., et al. . (1998). Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93, 277–287. 10.1016/S0092-8674(00)81578-0 PubMed DOI
Hartman J. J., Vale R. D. (1999). Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. Science 286, 782–785. 10.1126/science.286.5440.782 PubMed DOI
Jackson M. D. B., Duran-Nebreda S., Kierzkowski D., Strauss S., Xu H., Landrein B., et al. . (2019). Global topological order emerges through local mechanical control of cell divisions in the arabidopsis shoot apical meristem. Cell Syst. 8, 53–65.e3. 10.1016/j.cels.2018.12.009 PubMed DOI PMC
Komis G., Luptovčiak I., Ovečka M., Samakovli D., Šamajová O., Šamaj J. (2017). Katanin effects on dynamics of cortical microtubules and mitotic arrays in Arabidopsis thaliana revealed by advanced live-cell imaging. Front. Plant Sci. 8:866. 10.3389/fpls.2017.00866 PubMed DOI PMC
Komis G., Mistrík M., Šamajová O., Doskočilová A., Ovečka M., Illés P., et al. . (2014). Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy. Plant Physiol. 165, 129–148. 10.1104/pp.114.238477 PubMed DOI PMC
Kosetsu K., Matsunaga S., Nakagami H., Colcombet J., Sasabe M., Soyano T., et al. . (2010). The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22, 3778–3790. 10.1105/tpc.110.077164 PubMed DOI PMC
Li H., Sun B., Sasabe M., Deng X., Machida Y., Lin H., et al. . (2017). Arabidopsis MAP65-4 plays a role in phragmoplast microtubule organization and marks the cortical cell division site. New Phytol. 215, 187–201. 10.1111/nph.14532 PubMed DOI
Lindeboom J. J., Nakamura M., Hibbel A., Shundyak K., Gutierrez R., Ketelaar T., et al. . (2013). A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science 342:1245533. 10.1126/science.1245533 PubMed DOI
Livanos P., Müller S. (2019). Division plane establishment and cytokinesis. Annu. Rev. Plant Biol. 70, 239–267. 10.1146/annurev-arplant-050718-100444 PubMed DOI
Louveaux M., Julien J. D., Mirabet V., Boudaoud A., Hamant O. (2016). Cell division plane orientation based on tensile stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 113, E4294–E4303. 10.1073/pnas.1600677113 PubMed DOI PMC
Lucas M., Kenobi K., von Wangenheim D., Voβ U., Swarup K., De Smet I., et al. . (2013). Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proc. Natl. Acad. Sci. U. S. A. 110, 5229–5234. 10.1073/pnas.1210807110 PubMed DOI PMC
Luptovčiak I., Komis G., Takáč T., Ovečka M., Šamaj J. (2017a). Katanin: a sword cutting microtubules for cellular, developmental, and physiological purposes. Front. Plant Sci. 8:1982. 10.3389/fpls.2017.01982 PubMed DOI PMC
Luptovčiak I., Samakovli D., Komis G., Šamaj J. (2017b). KATANIN1 is essential for embryogenesis and seed formation in Arabidopsis. Front. Plant Sci. 8:728. 10.3389/fpls.2017.00728 PubMed DOI PMC
Maizel A., von Wangenheim D., Federici F., Haseloff J., Stelzer E. H. (2011). High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J. 68, 377–385. 10.1111/j.1365-313X.2011.04692.x PubMed DOI
Malamy J. E., Benfey P. N. (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124, 33–44. PubMed
Matsuzaki Y., Ogawa-Ohnishi M., Mori A., Matsubayashi Y. (2010). Secreted peptide signals required for maintenance of root stem cell niche in arabidopsis. Science 329, 1065–1067. 10.1126/science.1191132 PubMed DOI
Meier C., Bouquin T., Nielsen M. E., Raventos D., Mattsson O., Rocher A., et al. . (2001). Gibberellin response mutants identified by luciferase imaging. Plant J. 25, 509–519. 10.1046/j.1365-313x.2001.00980.x PubMed DOI
Metzinger C. A., Bergmann D. C. (2010). Plant asymmetric cell division regulators: pinch-hitting for PARs? F1000 Biol. Rep. 2:25. 10.3410/B2-25 PubMed DOI PMC
