Feedback Microtubule Control and Microtubule-Actin Cross-talk in Arabidopsis Revealed by Integrative Proteomic and Cell Biology Analysis of KATANIN 1 Mutants
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P20 GM103476
NIGMS NIH HHS - United States
PubMed
28706004
PubMed Central
PMC5587860
DOI
10.1074/mcp.m117.068015
PII: S1535-9476(20)32353-7
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus MeSH
- anotace sekvence MeSH
- Arabidopsis genetika metabolismus MeSH
- biologie buňky * MeSH
- genová ontologie MeSH
- katanin genetika MeSH
- mapy interakcí proteinů MeSH
- mikrotubuly metabolismus MeSH
- mutace genetika MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteom metabolismus MeSH
- proteomika metody MeSH
- rostlinné geny MeSH
- zpětná vazba fyziologická * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aktiny MeSH
- katanin MeSH
- KTN1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- proteom MeSH
Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing.
Zobrazit více v PubMed
Cyr R. J. (1994) Microtubules in plant morphogenesis: role of the cortical array. Annu. Rev. Cell Biol. 10, 153–180 PubMed
Kost B., Mathur J., and Chua N.-H. (1999) Cytoskeleton in plant development. Curr. Opin. Plant Biol. 2, 462–470 PubMed
Goddard R. H., Wick S. M., Silflow C. D., and Snustad D. P. (1994) Microtubule components of the plant cell cytoskeleton. Plant Physiol. 104, 1–6 PubMed PMC
Wasteneys G. O., and Ambrose J. C. (2009) Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol. 19, 62–71 PubMed
Sedbrook J. C., and Kaloriti D. (2008) Microtubules, MAPs and plant directional cell expansion. Trends Plant Sci. 13, 303–310 PubMed
Hamada T. (2007) Microtubule-associated proteins in higher plants. J. Plant Res. 120, 79–98 PubMed
Gardiner J. (2013) The evolution and diversification of plant microtubule-associated proteins. Plant J. 75, 219–229 PubMed
Šamajová O., Komis G., and Šamaj J. (2013) Emerging topics in the cell biology of mitogen-activated protein kinases. Trends Plant Sci. 18, 140–148 PubMed
Beck M., Komis G., Müller J., Menzel D., and Samaj J. (2010) Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22, 755–771 PubMed PMC
Müller J., Beck M., Mettbach U., Komis G., Hause G., Menzel D., and Samaj J. (2010) Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J. 61, 234–248 PubMed
Komatsu S., Yang G., Khan M., Onodera H., Toki S., and Yamaguchi M. (2007) Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol. Genet. Genomics 277, 713–723 PubMed
Yalovsky S., Bloch D., Sorek N., and Kost B. (2008) Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. Plant Physiol. 147, 1527–1543 PubMed PMC
Zhang Q., Lin F., Mao T., Nie J., Yan M., Yuan M., and Zhang W. (2012) Phosphatidic acid regulates microtubule organization by interacting with MAP65–1 in response to salt stress in Arabidopsis. Plant Cell 24, 4555–4576 PubMed PMC
Hartman J. J., Mahr J., McNally K., Okawa K., Iwamatsu A., Thomas S., Cheesman S., Heuser J., Vale R. D., and McNally F. J. (1998) Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93, 277–287 PubMed
Stoppin-Mellet V., Gaillard J., Timmers T., Neumann E., Conway J., and Vantard M. (2007) Arabidopsis katanin binds microtubules using a multimeric microtubule-binding domain. Plant Physiol. Biochem. 45, 867–877 PubMed
Nakamura M. (2015) Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues. New Phytol. 205, 1022–1027 PubMed
Stoppin-Mellet V., Gaillard J., and Vantard M. (2006) Katanin's severing activity favors bundling of cortical microtubules in plants. Plant J. 46, 1009–1017 PubMed
Wightman R., Chomicki G., Kumar M., Carr P., and Turner S. R. (2013) SPIRAL2 determines plant microtubule organization by modulating microtubule severing. Curr. Biol. 23, 1902–1907 PubMed PMC
Lin D., Cao L., Zhou Z., Zhu L., Ehrhardt D., Yang Z., and Fu Y. (2013) Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis. Curr. Biol. 23, 290–297 PubMed
Bichet A., Desnos T., Turner S., Grandjean O., and Höfte H. (2001) BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J. 25, 137–148 PubMed
