Spatiotemporal distribution of reactive oxygen species production, delivery, and use in Arabidopsis root hairs
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
19-18675S
Czech Science Foundation
PU Olomouc
PubMed
37666000
PubMed Central
PMC10663114
DOI
10.1093/plphys/kiad484
PII: 7259853
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * metabolismus MeSH
- fenotyp MeSH
- kořeny rostlin metabolismus MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2',7'-dichlorodihydrofluorescein diacetate MeSH Prohlížeč
- proteiny huseníčku * MeSH
- reaktivní formy kyslíku MeSH
Fluorescent selective probes for reactive oxygen species (ROS) detection in living cells are versatile tools for the documentation of ROS production in plant developmental or stress reactions. We employed high-resolution live-cell imaging and semiquantitative analysis of Arabidopsis (Arabidopsis thaliana) stained with CM-H2DCFDA, CellROX Deep Red, and Amplex Red for functional characterization of the spatiotemporal mode of ROS production, delivery, and utilization during root hair formation. Cell viability marker fluorescein diacetate served as a positive control for dye loading and undisturbed root hair tip growth after staining. Using a colocalization analysis with subcellular molecular markers and two root hair mutants with similar phenotypes of nonelongating root hairs, but with contrasting reasons for this impairment, we found that: (i) CM-H2DCFDA is a sensitive probe for ROS generation in the cytoplasm, (ii) CellROX Deep Red labels ROS in mitochondria, (iii) Amplex Red labels apoplastic ROS and mitochondria and shows high selectivity to root hairs, (iv) the root hair defective 2-1 (rhd2-1) mutant with nonfunctional NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN C/ROOT HAIR-DEFECTIVE 2 (AtRBOHC/RHD2) has a low level of CM-H2DCFDA-reactive ROS in cytoplasm and lacks Amplex Red-reactive ROS in apoplast, and (v) the ACTIN2-deficient deformed root hairs1-3 (der1-3) mutant is not altered in these aspects. The sensitivity of CellROX Deep Red was documented by discrimination between larger ROS-containing mitochondria and small, yet ROS-free premature mitochondria in the growing tip of root hairs. We characterized spatial changes in ROS production and compartmentalization induced by external ROS modulators, ethylene precursor 1-aminocyclopropane-1-carboxylic acid, and ionophore valinomycin. This dynamic and high-resolution study of ROS production and utilization opens opportunities for precise speciation of particular ROS involved in root hair formation.
Zobrazit více v PubMed
Alves MBR, de Andrade AFC, de Arruda RP, Batissaco L, Florez-Rodriguez SA, Lançoni R, de Oliveira BMM, Torres MA, Ravagnani GM, de Almeida TG, et al. . An efficient technique to detect sperm reactive oxygen species: the CellRox Deep Red fluorescent probe. Biochem Physiol. 2015:4:157. 10.4172/2168-9652.1000157 DOI
Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua NH, Barlow PW, Volkmann D. Root hair formation: F-actin-independent tip growth is initiated by local assembly of proflin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol. 2000:227(2):618–632. 10.1006/dbio.2000.9908 PubMed DOI
Berson T, von Wangenheim D, Takáč T, Šamajová O, Rosero A, Ovečka M, Komis G, Stelzer EH, Šamaj J. Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth. BMC Plant Biol. 2014:14(1):252. 10.1186/s12870-014-0252-0 PubMed DOI PMC
Bibikova TN, Jacob T, Dahse I, Gilroy S. Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development. 1998:125(15):2925–2934. 10.1242/dev.125.15.2925 PubMed DOI