Moreira S., Bishopp A., Carvalho H., Campilho A. (2013). AHP6 inhibits cytokinin signaling to regulate the orientation of pericycle cell division during lateral root initiation. PLoS ONE 8:e56370. 10.1371/journal.pone.0056370 PubMed DOI PMC
Müller J., Beck M., Mettbach U., Komis G., Hause G., Menzel D., et al. . (2010). Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J. 61, 234–248. 10.1111/j.1365-313X.2009.04046.x PubMed DOI
Müller S. (2012). Universal rules for division plane selection in plants. Protoplasma 249, 239–253. 10.1007/s00709-011-0289-y PubMed DOI
Müller S., Han S., Smith L. G. (2006). Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr. Biol. 16, 888–894. 10.1016/j.cub.2006.03.034 PubMed DOI
Müller S., Smertenko A., Wagner V., Heinrich M., Hussey P. J., Hauser M. T. (2004). The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr. Biol. 14, 412–417. 10.1016/j.cub.2004.02.032 PubMed DOI PMC
Nakamura M. (2015). Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues. New Phytol. 205, 1022–1027. 10.1111/nph.12932 PubMed DOI
Nakamura M., Ehrhardt D. W., Hashimoto T. (2010). Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal arabidopsis cortical array. Nat. Cell Biol.12, 1064–1070. 10.1038/ncb2110 PubMed DOI
Novák D., Kuchařová A., Ovečka M., Komis G., Šamaj J. (2016). Developmental nuclear localization and quantification of GFP-tagged EB1c in arabidopsis root using light-sheet microscopy. Front. Plant Sci. 6:1187. 10.3389/fpls.2015.01187 PubMed DOI PMC
Novák D., Vadovič P., Ovečka M., Šamajová O., Komis G., Colcombet J., et al. . (2018). Gene expression pattern and protein localization of arabidopsis phospholipase D alpha 1 revealed by advanced light-sheet and super-resolution microscopy. Front. Plant Sci. 9:371. 10.3389/fpls.2018.00371 PubMed DOI PMC
Omelyanchuk N. A., Kovrizhnykh V. V., Oshchepkova E. A., Pasternak T., Palme K., Mironova V. V. (2016). A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root. BMC Plant Biol. 16:5. 10.1186/s12870-015-0685-0 PubMed DOI PMC
Ovečka M., Vaškebová L., Komis G., Luptovčiak I., Smertenko A., Šamaj J. (2015). Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat. Protoc. 10, 1234–1247. 10.1038/nprot.2015.081 PubMed DOI
Ovečka M., von Wangenheim D., Tomančák P., Šamajová O., Komis G, Šamaj J. (2018). Multiscale imaging of plant development by light-sheet fluorescence microscopy. Nat. Plants 4, 639–650. 10.1038/s41477-018-0238-2 PubMed DOI
Panteris E., Adamakis I. D. (2012). Aberrant microtubule organization in dividing root cells of p60-katanin mutants. Plant Sig. Behav. 7, 16–18. 10.4161/psb.7.1.18358 PubMed DOI PMC
Panteris E., Adamakis I. D., Voulgari G., Papadopoulou G. (2011). A role for katanin in plant cell division: microtubule organization in dividing root cells of fra2 and lue1Arabidopsis thaliana mutants. Cytoskeleton 68, 401–413. 10.1002/cm.20522 PubMed DOI
Panteris E., Diannelidis B. E., Adamakis I. S. (2018). Cortical microtubule orientation in Arabidopsis thaliana root meristematic zone depends on cell division and requires severing by katanin. J. Biol. Res-Thessalon. 25:12. 10.1186/s40709-018-0082-6 PubMed DOI PMC
Parizot B., Laplaze L., Ricaud L., Boucheron-Dubuisson E., Bayle V., Bonke M., et al. . (2008). Diarch symmetry of the vascular bundle in arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol. 146, 140–148. 10.1104/pp.107.107870 PubMed DOI PMC
Polko J. K., Kieber J. J. (2019). The regulation of cellulose biosynthesis in plants. Plant Cell 31, 282–296. 10.1105/tpc.18.00760 PubMed DOI PMC