Burk D. H., Liu B., Zhong R., Morrison W. H., and Ye Z. H. (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13, 807–827 PubMed PMC
Meier C., Bouquin T., Nielsen M. E., Raventos D., Mattsson O., Rocher A., Schomburg F., Amasino R. M., and Mundy J. (2001) Gibberellin response mutants identified by luciferase imaging. Plant J. 25, 509–519 PubMed
Luptovčiak I., Samakovli D., Komis G., and Šamaj J. (2017) KATANIN 1 is essential for embryogenesis and seed formation in Arabidopsis. Front. Plant Sci. 8, 728. PubMed PMC
Panteris E., Adamakis I.-D., Voulgari G., and Papadopoulou G. (2011) A role for katanin in plant cell division: microtubule organization in dividing root cells of fra2 and lue1 Arabidopsis thaliana mutants. Cytoskeleton 68, 401–413 PubMed
Komis G., Luptovčiak I., Ovečka M., Samakovli D., Šamajová O and Šamaj J. (2017) Katanin effects on dynamics of cortical microtubules and mitotic arrays in Arabidopsis thaliana revealed by advanced live-cell imaging. Front. Plant Sci. 8, 866. PubMed PMC
Bouquin T., Mattsson O., Naested H., Foster R., and Mundy J. (2003) The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J. Cell Sci. 116, 791–801 PubMed
Vasconcelos E. J. R., Pacheco A. C. L., Gouveia J. J. S., Araujo F. F., Diniz M. C., Kamimura M. T., Costa M. P., Maggioni R., Araujo-Filho R., Costa R. B., and de Oliveira D. M. (2007) Profilins, Formins and Katanins as Flagellar Proteins of Leishmania spp.: A Genome-based, Multi-step Bioinformatics-driven Description. October 14–17, 2007, Boston, MA 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering, pp. 880–887, IEEE, New York
Cheung K., Senese S., Kuang J., Bui N., Ongpipattanakul C., Gholkar A., Cohn W., Capri J., Whitelegge J. P., and Torres J. Z. (2016) Proteomic analysis of the mammalian Katanin Family of microtubule-severing enzymes defines Katanin p80 subunit B-like 1 (KATNBL1) as a regulator of mammalian Katanin microtubule-severing. Mol. Cell. Proteomics 15, 1658–1669 PubMed PMC
Hajduch M., Ganapathy A., Stein J. W., and Thelen J. J. (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol. 137, 1397–1419 PubMed PMC
Conesa A., and Götz S. (2008) Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832. PubMed PMC
Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K. P., Kuhn M., Bork P., Jensen L. J., and von Mering C. (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 PubMed PMC
Gutierrez-Beltran E., Moschou P. N., Smertenko A. P., and Bozhkov P. V. (2015) Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis. Plant Cell 27, 926–943 PubMed PMC
Smékalová V., Luptovčiak I., Komis G., Šamajová O., Ovečka M., Doskočilová A., Takáč T., Vadovič P., Novák O., Pechan T., Ziemann A., Košútová P., and Šamaj J. (2014) Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytol. 203, 1175–1193 PubMed PMC
Lauber M. H., Waizenegger I., Steinmann T., Schwarz H., Mayer U., Hwang I., Lukowitz W., and Jürgens G. (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J. Cell Biol. 139, 1485–1493 PubMed PMC
Kartasalo K., Pölönen R.-P., Ojala M., Rasku J., Lekkala J., Aalto-Setälä K., and Kallio P. (2015) CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels. BMC Bioinformatics 16, 344. PubMed PMC
Panteris E., Apostolakos P., and Galatis B. (2006) Cytoskeletal asymmetry in Zea mays subsidiary cell mother cells: a monopolar prophase microtubule half-spindle anchors the nucleus to its polar position. Cell Motil. Cytoskeleton 63, 696–709 PubMed
Li J., Wang X., Qin T., Zhang Y., Liu X., Sun J., Zhou Y., Zhu L., Zhang Z., Yuan M., and Mao T. (2011) MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. Plant Cell 23, 4411–4427 PubMed PMC
Qin T., Liu X., Li J., Sun J., Song L., and Mao T. (2014) Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. Plant Cell 26, 325–339 PubMed PMC
Patel S., Rose A., Meulia T., Dixit R., Cyr R. J., and Meier I. (2004) Arabidopsis WPP-domain proteins are developmentally associated with the nuclear envelope and promote cell division. Plant Cell 16, 3260–3273 PubMed PMC
Shibaoka H. (1994) Plant hormone-induced changes in the orientation of cortical microtubules–alterations in the cross-linking between microtubules and the plasma-membrane. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 527–544
