Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- fylogeneze MeSH
- kinetika MeSH
- klíčení MeSH
- květy enzymologie MeSH
- NADPH-oxidasy metabolismus MeSH
- pyl enzymologie růst a vývoj MeSH
- reaktivní formy kyslíku metabolismus MeSH
- tabák klasifikace genetika MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- NADPH-oxidasy MeSH
- reaktivní formy kyslíku MeSH
- vápník MeSH
Tip-localized reactive oxygen species (ROS) were detected in growing pollen tubes by chloromethyl dichlorodihydrofluorescein diacetate oxidation, while tip-localized extracellular superoxide production was detected by nitroblue tetrazolium (NBT) reduction. To investigate the origin of the ROS we cloned a fragment of pollen specific tobacco NADPH oxidase (NOX) closely related to a pollen specific NOX from Arabidopsis. Transfection of tobacco pollen tubes with NOX-specific antisense oligodeoxynucleotides (ODNs) resulted in decreased amount of NtNOX mRNA, lower NOX activity and pollen tube growth inhibition. The ROS scavengers and the NOX inhibitor diphenylene iodonium chloride (DPI) inhibited growth and ROS formation in tobacco pollen tube cultures. Exogenous hydrogen peroxide (H2O2) rescued the growth inhibition caused by NOX antisense ODNs. Exogenous CaCl2 increased NBT reduction at the pollen tube tip, suggesting that Ca2+ increases the activity of pollen NOX in vivo. The results show that tip-localized ROS produced by a NOX enzyme is needed to sustain the normal rate of pollen tube growth and that this is likely to be a general mechanism in the control of tip growth of polarized plant cells.
Zobrazit více v PubMed
Allan AC, Fluhr R. 1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9: 1559-1572.
Banfi B, Molnar G, Maturana A, Steger K, Hegedus B, Demaurex N, Krause KH. 2001. A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. Journal of Biological Chemistry 276: 37594-37601.
Baxter-Burrell A, Yang ZB, Springer PS, Bailey-Serres J. 2002. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296: 2026-2028.
Bernas T, Dobrucki JW. 2000. The role of plasma membrane in bioreduction of two tetrazolium salts, MTT and CTC. Archives of Biochemistry and Biophysics 380: 108-116.
Cardenas L, McKenna ST, Kunkel JG, Hepler PK. 2006. NAD (P) H oscillates in pollen tubes and is correlated with tip growth. Plant Physiology 142: 1460-1468.
Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesová H, Derbyshire P, Drea S, Zársky V, Dolan LA. 2005. RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438: 1013-1016.
Feijó JA, Sainhas J, Holdaway-Clarke T, Cordeiro MS, Kunkel JG, Hepler PK. 2001. Cellular oscillations and the regulation of growth: the pollen tube paradigm. Bioessays 23: 86-94.
Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446.
Frahry G, Schopfer P. 1998. Inhibition of O2-reducing activity of horseradish peroxidase by diphenyleneiodonium. Phytochemistry 48: 223-227.
Fry SC. 1998. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochemical Journal 332: 507-515.
Fujii H, Ichimori K, Hoshiai K, Nakazawa H. 1997. Nitric oxide inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling process. Journal of Biological Chemistry 272: 32773-32778.
Halliwell B, Gutteridge JMC. 1999. Free radicals in biology and medicine. Oxford, UK: Oxford University Press.
Hempel SL, Buettner GR, O'Malley YQ, Wessels DA, Flaherty DM. 1999. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: Comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5 (and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radical Biology and Medicine 27: 146-159.
Henzler T, Steudle E. 2000. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. Journal of Experimental Botany 51: 2053-2066.
Hepler PK, Vidali L, Cheung AY. 2001. Polarized cell growth in higher plants. Annual Review of Cell and Developmental Biology 17: 159-187.
Honys D, Twell D. 2004. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biology 5: R85.
Hwang JU, Gu Y, Lee YJ, Yang Z. 2005. Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Molecular Biology of the Cell 16: 5385-5399.
Jones MA, Raymond MJ, Yang Z, Smirnoff N. (in press). NADPH oxidase-dependent reactive oxygen species formation required for root-hair growth depends on ROP GTPase. Journal of Experimental Botany doi: 10.1093/Jxb/erl279
Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K. 1999. The small GTP-binding protein rac is a regulator of cell death in plants. Proceedings of the National Academy of Sciences, USA 96: 10922-10926.
Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C. 1998. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10: 255-266.
Kerr EM, Fry SC. 2004. Extracellular cross-linking of xylan and xyloglucan in maize cell-suspension cultures: the role of oxidative phenolic coupling. Planta 219: 73-83.
Kjellbom P, Snogerup L, Stohr C, Reuzeau C, Mccabe PF, Pennell RI. 1997. Oxidative cross-linking of plasma membrane arabinogalactan proteins. Plant Journal 12: 1189-1196.
Kovtun Y, Chiu WL, Tena G, Sheen J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences, USA 97: 2940-2945.
Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO Journal 22: 2623-2633.
Li H, Lin YK, Heath RM, Zhu MX, Yang ZB. 1999. Control of pollen tube tip growth by a pop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11: 1731-1742.
Liszkay A, Van Der Zalm E, Schopfer P. 2004. Production of reactive oxygen intermediates (O2•-, H2O2, and OH•) by maize roots and their role in wall loosening and elongation growth. Plant Physiology 136: 3114-3123.
McInnis SM, Desikan R, Hancock JT, Hiscock SJ. 2006. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytologist 172: 221-228.
Messerli MA, Robinson KR. 2003. Ionic and osmotic disruptions of the lily pollen tube oscillator: testing proposed models. Planta 217: 147-157.
Messerli MA, Creton R, Jaffe LF, Robinson KR. 2000. Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Developmental Biology 222: 84-98.
Moeder W, Yoshioka K, Klessig DF. 2005. Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens. Molecular Plant-Microbe Interactions 18: 116-124.
Moutinho A, Camacho L, Haley A, Pais MS, Trewavas A, Malho R. 2001. Antisense perturbation of protein function in living pollen tubes. Sexual Plant Reproduction 14: 101-104.
Notredame C, Higgins DG, Heringa J. 2000. t-coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302: 205-217.
Park J, Gu Y, Lee Y, Yang ZB, Lee Y. 2004. Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiology 134: 129-136.
Van De Peer Y, De Wachter R. 1994. treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications in the Biosciences 10: 569-570.
Pierson ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK. 1994. Pollen-tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient - effect of BAPTA type buffers and hypertonic media. Plant Cell 6: 1815-1828.
Pina C, Pinto F, Feijó JA, Becker JD. 2005. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiology 138: 744-756.
Potocky M, Eliás M, Profotová B, Novotná Z, Valentová O, Zársky V. 2003. Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217: 122-130.
Prado AM, Porterfield DM, Feijó JA. 2004. Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131: 2707-2714.
Reeves EP, Lu H, Jacobs HL, Messina CGM, Bolsover S, Gabella G, Potma EO, Warley A, Roes J, Segal AW. 2002. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416: 291-297.
Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR. 2004. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427: 858-861.
Roshchina VV, Mel’nikova EV. 2001. Pollen chemosensitivity to ozone and peroxides. Russian Journal of Plant Physiology 48: 74-83.
Rossetti S, Bonatti PM. 2001. In situ histochemical monitoring of ozone- and TMV-induced reactive oxygen species in tobacco leaves. Plant Physiology and Biochemistry 39: 433-442.
Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R. 2004. Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16: 616-628.
Sagi M, Fluhr R. 2001. Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiology 126: 1281-1290.
Sagi M, Fluhr R. 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiology 141: 336-340.
Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
Schopfer P. 2001. Hydroxyl radical-induced cell wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant Journal 28: 679-688.
Stone LM, Seaton KA, Kuo J, Mccomb JA. 2004. Fast pollen tube growth in Conospermum species. Annals of Botany 93: 369-378.
Sun C, Höglund AS, Olsson H, Mangelsen E, Jansson C. 2005. Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling. Plant Journal 44: 128-138.
Tadege M, Kuhlemeier C. 1997. Aerobic fermentation during tobacco pollen development. Plant Molecular Biology 35: 343-354.
Torres MA, Dangl JL, Jones JDG. 2002. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences USA 99: 517-522.
Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG. 1998. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant Journal 14: 365-370.
EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development
Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life