Single Amino Acid Exchange in ACTIN2 Confers Increased Tolerance to Oxidative Stress in Arabidopsis der1-3 Mutant

. 2021 Feb 13 ; 22 (4) : . [epub] 20210213

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33668638

Grantová podpora
19-18675S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000827 Ministerstvo Školství, Mládeže a Tělovýchovy

Single-point mutation in the ACTIN2 gene of the der1-3 mutant revealed that ACTIN2 is an essential actin isovariant required for root hair tip growth, and leads to shorter, thinner and more randomly oriented actin filaments in comparison to the wild-type C24 genotype. The actin cytoskeleton has been linked to plant defense against oxidative stress, but it is not clear how altered structural organization and dynamics of actin filaments may help plants to cope with oxidative stress. In this study, we characterized root growth, plant biomass, actin organization and antioxidant activity of the der1-3 mutant under oxidative stress induced by paraquat and H2O2. Under these conditions, plant growth was better in the der1-3 mutant, while the actin cytoskeleton in the der1-3 carrying pro35S::GFP:FABD2 construct showed a lower bundling rate and higher dynamicity. Biochemical analyses documented a lower degree of lipid peroxidation, and an elevated capacity to decompose superoxide and hydrogen peroxide. These results support the view that the der1-3 mutant is more resistant to oxidative stress. We propose that alterations in the actin cytoskeleton, increased sensitivity of ACTIN to reducing agent dithiothreitol (DTT), along with the increased capacity to decompose reactive oxygen species encourage the enhanced tolerance of this mutant against oxidative stress.

Zobrazit více v PubMed

Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. ROS signaling: The new wave? Trends Plant Sci. 2011;16:1360–1385. doi: 10.1016/j.tplants.2011.03.007. PubMed DOI

Baxter A., Mittler R., Suzuki N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014;65:1229–1240. doi: 10.1093/jxb/ert375. PubMed DOI

Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development. Development. 2018;145:dev164376. doi: 10.1242/dev.164376. PubMed DOI

Konig J., Muthuramalingam M., Dietz K.-J. Mechanisms and dynamics in the thiol/disulfide redox regulatory network: Transmitters, sensors and tar-gets. Curr. Opin. Plant Biol. 2012;15:261–268. doi: 10.1016/j.pbi.2011.12.002. PubMed DOI

Foyer C.H., Noctor G. Redox signaling in plants. Antioxid. Redox Signal. 2013;18:2087–2090. doi: 10.1089/ars.2013.5278. PubMed DOI

Vaahtera L., Brosché M., Wrzaczek M., Kangasjärvi J. Specificity in ROS signaling and transcript signatures. Antioxid. Redox Signal. 2014;21:1422–1441. doi: 10.1089/ars.2013.5662. PubMed DOI PMC

Mignolet-Spruyt L., Xu E., Idänheimo N., Hoeberichts F.A., Mühlenbock P., Brosché M., Van Breusegem F., Kangasjärvi J. Spreading the news: Subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 2016;67:3831–3844. doi: 10.1093/jxb/erw080. PubMed DOI

Mittler R. ROS are good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. PubMed DOI

Vanderauwera S., Suzuki N., Miller G., van de Cotte B., Morsa S., Ravanat J.-L., Hegie A., Triantaphylidès C., Shulaev V., Van Montagu M.C.E., et al. Extranuclear protection of chromosomal DNA from oxidative stress. Proc. Natl. Acad. Sci. USA. 2011;108:1711–1716. doi: 10.1073/pnas.1018359108. PubMed DOI PMC

Dvořák P., Krasylenko Y., Zeiner A., Šamaj J., Takáč T. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. Front. Plant Sci. 2021;11:618835. doi: 10.3389/fpls.2020.618835. PubMed DOI PMC

Riley D., Wilkinson W., Tucker B.V. Biological unavailability of bound paraquat residues in soil. In: Kaufamn D., Still G.G., Paulson G.D., Bandal S.K., editors. Bound and Conjugated Pesticide Residues. Volume 29. American Chemical Society; Washington, DC, USA: 1976. pp. 301–353.