Gallardo K., Job C., Groot S. P., Puype M., Demol H., Vandekerckhove J., and Job D. (2002) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol. 129, 823–837 PubMed PMC
Hamada T., Nagasaki-Takeuchi N., Kato T., Fujiwara M., Sonobe S., Fukao Y., and Hashimoto T. (2013) Purification and characterization of novel microtubule-associated proteins from Arabidopsis cell suspension cultures. Plant Physiol. 163, 1804–1816 PubMed PMC
Szymanski W. G., Zauber H., Erban A., Gorka M., Wu X. N., and Schulze W. X. (2015) Cytoskeletal components define protein location to membrane microdomains. Mol. Cell. Proteomics 14, 2493–2509 PubMed PMC
Takáč T., Bekešová S., and Šamaj J. (2017) Actin depolymerization-induced changes in proteome of Arabidopsis roots. J. Proteomics 153, 89–99 PubMed
de Graauw M., Tijdens I., Smeets M. B., Hensbergen P. J., Deelder A. M., and van de Water B. (2008) Annexin A2 phosphorylation mediates cell scattering and branching morphogenesis via cofilin activation. Mol. Cell. Biol. 28, 1029–1040 PubMed PMC
Blancaflor E. B. (2000) Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.). J. Plant Growth Regul. 19, 406–414 PubMed
Collings D. A. (2008) in Plant Microtubules–Development and Flexibility (Nick P., ed) pp. 47–82, Springer-Verlag, Berlin
Havelková L., Nanda G., Martinek J., Bellinvia E., Sikorová L., Šlajcherová K., Seifertová D., Fischer L., Fišerová J., Petrášek J., and Schwarzerová K. (2015) Arp2/3 complex subunit ARPC2 binds to microtubules. Plant Sci. 241, 96–108 PubMed
Sampathkumar A., Lindeboom J. J., Debolt S., Gutierrez R., Ehrhardt D. W., Ketelaar T., and Persson S. (2011) Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell 23, 2302–2313 PubMed PMC
Li J., Blanchoin L., and Staiger C. J. (2015) Signaling to actin stochastic dynamics. Annu. Rev. Plant Biol. 66, 415–440 PubMed
Brkljacic J., Zhao Q., and Meier I. (2009) WPP-domain proteins mimic the activity of the HSC70–1 chaperone in preventing mistargeting of RanGAP1-anchoring protein WIT1. Plant Physiol. 151, 142–154 PubMed PMC
Zhou X., Graumann K., Evans D. E., and Meier I. (2012) Novel plant SUN-KASH bridges are involved in RanGAP anchoring and nuclear shape determination. J. Cell Biol. 196, 203–211 PubMed PMC
Zhou X., Groves N. R., and Meier I. (2015) Plant nuclear shape is independently determined by the SUN-WIP-WIT2-myosin XI-i complex and CRWN1. Nucleus 6, 144–153 PubMed PMC
Peterman T. K., Ohol Y. M., McReynolds L. J., and Luna E. J. (2004) Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol. 136, 3080–3094 PubMed PMC
Suzuki T., Matsushima C., Nishimura S., Higashiyama T., Sasabe M., and Machida Y. (2016) Identification of phosphoinositide-binding protein PATELLIN2 as a substrate of Arabidopsis MPK4 MAP kinase during septum formation in cytokinesis. Plant Cell Physiol. 57, 1744–1755 PubMed PMC
Smertenko A. P., Chang H.-Y., Sonobe S., Fenyk S. I., Weingartner M., Bögre L., and Hussey P. J. (2006) Control of the AtMAP65–1 interaction with microtubules through the cell cycle. J. Cell Sci. 119, 3227–3237 PubMed
Kosetsu K., Matsunaga S., Nakagami H., Colcombet J., Sasabe M., Soyano T., Takahashi Y., Hirt H., and Machida Y. (2010) The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22, 3778–3790 PubMed PMC
Beck M., Komis G., Ziemann A., Menzel D., and Samaj J. (2011) Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol. 189, 1069–1083 PubMed
Yan C., Yan Z., Wang Y., Yan X., and Han Y. (2014) Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis. J. Exp. Bot. 65, 5933–5944 PubMed PMC
Löhr B., Streitner C., Steffen A., Lange T., and Staiger D. (2014) A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis. Mol. Biol. Rep. 41, 439–445 PubMed
Ruduś I., Sasiak M., and Kępczyński J. (2013) Regulation of ethylene biosynthesis at the level of 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene. Acta Physiol. Plant. 35, 295–307
Yoon G. M., and Kieber J. J. (2013) 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25, 1016–1028 PubMed PMC
