Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor

. 2022 Feb 16 ; 15 (2) : 740-748. [epub] 20220107

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35308297

Supercapacitors have attracted great interest because of their fast, reversible operation and sustainability. However, their energy densities remain lower than those of batteries. In the last decade, supercapacitors with an energy content of ∼110 W h L-1 at a power of ∼1 kW L-1 were developed by leveraging the open framework structure of graphene-related architectures. Here, we report that the reaction of fluorographene with azide anions enables the preparation of a material combining graphene-type sp2 layers with tetrahedral carbon-carbon bonds and nitrogen (pyridinic and pyrrolic) superdoping (16%). Theoretical investigations showed that the C-C bonds develop between carbon-centered radicals, which emerge in the vicinity of the nitrogen dopants. This material, with diamond-like bonds and an ultra-high mass density of 2.8 g cm-3, is an excellent host for the ions, delivering unprecedented energy densities of 200 W h L-1 at a power of 2.6 kW L-1 and 143 W h L-1 at 52 kW L-1. These findings open a route to materials whose properties may enable a transformative improvement in the performance of supercapacitor components.

Zobrazit více v PubMed

Aricò A. S. Bruce P. Scrosati B. Tarascon J.-M. van Schalkwijk W. Nat. Mater. 2005;4:366–377. doi: 10.1038/nmat1368. PubMed DOI

Gu W. Yushin G. Wiley Interdiscip. Rev.: Energy Environ. 2014;3:424–473.

Wang Q. Yan J. Fan Z. Energy Environ. Sci. 2016;9:729–762. doi: 10.1039/C5EE03109E. DOI

Gogotsi Y. Simon P. Science. 2011;334:917–918. doi: 10.1126/science.1213003. PubMed DOI

Choi J. W. Aurbach D. Nat. Rev. Mater. 2016;1:16013. doi: 10.1038/natrevmats.2016.13. DOI

Albertus P. Babinec S. Litzelman S. Newman A. Nat. Energy. 2018;3:16–21. doi: 10.1038/s41560-017-0047-2. DOI

Salanne M. Rotenberg B. Naoi K. Kaneko K. Taberna P.-L. Grey C. P. Dunn B. Simon P. Nat. Energy. 2016;1:16070. doi: 10.1038/nenergy.2016.70. DOI

Lin T. Chen I.-W. Liu F. Yang C. Bi H. Xu F. Huang F. Science. 2015;350:1508–1513. doi: 10.1126/science.aab3798. PubMed DOI

Hou J. Cao C. Idrees F. Ma X. ACS Nano. 2015;9:2556–2564. doi: 10.1021/nn506394r. PubMed DOI

Zhu Y. Murali S. Stoller M. D. Ganesh K. J. Cai W. Ferreira P. J. Pirkle A. Wallace R. M. Cychosz K. A. Thommes M. Su D. Stach E. A. Ruoff R. S. Science. 2011;332:1537–1541. doi: 10.1126/science.1200770. PubMed DOI

Izadi-Najafabadi A. Yasuda S. Kobashi K. Yamada T. Futaba D. N. Hatori H. Yumura M. Iijima S. Hata K. Adv. Mater. 2010;22:E235–E241. doi: 10.1002/adma.200904349. PubMed DOI

EP2357046B1, 2013

Simon P. Gogotsi Y. Acc. Chem. Res. 2013;46:1094–1103. doi: 10.1021/ar200306b. PubMed DOI

Li H. Tao Y. Zheng X. Luo J. Kang F. Cheng H.-M. Yang Q.-H. Energy Environ. Sci. 2016;9:3135–3142. doi: 10.1039/C6EE00941G. DOI

Yu D. Goh K. Wang H. Wei L. Jiang W. Zhang Q. Dai L. Chen Y. Nat. Nanotechnol. 2014;9:555–562. doi: 10.1038/nnano.2014.93. PubMed DOI

Weber R. Genovese M. Louli A. J. Hames S. Martin C. Hill I. G. Dahn J. R. Nat. Energy. 2019;4:683–689. doi: 10.1038/s41560-019-0428-9. DOI

Murali S. Quarles N. Zhang L. L. Potts J. R. Tan Z. Lu Y. Zhu Y. Ruoff R. S. Nano Energy. 2013;2:764–768. doi: 10.1016/j.nanoen.2013.01.007. DOI

Yang X. Cheng C. Wang Y. Qiu L. Li D. Science. 2013;341:534–537. doi: 10.1126/science.1239089. PubMed DOI