Bibikova TN, Zhigilei A, Gilroy S. Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta. 1997:203(4):495–505. 10.1007/s004250050219 PubMed DOI
Bidhendi AJ, Chebli Y, Geitmann A. Fluorescence visualization of cellulose and pectin in the primary plant cell wall. J Micros. 2020:278(3):164–181. 10.1111/jmi.12895 PubMed DOI
Bienert GP, Chaumont F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta. 2014:1840(5):1596–1604. 10.1016/j.bbagen.2013.09.017 PubMed DOI
Braun M, Baluška F, von Witsch M, Menzel D. Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate (PIP2) in growing and maturing root hairs. Planta. 1999:209(4):435–443. 10.1007/s004250050746 PubMed DOI
Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Žárský V, Dolan L. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature. 2005:438(7070):1013–1016. 10.1038/nature04198 PubMed DOI
Cho H-T, Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell. 2002:14(12):3237–3253. 10.1105/tpc.006437 PubMed DOI PMC
Datt JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjervi J, Inze D, Van Breusegem F. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J. 2003:33(4):621–629. 10.1046/j.1365-313X.2003.01655.x PubMed DOI
Demidchik V. ROS-activated ion channels in plants: biophysical characteristics, physiological functions and molecular nature. Int J Mol Sci. 2018:19(4):E1263. 10.3390/ijms19041263 PubMed DOI PMC
Do THT, Choi H, Palmgren M, Martinoia E, Hwang JU, Lee Y. Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes. Proc Nat Acad Sci USA. 2019:116(25):12540–12549. 10.1073/pnas.1902010116 PubMed DOI PMC
Dolan L, Duckett CM, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts K. Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development. 1994:120(9):2465–2474. 10.1242/dev.120.9.2465 DOI
Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol. 2010:594:57–72. 10.1007/978-1-60761-411-1_4 PubMed DOI
Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, et al. . Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003:422(6930):442–446. 10.1038/nature01485 PubMed DOI
Gilroy S, Jones DL. Through form to function: root hair development and nutrient uptake. Trends Plant Sci. 2000:5(2):56–60. 10.1016/S1360-1385(99)01551-4 PubMed DOI
Gorgidze LA, Oshemkova SA, Vorobjev IA. Blue light inhibits mitosis in tissue culture cells. Biosci Rep. 1998:18(4):215–224. 10.1023/A:1020104914726 PubMed DOI
Hockberger PE, Skimina TA, Centonze VE, Lavin C, Chu S, Dadras S, Reddy JK, White JG. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc Nat Acad Sci USA. 1999:96(11):6255–6260. 10.1073/pnas.96.11.6255 PubMed DOI PMC
Hoffman A, Spetner LM, Burke M. Ramifications of a redox switch within a normal cell; its absence in a cancer cell. Free Radical Biol Med. 2008:45(3):265–268. 10.1016/j.freeradbiomed.2008.03.025 PubMed DOI
Icha J, Weber M, Waters JC, Norden C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays. 2017:39(8):1700003. 10.1002/bies.201700003 PubMed DOI
Kalyanaraman B, Darley-Usmar V, Davies KJA, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ 2nd, Ischiropoulos H. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biol Med. 2012:52(1):1–610.1016/j.freeradbiomed.2011.09.030 PubMed DOI PMC
Khan I, Tang E, Arany P. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress. Sci Rep. 2015:5(1):10581. 10.1038/srep10581 PubMed DOI PMC
Kolisek M, Zsurka G, Samaj J, Weghuber J, Schweyen RJ, Schweigel M. Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. EMBO J. 2003:22(6): 1235–124410.1093/emboj/cdg122 PubMed DOI PMC
