Acidic graphene organocatalyst for the superior transformation of wastes into high-added-value chemicals
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
36914639
PubMed Central
PMC10011376
DOI
10.1038/s41467-023-36602-0
PII: 10.1038/s41467-023-36602-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Our dependence on finite fossil fuels and the insecure energy supply chains have stimulated intensive research for sustainable technologies. Upcycling glycerol, produced from biomass fermentation and as a biodiesel formation byproduct, can substantially contribute in circular carbon economy. Here, we report glycerol's solvent-free and room-temperature conversion to high-added-value chemicals via a reusable graphene catalyst (G-ASA), functionalized with a natural amino acid (taurine). Theoretical studies unveil that the superior performance of the catalyst (surpassing even homogeneous, industrial catalysts) is associated with the dual role of the covalently linked taurine, boosting the catalyst's acidity and affinity for the reactants. Unlike previous catalysts, G-ASA exhibits excellent activity (7508 mmol g-1 h-1) and selectivity (99.9%) for glycerol conversion to solketal, an additive for improving fuels' quality and a precursor of commodity and fine chemicals. Notably, the catalyst is also particularly active in converting oils to biodiesel, demonstrating its general applicability.
Central Tribal University of Andhra Pradesh AU PG Centre Kondakarakam Village Vizianagaram India
Zobrazit více v PubMed
Albers SC, Berklund AM, Graff GD. The rise and fall of innovation in biofuels. Nat. Biotechnol. 2016;34:814–822. doi: 10.1038/nbt.3644. PubMed DOI
Shepard JU, Pratson LF. The myth of US energy independence. Nat. Energy. 2022;7:462–464. doi: 10.1038/s41560-022-01053-2. DOI
Armstrong RC, et al. The frontiers of energy. Nat. Energy. 2016;1:15020. doi: 10.1038/nenergy.2015.20. DOI
Liu B, Rajagopal D. Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States. Nat. Energy. 2019;4:700–708. doi: 10.1038/s41560-019-0430-2. DOI
De Luna P, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science. 2019;364:6438. PubMed
Verma S, Lu S, Kenis PJA. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy. 2019;4:466–474. doi: 10.1038/s41560-019-0374-6. DOI
Zhou LA, et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy. 2020;5:61–70. doi: 10.1038/s41560-019-0517-9. DOI
Eagan NM, Kumbhalkar MD, Buchanan JS, Dumesic JA, Huber GW. Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nat. Rev. Chem. 2019;3:223–249. doi: 10.1038/s41570-019-0084-4. DOI
Wakizaka M, Matsumoto T, Tanaka R, Chang HC. Dehydrogenation of anhydrous methanol at room temperature by o-aminophenol-based photocatalysts. Nat. Commun. 2016;7:12333. doi: 10.1038/ncomms12333. PubMed DOI PMC
Manker LP, et al. Sustainable polyesters via direct functionalization of lignocellulosic sugars. Nat. Chem. 2022;14:976–984. doi: 10.1038/s41557-022-00974-5. PubMed DOI
Zheng JW, et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2. Science. 2022;376:288–292. doi: 10.1126/science.abm9257. PubMed DOI
Knothe G, Cermak SC, Evangelista RL. Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters. Fuel. 2012;96:535–540. doi: 10.1016/j.fuel.2012.01.012. DOI
Singh D, et al. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel. 2020;262:116553. doi: 10.1016/j.fuel.2019.116553. DOI