Ravanel S., Gakière B., Job D., and Douce R. (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. U.S.A. 95, 7805–7812 PubMed PMC
Moffatt B. A., Stevens Y. Y., Allen M. S., Snider J. D., Pereira L. A., Todorova M. I., Summers P. S., Weretilnyk E. A., Martin-McCaffrey L., and Wagner C. (2002) Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiol. 128, 812–821 PubMed PMC
Weretilnyk E. A., Alexander K. J., Drebenstedt M., Snider J. D., Summers P. S., and Moffatt B. A. (2001) Maintaining methylation activities during salt stress. The involvement of adenosine kinase. Plant Physiol. 125, 856–865 PubMed PMC
Boerjan W., Cervera M. T., Delarue M., Beeckman T., Dewitte W., Bellini C., Caboche M., Van Onckelen H., Van Montagu M., and Inzé D. (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7, 1405–1419 PubMed PMC
LeClere S., Rampey R. A., and Bartel B. (2004) IAR4, a gene required for auxin conjugate sensitivity in Arabidopsis, encodes a pyruvate dehydrogenase E1α homolog. Plant Physiol. 135, 989–999 PubMed PMC
Quint M., Barkawi L. S., Fan K.-T., Cohen J. D., and Gray W. M. (2009) Arabidopsis IAR4 modulates auxin response by regulating auxin homeostasis. Plant Physiol. 150, 748–758 PubMed PMC
Westfall C. S., Muehler A. M., and Jez J. M. (2013) Enzyme action in the regulation of plant hormone responses. J. Biol. Chem. 288, 19304–19311 PubMed PMC
Komis G., Luptovciak I., Doskocilova A., and Samaj J. (2015) Biotechnological aspects of cytoskeletal regulation in plants. Biotechnol. Adv. 33, 1043–1062 PubMed
Vizcaíno J. A., Csordas A., del-Toro N., Dianes J. A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., Xu Q.-W., Wang R., and Hermjakob H. (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 PubMed PMC
Dalal J., Lewis D. R., Tietz O., Brown E. M., Brown C. S., Palme K., Muday G. K., and Sederoff H. W. (2016) ROSY1, a novel regulator of gravitropic response is a stigmasterol binding protein. J. Plant Physiol. 196, 28–40 PubMed
Nishimura N., Sarkeshik A., Nito K., Park S.-Y., Wang A., Carvalho P. C., Lee S., Caddell D. F., Cutler S. R., Chory J., Yates J. R., and Schroeder J. I. (2010) PYR/PYL/RCAR family members are major in vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J. 61, 290–299 PubMed PMC
Sjögren L. L., MacDonald T. M., Sutinen S., and Clarke A. K. (2004) Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol. 136, 4114–4126 PubMed PMC
Weijers D., Franke-van Dijk M., Vencken R. J., Quint A., Hooykaas P., and Offringa R. (2001) An Arabidopsis minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128, 4289–4299 PubMed
Romani I., Tadini L., Rossi F., Masiero S., Pribil M., Jahns P., Kater M., Leister D., and Pesaresi P. (2012) Versatile roles of Arabidopsis plastid ribosomal proteins in plant growth and development. Plant J. 72, 922–934 PubMed
De Castro R. D., Zheng X., Bergervoet J., De Vos C., and Bino R. J. (1995) β-Tubulin accumulation and DNA replication in imbibing tomato seeds. Plant Physiol. 109, 499–504 PubMed PMC
Sundström J. F., Vaculova A., Smertenko A. P., Savenkov E. I., Golovko A., Minina E., Tiwari B. S., Rodriguez-Nieto S., Zamyatnin A. A. Jr., Välineva T., Saarikettu J., Frilander M. J., Suarez M. F., Zavialov A., Ståhl U., et al. (2009) Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nat. Cell Biol. 11, 1347–1354 PubMed
Ramachandran S., Christensen H. E., Ishimaru Y., Dong C. H., Chao-Ming W., Cleary A. L., and Chua N. H. (2000) Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiol. 124, 1637–1647 PubMed PMC
Sheoran I. S., Olson D. J., Ross A. R., and Sawhney V. K. (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5, 3752–3764 PubMed
Augustine R. C., Vidali L., Kleinman K. P., and Bezanilla M. (2008) Actin-depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth. Plant J. 54, 863–875 PubMed
Gilliland L. U., Pawloski L. C., Kandasamy M. K., and Meagher R. B. (2003) Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. Plant J. 33, 319–328 PubMed
Gallardo K., Job C., Groot S. P., Puype M., Demol H., Vandekerckhove J., and Job D. (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126, 835–848 PubMed PMC
