Acidic graphene organocatalyst for the superior transformation of wastes into high-added-value chemicals

. 2023 Mar 13 ; 14 (1) : 1373. [epub] 20230313

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36914639
Odkazy

PubMed 36914639
PubMed Central PMC10011376
DOI 10.1038/s41467-023-36602-0
PII: 10.1038/s41467-023-36602-0
Knihovny.cz E-zdroje

Our dependence on finite fossil fuels and the insecure energy supply chains have stimulated intensive research for sustainable technologies. Upcycling glycerol, produced from biomass fermentation and as a biodiesel formation byproduct, can substantially contribute in circular carbon economy. Here, we report glycerol's solvent-free and room-temperature conversion to high-added-value chemicals via a reusable graphene catalyst (G-ASA), functionalized with a natural amino acid (taurine). Theoretical studies unveil that the superior performance of the catalyst (surpassing even homogeneous, industrial catalysts) is associated with the dual role of the covalently linked taurine, boosting the catalyst's acidity and affinity for the reactants. Unlike previous catalysts, G-ASA exhibits excellent activity (7508 mmol g-1 h-1) and selectivity (99.9%) for glycerol conversion to solketal, an additive for improving fuels' quality and a precursor of commodity and fine chemicals. Notably, the catalyst is also particularly active in converting oils to biodiesel, demonstrating its general applicability.

Zobrazit více v PubMed

Albers SC, Berklund AM, Graff GD. The rise and fall of innovation in biofuels. Nat. Biotechnol. 2016;34:814–822. doi: 10.1038/nbt.3644. PubMed DOI

Shepard JU, Pratson LF. The myth of US energy independence. Nat. Energy. 2022;7:462–464. doi: 10.1038/s41560-022-01053-2. DOI

Armstrong RC, et al. The frontiers of energy. Nat. Energy. 2016;1:15020. doi: 10.1038/nenergy.2015.20. DOI

Liu B, Rajagopal D. Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States. Nat. Energy. 2019;4:700–708. doi: 10.1038/s41560-019-0430-2. DOI

De Luna P, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science. 2019;364:6438. PubMed

Verma S, Lu S, Kenis PJA. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy. 2019;4:466–474. doi: 10.1038/s41560-019-0374-6. DOI

Zhou LA, et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy. 2020;5:61–70. doi: 10.1038/s41560-019-0517-9. DOI

Eagan NM, Kumbhalkar MD, Buchanan JS, Dumesic JA, Huber GW. Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nat. Rev. Chem. 2019;3:223–249. doi: 10.1038/s41570-019-0084-4. DOI

Wakizaka M, Matsumoto T, Tanaka R, Chang HC. Dehydrogenation of anhydrous methanol at room temperature by o-aminophenol-based photocatalysts. Nat. Commun. 2016;7:12333. doi: 10.1038/ncomms12333. PubMed DOI PMC

Manker LP, et al. Sustainable polyesters via direct functionalization of lignocellulosic sugars. Nat. Chem. 2022;14:976–984. doi: 10.1038/s41557-022-00974-5. PubMed DOI

Zheng JW, et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2. Science. 2022;376:288–292. doi: 10.1126/science.abm9257. PubMed DOI

Knothe G, Cermak SC, Evangelista RL. Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters. Fuel. 2012;96:535–540. doi: 10.1016/j.fuel.2012.01.012. DOI

Singh D, et al. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel. 2020;262:116553. doi: 10.1016/j.fuel.2019.116553. DOI

Liu ZH, Wang K, Chen Y, Tan TW, Nielsen J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat. Catal. 2020;3:274–288. doi: 10.1038/s41929-019-0421-5. DOI

Bagnato G, Iulianelli A, Sanna A, Basile A. Glycerol production and transformation: A critical review with particular emphasis on glycerol reforming reaction for producing hydrogen in conventional and membrane reactors. Membranes. 2017;7:17. doi: 10.3390/membranes7020017. PubMed DOI PMC

Semkiv MV, Ruchala J, Dmytruk KV, Sibirny AA. 100 years later, what is new in glycerol bioproduction? Trends Biotechnol. 2020;38:907–916. doi: 10.1016/j.tibtech.2020.02.001. PubMed DOI