Hawkes T.R. Mechanisms of resistance to paraquat in plants. Pest Manag. Sci. 2014;70:1316–1323. doi: 10.1002/ps.3699. PubMed DOI

Krieger-Liszkay A., Kós P.B., Hideg E. Superoxide anion radicals generated by methylviologen in photosystem I damage photosystem II. Physiol. Plant. 2011;142:17–25. doi: 10.1111/j.1399-3054.2010.01416.x. PubMed DOI

Farrington J.A., Ebert M., Land E.J., Fletcher K. Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for the mode of action of bipyridyl herbicides. Biochim. Biophys. Acta Bioenerg. 1973;314:372–381. doi: 10.1016/0005-2728(73)90121-7. PubMed DOI

Bus J.S., Aust S.D., Gibson J.E. Superoxide- and singlet oxygen-catalysed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem. Biophys. Res. Commun. 1974;58:749–755. doi: 10.1016/S0006-291X(74)80481-X. PubMed DOI

Kunert K.J., Dodge A.D. Herbicide-induced radical damage and antioxidative systems. In: Boger P., Sandmann G., editors. Target Sites of Herbicide Action. 1st ed. CRC Press; Boca Raton, FL, USA: 1989. pp. 49–63.

Han H.J., Peng R.H., Zhu B., Fu X.Y., Zhao W., Shi B., Yao Q.H. Gene expression profiles of Arabidopsis under the stress of methyl viologen: A microarray analysis. Mol. Biol. Rep. 2014;41:7089–7102. doi: 10.1007/s11033-014-3396-y. PubMed DOI

Xiong Y., Contento A.L., Nguyen P.Q., Bassham D.C. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 2007;143:291–299. doi: 10.1104/pp.106.092106. PubMed DOI PMC

Maurino V.G., Flügge U.-I. Experimental systems to assess the effects of reactive oxygen species in plant tissues. Plant Signal. Behav. 2008;3:923–928. doi: 10.4161/psb.7036. PubMed DOI PMC

Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994;79:583–593. doi: 10.1016/0092-8674(94)90544-4. PubMed DOI

Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montagu M., Inzé D., Van Camp V. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 1997;16:4806–4816. doi: 10.1093/emboj/16.16.4806. PubMed DOI PMC

Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Breusegem F. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 2000;57:779–795. doi: 10.1007/s000180050041. PubMed DOI PMC

Miller E.W., Dickinson B.C., Chang C.J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. USA. 2010;107:15681–15686. doi: 10.1073/pnas.1005776107. PubMed DOI PMC

O’Brien I.E.W., Baguley B.C., Murray B.G., Morris B.A.M., Ferguson I.B. Early stages of the apoptotic pathway in plant cells are reversible. Plant J. 1998;13:803–814. doi: 10.1046/j.1365-313X.1998.00087.x. DOI

Yao N., Tada Y., Park P., Nakayashiki H., Tosa Y., Mayama S. Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats. Plant J. 2001;28:13–26. doi: 10.1046/j.1365-313X.2001.01109.x. PubMed DOI

Takáč T., Obert B., Rolčík J., Šamaj J. Improvement of adventitious root formation in flax using hydrogen peroxide. New Biotechnol. 2016;33:728–734. doi: 10.1016/j.nbt.2016.02.008. PubMed DOI

Douglas C.J. Phenylpropanoid metabolism and lignin biosynthesis: From weeds to trees. Trends Plant Sci. 1996;1:171–178. doi: 10.1016/1360-1385(96)10019-4. DOI

Mauch-Mani B., Slusarenko A.J. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell. 1996;8:203–212. doi: 10.2307/3870265. PubMed DOI PMC

Pickett C.B., Lu A.Y.H. Glutathione S-transferases: Gene structure, regulation, and biological function. Annu. Rev. Biochem. 1989;58:743–764. doi: 10.1146/annurev.bi.58.070189.003523. PubMed DOI

Desikan R., Reynolds A., Hancock J.T., Neill S.J. Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem. J. 1998;330:115–120. doi: 10.1042/bj3300115. PubMed DOI PMC

Park H.-J., Miura Y., Kawakita K., Yoshioka H., Doke N. Physiological mechanisms of a sub-systemic oxidative burst triggered by elicitor-induced local oxidative burst in potato tuber slices. Plant Cell Physiol. 1998;39:1218–1225.