Liu ZH, Wang K, Chen Y, Tan TW, Nielsen J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat. Catal. 2020;3:274–288. doi: 10.1038/s41929-019-0421-5. DOI
Bagnato G, Iulianelli A, Sanna A, Basile A. Glycerol production and transformation: A critical review with particular emphasis on glycerol reforming reaction for producing hydrogen in conventional and membrane reactors. Membranes. 2017;7:17. doi: 10.3390/membranes7020017. PubMed DOI PMC
Semkiv MV, Ruchala J, Dmytruk KV, Sibirny AA. 100 years later, what is new in glycerol bioproduction? Trends Biotechnol. 2020;38:907–916. doi: 10.1016/j.tibtech.2020.02.001. PubMed DOI
Brett GL, et al. Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angew. Chem. Int. Ed. 2011;50:10136–10139. doi: 10.1002/anie.201101772. PubMed DOI PMC
Okoye PU, Abdullah AZ, Hameed BH. Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst. Fuel. 2017;209:538–544. doi: 10.1016/j.fuel.2017.08.024. DOI
Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A—Gen. 2005;281:225–231. doi: 10.1016/j.apcata.2004.11.033. DOI
Klepacova K, Mravec D, Kaszonyi A, Bajus M. Etherification of glycerol and ethylene glycol by isobutylene. Appl. Catal. A-Gen. 2007;328:1–13. doi: 10.1016/j.apcata.2007.03.031. DOI
Chai SH, Wang HP, Liang Y, Xu BQ. Sustainable production of acrolein: gas-phase dehydration of glycerol over Nb2O5 catalyst. J. Catal. 2007;250:342–349. doi: 10.1016/j.jcat.2007.06.016. DOI
Khayoon MS, Hameed BH. Solventless acetalization of glycerol with acetone to fuel oxygenates over Ni-Zr supported on mesoporous activated carbon catalyst. Appl. Catal. A—Gen. 2013;464:191–199. doi: 10.1016/j.apcata.2013.05.035. DOI
Faria RPV, Pereira CSM, Silva VMTM, Loureiro JM, Rodrigues AE. Glycerol valorisation as biofuels: Selection of a suitable solvent for an innovative process for the synthesis of GEA. Chem. Eng. J. 2013;233:159–167. doi: 10.1016/j.cej.2013.08.035. DOI
Mallesham B, Sudarsanam P, Raju G, Reddy BM. Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bio-glycerol. Green. Chem. 2013;15:478–489. doi: 10.1039/C2GC36152C. DOI
Ghosh A, et al. A green approach for the preparation of a surfactant embedded sulfonated carbon catalyst towards glycerol acetalization reactions. Catal. Sci. Technol. 2020;10:4827–4844. doi: 10.1039/D0CY00336K. DOI
Priya SS, et al. Platinum supported on h-mordenite: A highly efficient catalyst for selective hydrogenolysis of glycerol to 1,3-propanediol. ACS Sustain. Chem. Eng. 2016;4:1212–1222. doi: 10.1021/acssuschemeng.5b01272. DOI
Lari GM, et al. Environmental and economical perspectives of a glycerol biorefinery. Energ. Environ. Sci. 2018;11:1012–1029. doi: 10.1039/C7EE03116E. DOI
Checa M, Nogales-Delgado S, Montes V, Encinar JM. Recent advances in glycerol catalytic valorization: a review. Catalysts. 2020;10:1279. doi: 10.3390/catal10111279. DOI
Smirnov AA, Selishcheva SA, Yakovlev VA. Acetalization catalysts for synthesis of valuable oxygenated fuel additives from glycerol. Catalysts. 2018;8:595. doi: 10.3390/catal8120595. DOI
Mota CJA, da Silva CXA, Rosenbach N, Costa J, da Silva F. Glycerin derivatives as fuel additives: The addition of glycerol/acetone ketal (solketal) in gasolines. Energ. Fuel. 2010;24:2733–2736. doi: 10.1021/ef9015735. DOI
Vicente G, Melero JA, Morales G, Paniagua M, Martin E. Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas. Green. Chem. 2010;12:899–907. doi: 10.1039/b923681c. DOI
Bruno, D. et al. Diesel fuel compounds containing glycerol acetals. United States patent US6890364B2 (2005).
