KATANIN 1 Is Essential for Embryogenesis and Seed Formation in Arabidopsis

. 2017 ; 8 () : 728. [epub] 20170505

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28529520

Cytoskeletal remodeling has a fundamental role, especially during transitional developmental stages when cells rapidly adopt new forms and roles, like gametogenesis, fertilization and concomitant embryogenesis and seed formation. KATANIN 1, a microtubule severing protein, fulfills a major regulatory mechanism of dynamic microtubule turnover in eukaryotes. Herein, we show that three well-established KATANIN 1 mutants, fra2, lue1 and ktn1-2 collectively display lower fertility and seed set in Arabidopsis. These lower fertility and seed set rates of fra2, lue1 and ktn1-2 mutants were correlated to abnormalities in the development of embryo proper and seed. Such phenotypes were rescued by transformation of mutants with functional pKTN1::GFP:KTN1 construct. This study significantly expands the already broad functional repertoire of KATANIN 1 and unravels its new role in embryo and seed development. Thus, KATANIN 1 significantly contributes to the fertility and proper embryo and seed formation in Arabidopsis.

Zobrazit více v PubMed

Abu-Abied M., Mordehaev I., Sunil Kumar G. B., Ophir R., Wasteneys G. O., Sadot E. (2015a). Analysis of microtubule-associated-proteins during IBA-mediated adventitious root induction reveals KATANIN dependent and independent alterations of expression patterns. PubMed DOI PMC

Abu-Abied M., Rogovoy Stelmakh O., Mordehaev I., Grumberg M., Elbaum R., Wasteneys G. O., et al. (2015b). Dissecting the contribution of microtubule behaviour in adventitious root induction. PubMed DOI PMC

Albertson D. G. (1984). Formation of the first cleavage spindle in nematode embryos. PubMed DOI

Albertson D. G., Thomson J. N. (1993). Segregation of holocentric chromosomes at meiosis in the nematode, PubMed DOI

Beard S. M., Smitk R. B., Chan B. G., Mains P. E. (2016). Regulation of the MEI-1/MEI-2 microtubule-severing Katanin complex in early PubMed DOI PMC

Bichet A., Desnos T., Turner S., Grandjean O., Höfte H. (2001). BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. PubMed DOI

Bouquin T., Mattsson O., Naested H., Foster R., Mundy J. (2003). The PubMed DOI

Burk D. H., Liu B., Zhong R., Morrison W. H., Ye Z. H. (2001). A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. PubMed DOI PMC

Burk D. H., Ye Z. H. (2002). Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. PubMed DOI PMC

Hartman J. J., Mahr J., McNally K., Okawa K., Iwamatsu A., Thomas S., et al. (1998). Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. PubMed DOI

Hartman J. J., Vale R. D. (1999). Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. PubMed DOI

Joly N., Martino L., Gigant E., Dumont J., Pintard L. (2016). Microtubule-severing activity of AAA-ATPase Katanin is essential for female meiotic spindle assembly. PubMed DOI

Jürgens G., Mayer U. (1994). “

Keech O., Pesquet E., Gutierrez L., Ahad A., Bellini C., Smith S. M., et al. (2010). Leaf senescence is accompanied by an early disruption of the microtubule network in Arabidopsis. PubMed DOI PMC

Kemphues K. J., Wolf N., Wood W. B., Hirsh D. (1986). Two loci required for cytoplasmic organization in early embryos of PubMed DOI

Lindeboom J. J., Nakamura M., Hibbel A., Shundyak K., Gutierrez R., Ketelaar T., et al. (2013). A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. PubMed DOI

McCarter J., Bartlett B., Dang T., Schedl T. (1999). On the control of oocyte meiotic maturation and ovulation in PubMed DOI

McClinton R. S., Chandler J. S., Callis J. (2001). cDNA isolation, characterization, and protein intracellular localization of a katanin-like p60 subunit from PubMed DOI