Rao M.V., Davis K.R. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: The role of salicylic acid. Plant J. 1999;17:603–614. doi: 10.1046/j.1365-313X.1999.00400.x. PubMed DOI

Wasteneys G.O., Galway M.E. Remodeling the cytoskeleton for growth and form: An overview with some new views. Annu. Rev. Plant Biol. 2003;54:691–722. doi: 10.1146/annurev.arplant.54.031902.134818. PubMed DOI

Staiger C.J., Blanchoin L. Actin dynamics: Old friends with new stories. Curr. Opin. Plant Biol. 2006;9:554–562. doi: 10.1016/j.pbi.2006.09.013. PubMed DOI

Zhou Y., Yang Z., Guo G., Guo Y. Microfilament dynamics is required for root growth under alkaline stress in Arabidopsis. J. Integr. Plant Biol. 2010;52:952–958. doi: 10.1111/j.1744-7909.2010.00981.x. PubMed DOI

Takeda S., Gapper C., Kaya H., Bell E., Kuchitsu K., Dolan L. Local positive feedback regulation determines cell shape in root hair cells. Science. 2008;319:1241–1244. doi: 10.1126/science.1152505. PubMed DOI

Wallström S.V., Aidemarka M., Escobar M.A., Rasmusson A.G. An alternatively spliced domain of the NDC1 NAD(P)H dehydrogenase gene strongly influences the expression of the ACTIN2 reference gene in Arabidopsis thaliana. Plant Sci. 2012;183:190–196. doi: 10.1016/j.plantsci.2011.08.011. PubMed DOI

Liu S.G., Zhu D.Z., Chen G.H., Gao X.-Q., Zhang X.S. Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress. Plant Cell Rep. 2012;31:1219–1226. doi: 10.1007/s00299-012-1242-z. PubMed DOI

Zwiewka M., Bielach A., Tamizhselvan P., Madhavan S., Ryad E.E., Tan S., Hrtyan M., Dobrev P., Vanková R., Friml J., et al. Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking. Plant Cell Physiol. 2019;60:255–273. doi: 10.1093/pcp/pcz001. PubMed DOI

Baluška F., Salaj J., Mathur J., Braun M., Jasper F., Šamaj J., Chua N.H., Barlow P.W., Volkmann D. Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev. Biol. 2000;227:618–632. doi: 10.1006/dbio.2000.9908. PubMed DOI

Gilliland L.U., Kandasamy M.K., Pawloski L.C., Meagher R.B. Both vegetative and reproductive actin isovariants complement the stunted root hair phenotype of the Arabidopsis act2-1 mutation. Plant Physiol. 2002;130:2199–2209. doi: 10.1104/pp.014068. PubMed DOI PMC

Ringli C., Baumberger N., Diet A., Frey B., Keller B. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol. 2002;129:1464–1472. doi: 10.1104/pp.005777. PubMed DOI PMC

McDowell J.M., Huang S.R., McKinney E.C., An Y.Q., Meagher R.B. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics. 1996;142:587–602. doi: 10.1093/genetics/142.2.587. PubMed DOI PMC

Meagher R.B., McKinney E.C., Vitale A.V. The evolution of new structures: Clues from plant cytoskeletal genes. Trends Genet. 1999;15:278–284. doi: 10.1016/S0168-9525(99)01759-X. PubMed DOI

Vaškebová L., Šamaj J., Ovečka M. Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1-3 affects overall actin organization, root growth and plant development. Ann. Bot. 2018;122:889–901. doi: 10.1093/aob/mcx180. PubMed DOI PMC

Ringli C., Baumberger N., Keller B. The Arabidopsis root hair mutants der2–der9 are affected at different stages of root hair development. Plant Cell Physiol. 2005;46:1046–1053. doi: 10.1093/pcp/pci115. PubMed DOI

Sunkar R., Kapoor A., Zhu J.-K. Posttranscriptional induction of two Cu/Zn superoxide dismutase gene in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 2006;18:2051–2065. doi: 10.1105/tpc.106.041673. PubMed DOI PMC

Dvořák P., Krasylenko Y., Ovečka M., Basheer J., Zapletalová V., Šamaj J., Takáč T. In vivo light-sheet microscopy resolves localisation patterns of FSD1, a superoxide dismutase with function in root development and osmoprotection. Plant Cell Environ. 2021;44:68–87. PubMed

Lamkemeyer P., Laxa M., Collin V., Li W., Finkemeier I., Schöttler M.A., Holtkamp V., Tognetii V.B., Issakidis-Bourguet E., Kandlbinder A., et al. Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J. 2006;45:968–981. doi: 10.1111/j.1365-313X.2006.02665.x. PubMed DOI