Garcia E, Laca M, Perez E, Garrido A, Peinado J. New class of acetal derived from glycerin as a biodiesel fuel component. Energ. Fuel. 2008;22:4274–4280. doi: 10.1021/ef800477m. DOI
Menezes FDL, Guimaraes MDO, da Silva MJ. Highly selective SnCl2-catalyzed solketal synthesis at room ternperature. Ind. Eng. Chem. Res. 2013;52:16709–16713. doi: 10.1021/ie402240j. DOI
Royon D, Locatelli S, Gonzo EE. Ketalization of glycerol to solketal in supercritical acetone. J. Supercrit. Fluid. 2011;58:88–92. doi: 10.1016/j.supflu.2011.04.012. DOI
Fatimah I, et al. Glycerol to solketal for fuel additive: recent progress in heterogeneous catalysts. Energies. 2019;12:2872. doi: 10.3390/en12152872. DOI
Mallesham B, Sudarsanam P, Reddy BM. Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystalline SnO2-based solid acids. Catal. Sci. Technol. 2014;4:803–813. doi: 10.1039/c3cy00825h. DOI
Roy AS, Cheruvathoor Poulose A, Bakandritsos A, Varma RS, Otyepka M. 2D graphene derivatives as heterogeneous catalysts to produce biofuels via esterification and trans-esterification reactions. Appl. Mater. Today. 2021;23:101053. doi: 10.1016/j.apmt.2021.101053. DOI
Li L, Koranyi TI, Sels BF, Pescarmona PP. Highly-efficient conversion of glycerol to solketal over heterogeneous Lewis acid catalysts. Green. Chem. 2012;14:1611–1619. doi: 10.1039/c2gc16619d. DOI
Goncalves M, Rodrigues R, Galhardo TS, Carvalho WA. Highly selective acetalization of glycerol with acetone to solketal over acidic carbon-based catalysts from biodiesel waste. Fuel. 2016;181:46–54. doi: 10.1016/j.fuel.2016.04.083. DOI
Upare PP, et al. Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green. Chem. 2013;15:2935–2943. doi: 10.1039/c3gc40353j. DOI
Swami MB, Jadhav AH, Mathpati SR, Ghuge HG, Patil SG. Eco-friendly highly efficient solvent free synthesis of benzimidazole derivatives over sulfonic acid functionalized graphene oxide in ambient condition. Res. Chem. Intermediat. 2017;43:2033–2053. doi: 10.1007/s11164-016-2745-y. DOI
Chen GF, et al. Preparation of sulfonic-functionalized graphene oxide as ion-exchange material and its application into electrochemiluminescence analysis. Biosens. Bioelectron. 2011;26:3136–3141. doi: 10.1016/j.bios.2010.12.015. PubMed DOI
Hosseini MS, Masteri-Farahani M, Shahsavarifar S. Chemical modification of reduced graphene oxide with sulfonic acid groups: Efficient solid acids for acetalization and esterification reactions. J. Taiwan Inst. Chem. Eng. 2019;102:34–43. doi: 10.1016/j.jtice.2019.05.020. DOI
Mitra R, Niemeyer J. Dual bronsted-acid organocatalysis: Cooperative asymmetric catalysis with combined phosphoric and carboxylic acids. ChemCatChem. 2018;10:1221–1234. doi: 10.1002/cctc.201701698. DOI
Momiyama N, Konno T, Furiya Y, Iwamoto T, Terada M. Design of chiral bis-phosphoric acid catalyst derived from (R)-3,3’-di(2-hydroxy-3-arylphenyl)binaphthol: Catalytic enantioselective diels-alder reaction of α,β-unsaturated aldehydes with amidodienes. J. Am. Chem. Soc. 2011;133:19294–19297. doi: 10.1021/ja2081444. PubMed DOI
Akiyama T. Stronger Brønsted acids. Chem. Rev. 2007;107:5744–5758. doi: 10.1021/cr068374j. PubMed DOI
Shapiro ND, Rauniyar V, Hamilton GL, Wu J, Toste FD. Asymmetric additions to dienes catalysed by a dithiophosphoric acid. Nature. 2011;470:245–249. doi: 10.1038/nature09723. PubMed DOI PMC
Schreyer L, et al. Confined acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science. 2018;362:216–219. doi: 10.1126/science.aau0817. PubMed DOI