McNally F. J., Vale R. D. (1993). Identification of katanin, an ATPase that severs and disassembles stable microtubules. PubMed DOI

Mukherjee S., Diaz Valencia J. D., Stewman S., Metz J., Monnier S., Rath U., et al. (2012). Human Fidgetin is a microtubule severing the enzyme and minus-end depolymerase that regulates mitosis. PubMed DOI PMC

Nakamura M. (2015). Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues. PubMed DOI

Nakamura M., Ehrhardt D. W., Hashimoto T. (2010). Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal PubMed DOI

O’Donnell L., O’Bryan M. K. (2014). Microtubules and spermatogenesis. PubMed DOI

O’Donnell L., Rhodes D., Smith S. J., Merriner D. J., Clark B. J., Borg C., et al. (2012). An essential role for katanin p80 and microtubule severing in male gamete production. PubMed DOI PMC

Panteris E., Adamakis I. D. (2012). Aberrant microtubule organization in dividing root cells of p60-katanin mutants. PubMed DOI PMC

Panteris E., Adamakis I. D., Voulgari G., Papadopoulou G. (2011). A role for katanin in plant cell division: microtubule organization in dividing root cells of PubMed DOI

Qu J., Ye J., Geng Y. F., Sun Y. W., Gao S. Q., Zhang B. P., et al. (2012). Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing. PubMed DOI PMC

Roll-Mecak A., Vale R. D. (2005). The PubMed DOI

Russell S. D. (1993). The egg cell: development and role in fertilization and early embryogenesis. PubMed DOI PMC

Soga K., Yamaguchi A., Kotake T., Wakabayashi K., Hoson T. (2010). 1-Aminocyclopropane-1-carboxylic acid ACC-induced reorientation of cortical microtubules is accompanied by a transient increase in the transcript levels of gamma-tubulin complex and katanin genes in azuki bean epicotyls. PubMed DOI

Sornay E., Dewitte W., Murray J. A. H. (2016). Seed size plasticity in response to embryonic lethality conferred by ectopic CYCD activation is dependent on plant architecture. PubMed DOI PMC

Stoppin-Mellet V., Gaillard J., Timmers T., Neumann E., Conway J., Vantard M. (2007). Arabidopsis katanin binds microtubules using a multimeric microtubule-binding domain. PubMed DOI

Stoppin-Mellet V., Gaillard J., Vantard M. (2006). Katanin’s severing activity favors bundling of cortical microtubules in plants. PubMed DOI

Tang E. I., Lee W. M., Cheng C. (2016). Coordination of actin- and microtubule-based cytoskeletons support transport of spermatids and residual bodies/phagosomes during spermatogenesis in the testis of the male rat. PubMed DOI PMC

Tang E. I., Mruk D. D., Cheng C. Y. (2013). MAP/microtubule affinity-regulating kinases, microtubule dynamics, and spermatogenesis. PubMed DOI PMC

ten Hove C. A., Lu K. J., Weijers D. (2015). Building a plant: cell fate specification in the early PubMed DOI

Webb M., Jouannic S., Foreman J., Linstead P., Dolan L. (2002). Cell specification in the PubMed

Webb M. C., Gunning B. E. S. (1994). Embryo sac development in Arabidopsis. II. The cytoskeleton during megagametogenesis. Sex. DOI

Wightman R., Chomicki G., Kumar M., Carr P., Turner S. R. (2013). SPIRAL2 determines plant microtubule organization by modulating microtubule severing. PubMed DOI PMC

Wightman R., Turner S. R. (2007). Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays. PubMed DOI

Yang C.-Y., Spielman M., Coles J. P., Li Y., Ghelani S., Bourdon V., et al. (2003). PubMed DOI

Zhang Q., Fishel E., Bertroche T., Dixit R. (2013). Microtubule severing at crossover sites by katanin generates ordered cortical microtubule arrays in PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...