Xu Y. Lin Z. Zhong X. Huang X. Weiss N. O. Huang Y. Duan X. Nat. Commun. 2014;5:5554. doi: 10.1038/ncomms6554. PubMed DOI

Jin H. Feng X. Li J. Li M. Xia Y. Yuan Y. Yang C. Dai B. Lin Z. Wang J. Lu J. Wang S. Angew. Chem., Int. Ed. 2019;58:2397–2401. doi: 10.1002/anie.201813686. PubMed DOI

Li P. Li H. Han D. Shang T. Deng Y. Tao Y. Lv W. Yang Q.-H. Adv. Sci. 2019;6:1802355. doi: 10.1002/advs.201802355. PubMed DOI PMC

Acerce M. Voiry D. Chhowalla M. Nat. Nanotechnol. 2015;10:313–318. doi: 10.1038/nnano.2015.40. PubMed DOI

Li Z. Gadipelli S. Li H. Howard C. A. Brett D. J. L. Shearing P. R. Guo Z. Parkin I. P. Li F. Nat. Energy. 2020;5:160–168. doi: 10.1038/s41560-020-0560-6. DOI

Lai W. Xu D. Wang X. Wang Z. Liu Y. Zhang X. Li Y. Liu X. Phys. Chem. Chem. Phys. 2017;19:24076–24081. doi: 10.1039/C7CP04439A. PubMed DOI

Rajeena U. Raveendran P. Ramakrishnan R. M. J. Fluorine Chem. 2020;235:109555. doi: 10.1016/j.jfluchem.2020.109555. DOI

Yarbrough W. A. J. Am. Ceram. Soc. 1992;75:3179–3200. doi: 10.1111/j.1151-2916.1992.tb04411.x. DOI

Liu Z.-J. Ding S.-J. Wang P.-F. Zhang D. W. Zhang J.-Y. Wang J.-T. Kohse-Hoinghaus K. Thin Solid Films. 2000;368:208–210. doi: 10.1016/S0040-6090(00)00766-5. DOI

Schmidt I. Benndorf C. Diamond Relat. Mater. 1997;6:964–969. doi: 10.1016/S0925-9635(96)00744-3. DOI

Robertson J. Mater. Sci. Eng., R. 2002;37:129–281. doi: 10.1016/S0927-796X(02)00005-0. DOI

Pischedda V. Radescu S. Dubois M. Batisse N. Balima F. Cavallari C. Cardenas L. Carbon. 2017;114:690–699. doi: 10.1016/j.carbon.2016.12.051. DOI

Touhara H. Kadono K. Fujii Y. Watanabe N. Z. Anorg. Allg. Chem. 1987;544:7–20. doi: 10.1002/zaac.19875440102. DOI

Bakharev P. V. Huang M. Saxena M. Lee S. W. Joo S. H. Park S. O. Dong J. Camacho-Mojica D. C. Jin S. Kwon Y. Biswal M. Ding F. Kwak S. K. Lee Z. Ruoff R. S. Nat. Nanotechnol. 2020;15:59–66. doi: 10.1038/s41565-019-0582-z. PubMed DOI

Sivek J. Leenaerts O. Partoens B. Peeters F. M. J. Phys. Chem. C. 2012;116:19240–19245. doi: 10.1021/jp3027012. DOI

Karlický F. Kumara R. D. Otyepka M. Zbořil R. ACS Nano. 2013;7:6434–6464. doi: 10.1021/nn4024027. PubMed DOI

Medveď M. Zoppellaro G. Ugolotti J. Matochová D. Lazar P. Pospíšil T. Bakandritsos A. Tuček J. Zbořil R. Otyepka M. Nanoscale. 2018;10:4696–4707. doi: 10.1039/C7NR09426D. PubMed DOI PMC

Zaoralová D. Hrubý V. Šedajová V. Mach R. Kupka V. Ugolotti J. Bakandritsos A. Medved M. Otyepka M. ACS Sustainable Chem. Eng. 2020;8:4764–4772. doi: 10.1021/acssuschemeng.9b07161. DOI

Zoppellaro G. Bakandritsos A. Tuček J. Błoński P. Susi T. Lazar P. Bad’ura Z. Steklý T. Opletalová A. Otyepka M. Zbořil R. Adv. Mater. 2019;31:1902587. doi: 10.1002/adma.201902587. PubMed DOI