Kuběnová L, Takáč T, Šamaj J, Ovečka M. Single amino acid exchange in ACTIN2 confers increased tolerance to oxidative stress in Arabidopsis der1–3 mutant. Int J Mol Sci. 2021:22(4):1879. 10.3390/ijms22041879 PubMed DOI PMC
Kuběnová L, Tichá M, Šamaj J, Ovečka M. ROOT HAIR DEFECTIVE 2 vesicular delivery to the apical plasma membrane domain during Arabidopsis root hair development. Plant Physiol. 2022:188(3):1563–1585. 10.1093/plphys/kiab595 PubMed DOI PMC
Lee Y, Bak G, Choi Y, Chuang WI, Cho HT, Lee Y. Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol. 2008:147(2):624–635. 10.1104/pp.108.117341 PubMed DOI PMC
Leshem Y, Seri L, Levine A. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J. 2007:51(2):185–197. 10.1111/j.1365-313X.2007.03134.x PubMed DOI
Li D, Mou W, Van de Poel B, Chang C. Something old, something new: conservation of the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid as a signaling molecule. Curr Op Plant Biol. 2022:65:102116. 10.1016/j.pbi.2021.102116 PubMed DOI
Mangano S, Juárez SPD, Estevez JM. ROS regulation of polar growth in plant cells. Plant Physiol. 2016:171(3):1593–1605. 10.1104/pp.16.00191 PubMed DOI PMC
Martin RE, Marzol E, Estevez JM, Muday GK. Ethylene signaling increases reactive oxygen species accumulation to drive root hair initiation in Arabidopsis. Development. 2022:149(13):dev200487. 10.1242/dev.200487 PubMed DOI
Miedema H, Demidchik V, Véry AA, Bothwell JHF, Brownlee C, Davies JM. Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. New Phytol. 2008:179(2):378–385. 10.1111/j.1469-8137.2008.02465.x PubMed DOI
Mittler R. ROS are good. Trends Plant Sci. 2017:22(1):11–19. 10.1016/j.tplants.2016.08.002 PubMed DOI
Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nature Rev Mol Cell Biol. 2022:23(10):663–679. 10.1038/s41580-022-00499-2 PubMed DOI
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962: 15(3):473–497.10.1111/ppl.1962.15.issue-3 DOI
Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick TP, Finke T, Forman HJ, Janssen-Heininger Y, et al. . Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab. 2022:4(6):651–662. 10.1038/s42255-022-00591-z PubMed DOI PMC
Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H. Non-invasive quantitative detection and applications of nontoxic, S65T-type green fluorescent protein in living cells. Plant J. 1999:18(4):455–463. 10.1046/j.1365-313X.1999.00464.x PubMed DOI
Ovečka M, Berson T, Beck M, Derksen J, Šamaj J, Baluška F, Lichtscheidl IK. Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. Plant Cell. 2010:22(9):2999–3019. 10.1105/tpc.109.069880 PubMed DOI PMC
Ovečka M, Lang I, Baluška F, Ismail A, Illeš P, Lichtscheidl IK. Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma. 2005:226(1–2):39–54. 10.1007/s00709-005-0103-9 PubMed DOI
Ovečka M, Lichtscheidl I, Šamaj J. Live microscopy analysis of endosomes and vesicles in tip-growing root hairs. Methods Mol Biol. 2014:1209:31–44. 10.1007/978-1-4939-1420-3_3 PubMed DOI
Pei W, Du F, Zhang Y, He T, Ren H. Control of the actin cytoskeleton in root hair development. Plant Sci. 2012:187:10–18. 10.1016/j.plantsci.2012.01.008 PubMed DOI
Potocký M, Jones MA, Bezvoda R, Smirnoff N, Žárský V. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 2007:174(4):742–751. 10.1111/j.1469-8137.2007.02042.x PubMed DOI
Reszka KJ, Wagner BA, Burns CP, Britigan BE. Effects of peroxidase substrates on the Amplex red/peroxidase assay: antioxidant properties of anthracyclines. Anal Biochem. 2005:342(2):327–337. 10.1016/j.ab.2005.04.017 PubMed DOI