Ma B., Qian D., Nan Q., Tan C., An L., and Xiang Y. (2012) Arabidopsis vacuolar H+-ATPase (V-ATPase) B subunits are involved in actin cytoskeleton remodeling via binding to, bundling, and stabilizing F-actin. J. Biol. Chem. 287, 19008–19017 PubMed PMC
Zhao Z., and Assmann S. M. (2011) The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. J. Exp. Bot. 62, 5179–5189 PubMed PMC
Ogawa M., Hanada A., Yamauchi Y., Kuwahara A., Kamiya Y., and Yamaguchi S. (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15, 1591–1604 PubMed PMC
Du J., Huang Y.-P., Xi J., Cao M.-J., Ni W.-S., Chen X., Zhu J.-K., Oliver D. J., and Xiang C.-B. (2008) Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J. 56, 653–664 PubMed PMC
Matsushima R., Fukao Y., Nishimura M., and Hara-Nishimura I. (2004) NAI1 gene encodes a basic-helix-loop-helix-type putative transcription factor that regulates the formation of an endoplasmic reticulum-derived structure, the ER body. Plant Cell 16, 1536–1549 PubMed PMC
Lee S.-H., Li C.-W., Koh K. W., Chuang H.-Y., Chen Y.-R., Lin C.-S., and Chan M.-T. (2014) MSRB7 reverses oxidation of GSTF2/3 to confer tolerance of Arabidopsis thaliana to oxidative stress. J. Exp. Bot. 65, 5049–5062 PubMed PMC
Eudes A., Pollet B., Sibout R., Do C.-T., Séguin A., Lapierre C., and Jouanin L. (2006) Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225, 23–39 PubMed
Kovacs D., Kalmar E., Torok Z., and Tompa P. (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol. 147, 381–390 PubMed PMC
García I., Rosas T., Bejarano E. R., Gotor C., and Romero L. C. (2013) Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response. Plant Physiol. 162, 2015–2027 PubMed PMC
Pogorelko G. V., Mokryakova M., Fursova O. V., Abdeeva I., Piruzian E. S., and Bruskin S. A. (2014) Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae. Gene 538, 12–22 PubMed
Allahverdiyeva Y., Suorsa M., Rossi F., Pavesi A., Kater M. M., Antonacci A., Tadini L., Pribil M., Schneider A., Wanner G., Leister D., Aro E.-M., Barbato R., and Pesaresi P. (2013) Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygen-evolving complex show altered PSII super-complex organization and short-term adaptive mechanisms. Plant J. 75, 671–684 PubMed
Khan M. S., Haas F. H., Samami A. A., Gholami A. M., Bauer A., Fellenberg K., Reichelt M., Hänsch R., Mendel R. R., Meyer A. J., Wirtz M., and Hell R. (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22, 1216–1231 PubMed PMC
Hu S., Brady S. R., Kovar D. R., Staiger C. J., Clark G. B., Roux S. J., and Muday G. K. (2000) Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography. Plant J. 24, 127–137 PubMed
Davies J. M. (2014) Annexin-mediated calcium signalling in plants. Plants 3, 128–140 PubMed PMC
Takagi D., Ifuku K., Ikeda K., Inoue K. I., Park P., Tamoi M., Inoue H., Sakamoto K., Saito R., and Miyake C. (2016) Suppression of chloroplastic alkenal/one oxidoreductase represses the carbon catabolic pathway in Arabidopsis leaves during night. Plant Physiol. 170, 2024–2039 PubMed PMC
Meng M., Geisler M., Johansson H., Harholt J., Scheller H. V., Mellerowicz E. J., and Kleczkowski L. A. (2009) UDP-glucose pyrophosphorylase is not rate limiting, but is essential in Arabidopsis. Plant Cell Physiol. 50, 998–1011 PubMed
Park J.-I., Ishimizu T., Suwabe K., Sudo K., Masuko H., Hakozaki H., Nou I.-S., Suzuki G., and Watanabe M. (2010) UDP-glucose pyrophosphorylase is rate limiting in vegetative and reproductive phases in Arabidopsis thaliana. Plant Cell Physiol. 51, 981–996 PubMed
López-Castillo L. M., Jiménez-Sandoval P., Baruch-Torres N., Trasviña-Arenas C. H., Díaz-Quezada C., Lara-González S., Winkler R., and Brieba L. G. (2016) Structural basis for redox regulation of cytoplasmic and chloroplastic triosephosphate isomerases from Arabidopsis thaliana. Front. Plant Sci. 7, 1817. PubMed PMC
Mabbitt P. D., Wilbanks S. M., and Eaton-Rye J. J. (2014) Structure and function of the hydrophilic Photosystem II assembly proteins: Psb27, Psb28 and Ycf48. Plant Physiol. Biochem. 81, 96–107 PubMed
Katanin: A Sword Cutting Microtubules for Cellular, Developmental, and Physiological Purposes