Rahni R., Efroni I., Birnbaum K. D. (2016). A case for distributed control of local stem cell behavior in plants. Dev. Cell 38, 635–642. 10.1016/j.devcel.2016.08.015 PubMed DOI PMC
Rasmussen C. G., Humphries J. A., Smith L. G. (2011). Determination of symmetric and asymmetric division planes in plant cells. Annu. Rev. Plant Biol. 62, 387–409. 10.1146/annurev-arplant-042110-103802 PubMed DOI
Rosquete M. R., von Wangenheim D., Marhavý P., Barbez E., Stelzer E. H., Benková E., et al. . (2013). An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr. Biol. 23, 817–822. 10.1016/j.cub.2013.03.064 PubMed DOI
Šamajová O., Komis G., Šamaj J. (2014). Immunofluorescent localization of MAPKs and colocalization with microtubules in arabidopsis seedling whole-mount probes. Methods Mol. Biol. 1171, 107–115. 10.1007/978-1-4939-0922-3_9 PubMed DOI
Sampathkumar A., Lindeboom J. J., Debolt S., Gutierrez R., Ehrhardt D. W., Ketelaar T., et al. . (2011). Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in arabidopsis. Plant Cell 23, 2302–2313. 10.1105/tpc.111.087940 PubMed DOI PMC
Sasaki T., Tsutsumi M., Otomo K., Murata T., Yagi N., Nakamura M., et al. . (2019). Novel katanin-tethering machinery accelerates cytokinesis. Curr. Biol. 29, 4060–4070.e3. 10.1016/j.cub.2019.09.049 PubMed DOI
Sassi M., Ali O., Boudon F., Cloarec G., Abad U., Cellier C., et al. . (2014). An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr. Biol. 24, 2335–2342. 10.1016/j.cub.2014.08.036 PubMed DOI
Sena G., Frentz Z., Birnbaum K. D., Leibler S. (2011). Quantitation of cellular dynamics in growing arabidopsis roots with light sheet microscopy. PLoS ONE 6:e21303. 10.1371/journal.pone.0021303 PubMed DOI PMC
Smékalová V., Luptovčiak I., Komis G., Šamajová O., Ovečka M., Doskočilová A., et al. . (2014). Involvement of YODA and mitogen activated protein kinase 6 in arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytol. 203, 1175–1193. 10.1111/nph.12880 PubMed DOI PMC
Smertenko A., Assaad F., Baluška F., Bezanilla M., Buschmann H., Drakakaki G., et al. . (2017). Plant cytokinesis: terminology for structures and processes. Trends Cell Biol. 27, 885–894. 10.1016/j.tcb.2017.08.008 PubMed DOI
Soga K., Yamaguchi A., Kotake T., Wakabayashi K., Hoson T. (2010a). 1-aminocyclopropane-1-carboxylic acid ACC-induced reorientation of cortical microtubules is accompanied by a transient increase in the transcript levels of gamma-tubulin complex and katanin genes in azuki bean epicotyls. J. Plant Physiol. 167, 1165–1171. 10.1016/j.jplph.2010.04.001 PubMed DOI
Soga K., Yamaguchi A., Kotake T., Wakabayashi K., Hoson T. (2010b). Transient increase in the levels of g-tubulin complex and katanin are responsible for reorientation by ethylene and hypergravity of cortical microtubules. Plant Signal. Behav. 5, 1480–1482. 10.4161/psb.5.11.13561 PubMed DOI PMC
Spinner L., Gadeyne A., Belcram K., Goussot M., Moison M., Duroc Y., et al. . (2013). A protein phosphatase 2A complex spatially controls plant cell division. Nat. Commun. 4:1863. 10.1038/ncomms2831 PubMed DOI
Stoppin-Mellet V., Gaillard J., Timmers T., Neumann E., Conway J., Vantard M. (2007). Arabidopsis katanin binds microtubules using a multimeric microtubule-binding domain. Plant Physiol. Bioch. 45, 867–877. 10.1016/j.plaphy.2007.09.005 PubMed DOI
Stoppin-Mellet V., Gaillard J., Vantard M. (2006). Katanin's severing activity favors bundling of cortical microtubules in plants. Plant J. 46, 1009–1017. 10.1111/j.1365-313X.2006.02761.x PubMed DOI
Takáč T., Šamajová O., Luptovčiak I., Pechan T., Šamaj J. (2017). Feedback microtubule control and microtubule-actin cross-talk in arabidopsis revealed by integrative proteomic and cell biology analysis of KATANIN1 mutants. Mol. Cell. Proteomics 16, 1591–1609. 10.1074/mcp.M117.068015 PubMed DOI PMC