Ringli C, Baumberger N, Diet A, Frey B, Keller B. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol. 2002:129(4):1464–1472. 10.1104/pp.005777 PubMed DOI PMC
Rose RJ. Contribution of massive mitochondrial fusion and subsequent fission in the plant life cycle to the integrity of the mitochondrion and its genome. Int J Mol Sci. 2021:22(11):5429. 10.3390/ijms22115429 PubMed DOI PMC
Rösner J, Liotta A, Angamo EA, Spies C, Heinemann U, Kovács R. Minimizing photodecomposition of flavin adenine dinucleotide fluorescence by the use of pulsed LEDs. J Microsc. 2016:264(2):215–223. 10.1111/jmi.12436 PubMed DOI
Šamaj J, Müller J, Beck M, Böhm N, Menzel D. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 2006:11(12):594–600. 10.1016/j.tplants.2006.10.002 PubMed DOI
Schiefelbein JW, Somerville C. Genetic control of root hair development in Arabidopsis thaliana. Plant Cell. 1990:2(3):235–243. 10.2307/3869138 PubMed DOI PMC
Schoenaers S, Balcerowicz D, Vissenberg K. Molecular mechanisms regulating root hair tip growth: a comparison with pollen tubes. In: Obermeyer G, Feijó J, editors. Pollen tip growth. Cham (Switzerland): Springer International Publishing AG; 2017. p. 167–243. 10.1007/978-3-319-56645-0_9 DOI
Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019:221(3):1197–1214. 10.1111/nph.15488 PubMed DOI
Staiger CJ, Gibbon BC, Kovar DR, Zonia LE. Profilin and actin depolymerizing factor: modulators of actin organization in plants. Trends Plant Sci. 1997:2(7):275–281. 10.1016/S1360-1385(97)86350-9 DOI
Swanson SJ, Choi WG, Chanoca A, Gilroy S. In vivo imaging of ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev Plant Biol. 2011:62(1):273–297. 10.1146/annurev-arplant-042110-103832 PubMed DOI
Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L. Local positive feedback regulation determines cell shape in root hair cells. Science. 2008:319(5867):1241–1244. 10.1126/science.1152505 PubMed DOI
Vaškebová L, Šamaj J, Ovečka M. Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1-3 affects overall actin organization, root growth and plant development. Ann Bot. 2018:122(5):889–901. 10.1093/aob/mcx180 PubMed DOI PMC
Vissenberg K, Fry SC, Verbelen JP. Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiol. 2001:127(3):1125–1135. 10.1104/pp.010295 PubMed DOI PMC
von Wangenheim D, Rosero A, Komis G, Šamajová O, Ovečka M, Voigt B, Šamaj J. Endosomal interactions during root hair growth. Front Plant Sci. 2016:6:1262. 10.3389/fpls.2015.01262 PubMed DOI PMC
Wang Y, Zhu Y, Ling Y, Zhang H, Liu P, Baluška F, Šamaj J, Lin J, Wang Q. Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis root hairs. BMC Plant Biol. 2010:10(1):53. 10.1186/1471-2229-10-53 PubMed DOI PMC
Westrate LM, Drocco JA, Martin KR, Hlavacek WS, MacKeigan JP. Mitochondrial morphological features are associated with fission and fusion events. PLoS One. 2014:9(4):e95265. 10.1371/journal.pone.0095265 PubMed DOI PMC
Winterbourn CC. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta. 2014:1840(2):730–738. 10.1016/j.bbagen.2013.05.004 PubMed DOI
Yao N, Tada Y, Sakamoto M, Nakayashiki H, Park P, Tosa Y, Mayama S. Mitochondrial oxidative burst involved in apoptotic response in oats. Plant J. 2002:30(5):567–579. 10.1046/j.1365-313X.2002.01314.x PubMed DOI
Zheng M, Beck M, Müller J, Chen T, Wang X, Wang F, Wang Q, Wang Y, Baluška F, Logan DC, et al. . Cytoskeleton-dependent mitochondrial movements in Arabidopsis root hairs. PLoS One. 2009:4(6):e5961, 1–e5914. 10.1371/journal.pone.0005961 PubMed DOI PMC