Sedajova V, et al. Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy Environ. Sci. 2022;15:740–748. doi: 10.1039/D1EE02234B. PubMed DOI PMC
Nakajima K, Hara M. Amorphous carbon with SO3H groups as a solid bronsted acid catalyst. ACS Catal. 2012;2:1296–1304. doi: 10.1021/cs300103k. DOI
Suganuma S, et al. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J. Am. Chem. Soc. 2008;130:12787–12793. doi: 10.1021/ja803983h. PubMed DOI
Zaoralova D, et al. Tunable synthesis of nitrogen doped graphene from fluorographene under mild conditions. ACS Sustain. Chem. Eng. 2020;8:4764–4772. doi: 10.1021/acssuschemeng.9b07161. DOI
Ji JY, et al. Sulfonated graphene as water-tolerant solid acid catalyst. Chem. Sci. 2011;2:484–487. doi: 10.1039/C0SC00484G. DOI
Bakandritsos A, et al. Cyanographene and graphene acid: Emerging derivatives enabling high-yield and selective functionalization of graphene. ACS Nano. 2017;11:2982–2991. doi: 10.1021/acsnano.6b08449. PubMed DOI PMC
Dai YM, Wang YH, Huang ZG, Wang HK, Yu L. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n=1-3) complexes. J. Mol. Model. 2012;18:265–274. doi: 10.1007/s00894-011-1070-z. PubMed DOI
Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008;10:6615–6620. doi: 10.1039/b810189b. PubMed DOI
Ditchfield R, Hehre WJ, Pople JA. Self‐consistent molecular‐orbital methods. IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 1971;54:724–728. doi: 10.1063/1.1674902. DOI
Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI
Ozorio LP, Pianzolli R, Mota MBS, Mota CJA. Reactivity of glycerol/acetone ketal (solketal) and glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis. J. Braz. Chem. Soc. 2012;23:931–937. doi: 10.1590/S0103-50532012000500019. DOI
Rodrigues R, Goncalves M, Mandelli D, Pescarmona PP, Carvalho WA. Solvent-free conversion of glycerol to solketal catalysed by activated carbons functionalised with acid groups. Catal. Sci. Technol. 2014;4:2293–2301. doi: 10.1039/C4CY00181H. DOI
Toda M, et al. Green chemistry—biodiesel made with sugar catalyst. Nature. 2005;438:178–178. doi: 10.1038/438178a. PubMed DOI
Wang YT, et al. Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst. Renew. Energ. 2019;139:688–695. doi: 10.1016/j.renene.2019.02.111. DOI
Gelbard G, Bres O, Vargas RM, Vielfaure F, Schuchardt UF. 1H nuclear-magnetic-resonance determination of the yield of the transesterification of rapeseed oil with methanol. J. Am. Oil Chem. Soc. 1995;72:1239–1241. doi: 10.1007/BF02540998. DOI
Killner MHM, Linck YG, Danieli E, Rohwedder JJR, Blumich B. Compact NMR spectroscopy for real-time monitoring of a biodiesel production. Fuel. 2015;139:240–247. doi: 10.1016/j.fuel.2014.08.050. DOI
Tayade KN, Mishra M, Munusamy K, Somani RS. Synthesis of aluminium triflate-grafted MCM-41 as a water-tolerant acid catalyst for the ketalization of glycerol with acetone. Catal. Sci. Technol. 2015;5:2427–2440. doi: 10.1039/C4CY01396D. DOI
Laskar IB, Rajkumari K, Gupta R, Rokhum L. Acid-functionalized mesoporous polymer-catalyzed acetalization of glycerol to solketal, a potential fuel additive under solvent-free conditions. Energ. Fuel. 2018;32:12567–12576. doi: 10.1021/acs.energyfuels.8b02948. DOI
Souza TE, Portilho MF, Souza PMTG, Souza PP, Oliveira LCA. Modified niobium oxyhydroxide catalyst: an acetalization reaction to produce bio-additives for sustainable use of waste glycerol. ChemCatChem. 2014;6:2961–2969. doi: 10.1002/cctc.201402322. DOI
Nair GS, et al. Glycerol utilization: solvent-free acetalisation over niobia catalysts. Catal. Sci. Technol. 2012;2:1173–1179. doi: 10.1039/c2cy00335j. DOI