Brett GL, et al. Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angew. Chem. Int. Ed. 2011;50:10136–10139. doi: 10.1002/anie.201101772. PubMed DOI PMC

Okoye PU, Abdullah AZ, Hameed BH. Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst. Fuel. 2017;209:538–544. doi: 10.1016/j.fuel.2017.08.024. DOI

Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A—Gen. 2005;281:225–231. doi: 10.1016/j.apcata.2004.11.033. DOI

Klepacova K, Mravec D, Kaszonyi A, Bajus M. Etherification of glycerol and ethylene glycol by isobutylene. Appl. Catal. A-Gen. 2007;328:1–13. doi: 10.1016/j.apcata.2007.03.031. DOI

Chai SH, Wang HP, Liang Y, Xu BQ. Sustainable production of acrolein: gas-phase dehydration of glycerol over Nb2O5 catalyst. J. Catal. 2007;250:342–349. doi: 10.1016/j.jcat.2007.06.016. DOI

Khayoon MS, Hameed BH. Solventless acetalization of glycerol with acetone to fuel oxygenates over Ni-Zr supported on mesoporous activated carbon catalyst. Appl. Catal. A—Gen. 2013;464:191–199. doi: 10.1016/j.apcata.2013.05.035. DOI

Faria RPV, Pereira CSM, Silva VMTM, Loureiro JM, Rodrigues AE. Glycerol valorisation as biofuels: Selection of a suitable solvent for an innovative process for the synthesis of GEA. Chem. Eng. J. 2013;233:159–167. doi: 10.1016/j.cej.2013.08.035. DOI

Mallesham B, Sudarsanam P, Raju G, Reddy BM. Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bio-glycerol. Green. Chem. 2013;15:478–489. doi: 10.1039/C2GC36152C. DOI

Ghosh A, et al. A green approach for the preparation of a surfactant embedded sulfonated carbon catalyst towards glycerol acetalization reactions. Catal. Sci. Technol. 2020;10:4827–4844. doi: 10.1039/D0CY00336K. DOI

Priya SS, et al. Platinum supported on h-mordenite: A highly efficient catalyst for selective hydrogenolysis of glycerol to 1,3-propanediol. ACS Sustain. Chem. Eng. 2016;4:1212–1222. doi: 10.1021/acssuschemeng.5b01272. DOI

Lari GM, et al. Environmental and economical perspectives of a glycerol biorefinery. Energ. Environ. Sci. 2018;11:1012–1029. doi: 10.1039/C7EE03116E. DOI

Checa M, Nogales-Delgado S, Montes V, Encinar JM. Recent advances in glycerol catalytic valorization: a review. Catalysts. 2020;10:1279. doi: 10.3390/catal10111279. DOI

Smirnov AA, Selishcheva SA, Yakovlev VA. Acetalization catalysts for synthesis of valuable oxygenated fuel additives from glycerol. Catalysts. 2018;8:595. doi: 10.3390/catal8120595. DOI

Mota CJA, da Silva CXA, Rosenbach N, Costa J, da Silva F. Glycerin derivatives as fuel additives: The addition of glycerol/acetone ketal (solketal) in gasolines. Energ. Fuel. 2010;24:2733–2736. doi: 10.1021/ef9015735. DOI

Vicente G, Melero JA, Morales G, Paniagua M, Martin E. Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas. Green. Chem. 2010;12:899–907. doi: 10.1039/b923681c. DOI

Bruno, D. et al. Diesel fuel compounds containing glycerol acetals. United States patent US6890364B2 (2005).