Yoshida K., Hara S., Hisabori T. Thioredoxin selectivity for thiol-based redox regulation of target proteins in chloroplasts. J. Biol. Chem. 2015;290:14278–14288. doi: 10.1074/jbc.M115.647545. PubMed DOI PMC

Dietz K.-J., Jacob S., Oelze M.-L., Laxa M., Tognetti V., Nunes de Miranda S.M., Baier M., Finkemeier I. The function of peroxiredoxins in plant organelle redox metabolism. J. Exp. Bot. 2006;57:1697–1709. doi: 10.1093/jxb/erj160. PubMed DOI

Pandya-Kumar N., Shema R., Kumar M., Mayzlish-Gati E., Levy D., Zemach H., Belausov E., Wininger S., Abu-Abied M., Kapulnik Y., et al. Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and actin filament architecture. New Phytol. 2014;202:1184–1196. doi: 10.1111/nph.12744. PubMed DOI

Diet A., Brunner S., Ringli C. The enl mutants enhance the lrx1 root hair mutant phenotype of Arabidopsis thaliana. Plant Cell Physiol. 2004;45:734–741. doi: 10.1093/pcp/pch084. PubMed DOI

Kabsch W., Mannherz H.G., Suck D., Pai E.F., Holmes K.C. Atomic structure of the actin: DNAse-I complex. Nature. 1990;347:37–44. doi: 10.1038/347037a0. PubMed DOI

Mouratou B., Biou V., Joubert A., Cohen J., Shields D.J., Geldner N., Jürgens G., Melançon P., Cherfils J. The domain architecture of large guanine nucleotide exchange factors for the small GTP-binding protein Arf. BMC Genom. 2005;6:20. doi: 10.1186/1471-2164-6-20. PubMed DOI PMC

Wang H., Wang S., Lu Y., Alvarez S., Hicks L.M., Ge X., Xia Y. Proteomic analysis of early-responsive redox-sensitive proteins in Arabidopsis. J. Proteome Res. 2012;11:412–424. doi: 10.1021/pr200918f. PubMed DOI PMC

Lian N., Wang X., Jing Y., Lin J. Regulation of Cytoskeleton-associated Protein Activities: Linking Cellular Signals to Plant Cytoskeletal Function. J. Integr. Plant Biol. 2021;63:241–250. doi: 10.1111/jipb.13046. PubMed DOI

Matoušková J., Janda M., Fišer R., Šašek V., Kocourková D., Burketová L., Dušková J., Martinec J., Valentová O. Changes in Actin Dynamics Are Involved in Salicylic Acid Signaling Pathway. Plant Sci. 2014;223:36–44. doi: 10.1016/j.plantsci.2014.03.002. PubMed DOI

Takáč T., Bekešová S., Šamaj J. Actin Depolymerization-Induced Changes in Proteome of Arabidopsis Roots. J. Proteom. 2017;153:89–99. doi: 10.1016/j.jprot.2016.06.010. PubMed DOI

Li X., Li J.-H., Wang W., Chen N.-Z., Ma T.-S., Xi Y.-N., Zhang X.-L., Lin H.-F., Bai Y., Huang S.-J., et al. ARP2/3 Complex-Mediated Actin Dynamics Is Required for Hydrogen Peroxide-Induced Stomatal Closure in Arabidopsis: H2O2 and Actin Dynamics in ABA Signalling. Plant Cell Environ. 2014;37:1548–1560. doi: 10.1111/pce.12259. PubMed DOI

Li J., Cao L., Staiger C.J. Capping Protein Modulates Actin Remodeling in Response to Reactive Oxygen Species during Plant Innate Immunity. Plant Physiol. 2017;173:1125–1136. doi: 10.1104/pp.16.00992. PubMed DOI PMC

Frémont S., Hammich H., Bai J., Wioland H., Klinkert K., Rocancourt M., Kikuti C., Stroebel D., Romet-Lemonne G., Pylypenko O., et al. Oxidation of F-Actin Controls the Terminal Steps of Cytokinesis. Nat. Commun. 2017;8:14528. doi: 10.1038/ncomms14528. PubMed DOI PMC

Sakai J., Li J., Subramanian K.K., Mondal S., Bajrami B., Hattori H., Jia Y., Dickinson B.C., Zhong J., Ye K., et al. Reactive Oxygen Species-Induced Actin Glutathionylation Controls Actin Dynamics in Neutrophils. Immunity. 2012;37:1037–1049. doi: 10.1016/j.immuni.2012.08.017. PubMed DOI PMC