Liu Y. Shen Y. Sun L. Li J. Liu C. Ren W. Li F. Gao L. Chen J. Liu F. Sun Y. Tang N. Cheng H.-M. Du Y. Nat. Commun. 2016;7:1–9. PubMed PMC

Mazur A. S. Vovk M. A. Tolstoy P. M. Fullerenes, Nanotubes, Carbon Nanostruct. 2020;28:202–213. doi: 10.1080/1536383X.2019.1686622. DOI

Johnson R. L. Anderson J. M. Shanks B. H. Schmidt-Rohr K. Chem. Mater. 2014;26:5523–5532. doi: 10.1021/cm501562t. DOI

Giraudet J. Dubois M. Hamwi A. Stone W. E. E. Pirotte P. Masin F. J. Phys. Chem. B. 2005;109:175–181. doi: 10.1021/jp046833j. PubMed DOI

Stankovich S. Dikin D. A. Piner R. D. Kohlhaas K. A. Kleinhammes A. Jia Y. Wu Y. Nguyen S. T. Ruoff R. S. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI

Gao W. Alemany L. B. Ci L. Ajayan P. M. Nat. Chem. 2009;1:403–408. doi: 10.1038/nchem.281. PubMed DOI

Mayo D. W., in Course Notes on the Interpretation of Infrared and Raman Spectra, eds. D. W. yo, F. A. Miller and R. W. Hannah, John Wiley & Sons, Inc., 2004, pp. 101–140

Senthilnathan J. Weng C.-C. Liao J.-D. Yoshimura M. Sci. Rep. 2013;3:srep02414. PubMed PMC

Bakandritsos A. Kadam R. G. Kumar P. Zoppellaro G. Medved’ M. Tuček J. Montini T. Tomanec O. Andrýsková P. Drahoš B. Varma R. S. Otyepka M. Gawande M. B. Fornasiero P. Zbořil R. Adv. Mater. 2019;31:1900323. doi: 10.1002/adma.201900323. PubMed DOI

Lazar P. Mach R. Otyepka M. J. Phys. Chem. C. 2019;123:10695–10702. doi: 10.1021/acs.jpcc.9b02163. DOI

Wu X. Zhao H. Pei J. Yan D. Appl. Phys. Lett. 2017;110:133102. doi: 10.1063/1.4979166. DOI

Hulicova-Jurcakova D. Seredych M. Lu G. Q. Bandosz T. J. Adv. Funct. Mater. 2009;19:438–447. doi: 10.1002/adfm.200801236. DOI

Weinstein L. Dash R. Mater. Today. 2013;16:356–357. doi: 10.1016/j.mattod.2013.09.005. DOI

Yoon Y. Lee K. Kwon S. Seo S. Yoo H. Kim S. Shin Y. Park Y. Kim D. Choi J.-Y. Lee H. ACS Nano. 2014;8:4580–4590. doi: 10.1021/nn500150j. PubMed DOI

Wang J. Tang J. Ding B. Malgras V. Chang Z. Hao X. Wang Y. Dou H. Zhang X. Yamauchi Y. Nat. Commun. 2017;8:15717. doi: 10.1038/ncomms15717. PubMed DOI PMC

Stoller M. D. Ruoff R. S. Energy Environ. Sci. 2010;3:1294–1301. doi: 10.1039/C0EE00074D. DOI

Zhang S. Pan N. Adv. Energy Mater. 2015;5:1401401. doi: 10.1002/aenm.201401401. DOI

Noori A. El-Kady M. F. Rahmanifar M. S. Kaner R. B. Mousavi M. F. Chem. Soc. Rev. 2019;48:1272–1341. doi: 10.1039/C8CS00581H. PubMed DOI

Weber R. Genovese M. Louli A. J. Hames S. Martin C. Hill I. G. Dahn J. R. Nat. Energy. 2019;4:683–689. doi: 10.1038/s41560-019-0428-9. DOI

Lin X. Salari M. Arava L. M. R. Ajayan P. M. Grinstaff M. W. Chem. Soc. Rev. 2016;45:5848–5887. doi: 10.1039/C6CS00012F. PubMed DOI

Timperman L. Galiano H. Lemordant D. Anouti M. Electrochem. Commun. 2011;13:1112–1115. doi: 10.1016/j.elecom.2011.07.010. DOI

Alvarado J. Schroeder M. A. Zhang M. Borodin O. Gobrogge E. Olguin M. Ding M. S. Gobet M. Greenbaum S. Meng Y. S. Xu K. Mater. Today. 2018;21:341–353. doi: 10.1016/j.mattod.2018.02.005. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...