Garcia E, Laca M, Perez E, Garrido A, Peinado J. New class of acetal derived from glycerin as a biodiesel fuel component. Energ. Fuel. 2008;22:4274–4280. doi: 10.1021/ef800477m. DOI

Menezes FDL, Guimaraes MDO, da Silva MJ. Highly selective SnCl2-catalyzed solketal synthesis at room ternperature. Ind. Eng. Chem. Res. 2013;52:16709–16713. doi: 10.1021/ie402240j. DOI

Royon D, Locatelli S, Gonzo EE. Ketalization of glycerol to solketal in supercritical acetone. J. Supercrit. Fluid. 2011;58:88–92. doi: 10.1016/j.supflu.2011.04.012. DOI

Fatimah I, et al. Glycerol to solketal for fuel additive: recent progress in heterogeneous catalysts. Energies. 2019;12:2872. doi: 10.3390/en12152872. DOI

Mallesham B, Sudarsanam P, Reddy BM. Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystalline SnO2-based solid acids. Catal. Sci. Technol. 2014;4:803–813. doi: 10.1039/c3cy00825h. DOI

Roy AS, Cheruvathoor Poulose A, Bakandritsos A, Varma RS, Otyepka M. 2D graphene derivatives as heterogeneous catalysts to produce biofuels via esterification and trans-esterification reactions. Appl. Mater. Today. 2021;23:101053. doi: 10.1016/j.apmt.2021.101053. DOI

Li L, Koranyi TI, Sels BF, Pescarmona PP. Highly-efficient conversion of glycerol to solketal over heterogeneous Lewis acid catalysts. Green. Chem. 2012;14:1611–1619. doi: 10.1039/c2gc16619d. DOI

Goncalves M, Rodrigues R, Galhardo TS, Carvalho WA. Highly selective acetalization of glycerol with acetone to solketal over acidic carbon-based catalysts from biodiesel waste. Fuel. 2016;181:46–54. doi: 10.1016/j.fuel.2016.04.083. DOI

Upare PP, et al. Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green. Chem. 2013;15:2935–2943. doi: 10.1039/c3gc40353j. DOI

Swami MB, Jadhav AH, Mathpati SR, Ghuge HG, Patil SG. Eco-friendly highly efficient solvent free synthesis of benzimidazole derivatives over sulfonic acid functionalized graphene oxide in ambient condition. Res. Chem. Intermediat. 2017;43:2033–2053. doi: 10.1007/s11164-016-2745-y. DOI

Chen GF, et al. Preparation of sulfonic-functionalized graphene oxide as ion-exchange material and its application into electrochemiluminescence analysis. Biosens. Bioelectron. 2011;26:3136–3141. doi: 10.1016/j.bios.2010.12.015. PubMed DOI

Hosseini MS, Masteri-Farahani M, Shahsavarifar S. Chemical modification of reduced graphene oxide with sulfonic acid groups: Efficient solid acids for acetalization and esterification reactions. J. Taiwan Inst. Chem. Eng. 2019;102:34–43. doi: 10.1016/j.jtice.2019.05.020. DOI

Mitra R, Niemeyer J. Dual bronsted-acid organocatalysis: Cooperative asymmetric catalysis with combined phosphoric and carboxylic acids. ChemCatChem. 2018;10:1221–1234. doi: 10.1002/cctc.201701698. DOI

Momiyama N, Konno T, Furiya Y, Iwamoto T, Terada M. Design of chiral bis-phosphoric acid catalyst derived from (R)-3,3’-di(2-hydroxy-3-arylphenyl)binaphthol: Catalytic enantioselective diels-alder reaction of α,β-unsaturated aldehydes with amidodienes. J. Am. Chem. Soc. 2011;133:19294–19297. doi: 10.1021/ja2081444. PubMed DOI

Akiyama T. Stronger Brønsted acids. Chem. Rev. 2007;107:5744–5758. doi: 10.1021/cr068374j. PubMed DOI

Shapiro ND, Rauniyar V, Hamilton GL, Wu J, Toste FD. Asymmetric additions to dienes catalysed by a dithiophosphoric acid. Nature. 2011;470:245–249. doi: 10.1038/nature09723. PubMed DOI PMC

Schreyer L, et al. Confined acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science. 2018;362:216–219. doi: 10.1126/science.aau0817. PubMed DOI

Sedajova V, et al. Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy Environ. Sci. 2022;15:740–748. doi: 10.1039/D1EE02234B. PubMed DOI PMC