Mustafa A.K., Gadalla M.M., Sen N., Kim S., Mu W., Gazi S.K., Barrow R.K., Yang G., Wang R., Snyder S.H. H2S Signals Through Protein S-Sulfhydration. Sci. Signal. 2009;2:ra72. doi: 10.1126/scisignal.2000464. PubMed DOI PMC

Stojkov D., Amini P., Oberson K., Sokollik C., Duppenthaler A., Simon H.-U., Yousefi S. ROS and Glutathionylation Balance Cytoskeletal Dynamics in Neutrophil Extracellular Trap Formation. J. Cell Biol. 2017;216:4073–4090. doi: 10.1083/jcb.201611168. PubMed DOI PMC

Gellert M., Hanschmann E.-M., Lepka K., Berndt C., Lillig C.H. Redox Regulation of Cytoskeletal Dynamics during Differentiation and De-Differentiation. Biochim. Biophys. Acta (BBA) Gen. Subj. 2015;1850:1575–1587. doi: 10.1016/j.bbagen.2014.10.030. PubMed DOI

Mashima T., Naito M., Noguchi K., Miller D.K., Nicholson D.W., Tsuruo T. Actin Cleavage by CPP-32/Apopain during the Development of Apoptosis. Oncogene. 1997;14:1007–1012. doi: 10.1038/sj.onc.1200919. PubMed DOI

Mashima T., Naito M., Tsuruo T. Caspase-Mediated Cleavage of Cytoskeletal Actin Plays a Positive Role in the Process of Morphological Apoptosis. Oncogene. 1999;18:2423–2430. doi: 10.1038/sj.onc.1202558. PubMed DOI

Beemster G.T.S., De Vusser K., De Tavernier E., De Bock K., Inze D. Variation in growth rate between Arabidopsis ecotypes is correlated with cell division and A-type cyclin-dependent kinase activity1. Plant Physiol. 2002;129:854–864. doi: 10.1104/pp.002923. PubMed DOI PMC

Voigt B., Timmers A.C.J., Šamaj J., Müller J., Baluška F., Menzel D. GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur. J. Cell Biol. 2005;84:595–608. doi: 10.1016/j.ejcb.2004.11.011. PubMed DOI

Clough S.J., Bent A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI

Ovečka M., Lang I., Baluška F., Ismail A., Illeš P., Lichtscheidl I.K. Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma. 2005;226:39–54. doi: 10.1007/s00709-005-0103-9. PubMed DOI

Ramel F., Sulmon C., Bogard M., Couée I., Gouesbet G. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol. 2009;9:28. doi: 10.1186/1471-2229-9-28. PubMed DOI PMC

Daudi A., Cheng Z., O’Brien J.A., Mammarella N., Khan S., Ausubel F.M., Bolwell G.P. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell. 2012;24:275–287. doi: 10.1105/tpc.111.093039. PubMed DOI PMC

Takáč T., Šamajová O., Vadovič P., Pechan T., Košútová P., Ovečka M., Husičková A., Komis G., Šamaj J. Proteomic and biochemical analyses show a functional network of proteins involved in antioxidant defense of the Arabidopsis anp2anp3 double mutant. J. Proteome Res. 2014;13:5347–5361. PubMed PMC

Yoshida K., Hisabori T. Two Distinct Redox Cascades Cooperatively Regulate Chloroplast Functions and Sustain Plant Viability. Proc. Natl. Acad. Sci. USA. 2016;113:E3967–E3976. doi: 10.1073/pnas.1604101113. PubMed DOI PMC

Takáč T., Šamajová O., Luptovčiak I., Pechan T., Šamaj J. Feedback microtubule control and microtubule-actin cross-talk in Arabidopsis revealed by integrative proteomic and cell biology analysis of KATANIN 1 mutants. Mol. Cell. Proteom. 2017;16:1591–1609. doi: 10.1074/mcp.M117.068015. PubMed DOI PMC

Larkindale J., Knight M.R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 2002;128:682–695. doi: 10.1104/pp.010320. PubMed DOI PMC

Pallotta M.A., Graham R.D., Langridge P., Sparrow D.H.B., Barker S.J. RFLP mapping of manganese efficiency in barley. Theor. Appl. Genet. 2000;101:1100–1108. doi: 10.1007/s001220051585. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...