Tsukagoshi H., Busch W., Benfey P. N. (2010). Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143, 606–616. 10.1016/j.cell.2010.10.020 PubMed DOI
Uyttewaal M., Burian A., Alim K., Landrein B., Borowska-Wykret D., Dedieu A., et al. . (2012). Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149, 439–451. 10.1016/j.cell.2012.02.048 PubMed DOI
Van Norman J. M. (2016). Asymmetry and cell polarity in root development. Dev. Biol. 17, 165–174. 10.1016/j.ydbio.2016.07.009 PubMed DOI
Vavrdová T., Šamajová O., Křenek P., Ovečka M., Floková P., Šnaurová R., et al. . (2019). Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins. Plant Methods 15:22. 10.1186/s13007-019-0406-z PubMed DOI PMC
Vermeer J. E., von Wangenheim D., Barberon M., Lee Y., Stelzer E. H., Maizel A., et al. . (2014). A spatial accommodation by neighboring cells is required for organ initiation in arabidopsis. Science 343, 178–183. 10.1126/science.1245871 PubMed DOI
Verstraeten I., Schotte S., Geelen D. (2014). Hypocotyl adventitious root organogenesis differs from lateral root development. Front. Plant Sci. 5:495. 10.3389/fpls.2014.00495 PubMed DOI PMC
von Wangenheim D., Fangerau J., Schmitz A., Smith R. S., Leitte H., Stelzer E. H., et al. . (2016). Rules and self-organizing properties of postembryonic plant organ cell division patterns. Curr. Biol. 26, 439–449. 10.1016/j.cub.2015.12.047 PubMed DOI
Vyplelová P., Ovečka M., Komis G., Šamaj J. (2018). Advanced microscopy methods for bioimaging of mitotic microtubules in plants. Method. Cell Biol. 145, 129–158. 10.1016/bs.mcb.2018.03.019 PubMed DOI
Walker K. L., Müller S., Moss D., Ehrhardt D. W., Smith L. G. (2007). Arabidopsis TANGLED identifies the division plane throughout mitosis and cytokinesis. Curr. Biol. 17, 1827–1836. 10.1016/j.cub.2007.09.063 PubMed DOI PMC
Wang C., Liu W., Wang G., Li J., Dong L., Han L., et al. . (2017). KTN80 confers precision to microtubule severing by specific targeting of katanin complexes in plant cells. EMBO J. 36, 3435–3447. 10.15252/embj.201796823 PubMed DOI PMC
Webb M., Jouannic S., Foreman J., Linstead P., Dolan L. (2002). Cell specification in the arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR 3-a katanin-p60 protein. Development 129, 123–131. PubMed
Wightman R., Chomicki G., Kumar M., Carr P., Turner S. R. (2013). SPIRAL2 determines plant microtubule organization by modulating microtubule severing. Curr. Biol. 23, 1902–1907. 10.1016/j.cub.2013.07.061 PubMed DOI PMC
Wightman R., Turner S. R. (2007). Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays. Plant J. 52, 742–751. 10.1111/j.1365-313X.2007.03271.x PubMed DOI
Winnicki K. (2020). The winner takes it all: auxin–the main player during plant embryogenesis. Cells 9:606. 10.3390/cells9030606 PubMed DOI PMC
Xu X. M., Zhao Q., Rodrigo-Peiris T., Brkljacic J., He C. S., Müller S., et al. . (2008). RanGAP1 is a continuous marker of the arabidopsis cell division plane. Proc. Natl. Acad. Sci. U. S. A. 105, 18637–18642. 10.1073/pnas.0806157105 PubMed DOI PMC
Zhang Q., Fischel E., Bertoche T., Dixit R. (2013). Microtubule severing at crossover sites by katanin generates order cortical microtubular arrays in arabidopsis. Curr. Biol. 23, 2191–2195. 10.1016/j.cub.2013.09.018 PubMed DOI
Zhou W., Wei L., Xu J., Zhai Q., Jiang H., Chen R., et al. . (2010). Arabidopsis tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche. Plant Cell 22, 3692–3709. 10.1105/tpc.110.075721 PubMed DOI PMC
Imaging plant cells and organs with light-sheet and super-resolution microscopy