Nakajima K, Hara M. Amorphous carbon with SO3H groups as a solid bronsted acid catalyst. ACS Catal. 2012;2:1296–1304. doi: 10.1021/cs300103k. DOI

Suganuma S, et al. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J. Am. Chem. Soc. 2008;130:12787–12793. doi: 10.1021/ja803983h. PubMed DOI

Zaoralova D, et al. Tunable synthesis of nitrogen doped graphene from fluorographene under mild conditions. ACS Sustain. Chem. Eng. 2020;8:4764–4772. doi: 10.1021/acssuschemeng.9b07161. DOI

Ji JY, et al. Sulfonated graphene as water-tolerant solid acid catalyst. Chem. Sci. 2011;2:484–487. doi: 10.1039/C0SC00484G. DOI

Bakandritsos A, et al. Cyanographene and graphene acid: Emerging derivatives enabling high-yield and selective functionalization of graphene. ACS Nano. 2017;11:2982–2991. doi: 10.1021/acsnano.6b08449. PubMed DOI PMC

Dai YM, Wang YH, Huang ZG, Wang HK, Yu L. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n=1-3) complexes. J. Mol. Model. 2012;18:265–274. doi: 10.1007/s00894-011-1070-z. PubMed DOI

Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008;10:6615–6620. doi: 10.1039/b810189b. PubMed DOI

Ditchfield R, Hehre WJ, Pople JA. Self‐consistent molecular‐orbital methods. IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 1971;54:724–728. doi: 10.1063/1.1674902. DOI

Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI

Ozorio LP, Pianzolli R, Mota MBS, Mota CJA. Reactivity of glycerol/acetone ketal (solketal) and glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis. J. Braz. Chem. Soc. 2012;23:931–937. doi: 10.1590/S0103-50532012000500019. DOI

Rodrigues R, Goncalves M, Mandelli D, Pescarmona PP, Carvalho WA. Solvent-free conversion of glycerol to solketal catalysed by activated carbons functionalised with acid groups. Catal. Sci. Technol. 2014;4:2293–2301. doi: 10.1039/C4CY00181H. DOI

Toda M, et al. Green chemistry—biodiesel made with sugar catalyst. Nature. 2005;438:178–178. doi: 10.1038/438178a. PubMed DOI

Wang YT, et al. Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst. Renew. Energ. 2019;139:688–695. doi: 10.1016/j.renene.2019.02.111. DOI

Gelbard G, Bres O, Vargas RM, Vielfaure F, Schuchardt UF. 1H nuclear-magnetic-resonance determination of the yield of the transesterification of rapeseed oil with methanol. J. Am. Oil Chem. Soc. 1995;72:1239–1241. doi: 10.1007/BF02540998. DOI

Killner MHM, Linck YG, Danieli E, Rohwedder JJR, Blumich B. Compact NMR spectroscopy for real-time monitoring of a biodiesel production. Fuel. 2015;139:240–247. doi: 10.1016/j.fuel.2014.08.050. DOI

Tayade KN, Mishra M, Munusamy K, Somani RS. Synthesis of aluminium triflate-grafted MCM-41 as a water-tolerant acid catalyst for the ketalization of glycerol with acetone. Catal. Sci. Technol. 2015;5:2427–2440. doi: 10.1039/C4CY01396D. DOI

Laskar IB, Rajkumari K, Gupta R, Rokhum L. Acid-functionalized mesoporous polymer-catalyzed acetalization of glycerol to solketal, a potential fuel additive under solvent-free conditions. Energ. Fuel. 2018;32:12567–12576. doi: 10.1021/acs.energyfuels.8b02948. DOI

Souza TE, Portilho MF, Souza PMTG, Souza PP, Oliveira LCA. Modified niobium oxyhydroxide catalyst: an acetalization reaction to produce bio-additives for sustainable use of waste glycerol. ChemCatChem. 2014;6:2961–2969. doi: 10.1002/cctc.201402322. DOI

Nair GS, et al. Glycerol utilization: solvent-free acetalisation over niobia catalysts. Catal. Sci. Technol. 2012;2:1173–1179. doi: 10.1039/c2cy00335j. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...