Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35308297
PubMed Central
PMC8848332
DOI
10.1039/d1ee02234b
PII: d1ee02234b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Supercapacitors have attracted great interest because of their fast, reversible operation and sustainability. However, their energy densities remain lower than those of batteries. In the last decade, supercapacitors with an energy content of ∼110 W h L-1 at a power of ∼1 kW L-1 were developed by leveraging the open framework structure of graphene-related architectures. Here, we report that the reaction of fluorographene with azide anions enables the preparation of a material combining graphene-type sp2 layers with tetrahedral carbon-carbon bonds and nitrogen (pyridinic and pyrrolic) superdoping (16%). Theoretical investigations showed that the C-C bonds develop between carbon-centered radicals, which emerge in the vicinity of the nitrogen dopants. This material, with diamond-like bonds and an ultra-high mass density of 2.8 g cm-3, is an excellent host for the ions, delivering unprecedented energy densities of 200 W h L-1 at a power of 2.6 kW L-1 and 143 W h L-1 at 52 kW L-1. These findings open a route to materials whose properties may enable a transformative improvement in the performance of supercapacitor components.
Zobrazit více v PubMed
Aricò A. S. Bruce P. Scrosati B. Tarascon J.-M. van Schalkwijk W. Nat. Mater. 2005;4:366–377. doi: 10.1038/nmat1368. PubMed DOI
Gu W. Yushin G. Wiley Interdiscip. Rev.: Energy Environ. 2014;3:424–473.
Wang Q. Yan J. Fan Z. Energy Environ. Sci. 2016;9:729–762. doi: 10.1039/C5EE03109E. DOI
Gogotsi Y. Simon P. Science. 2011;334:917–918. doi: 10.1126/science.1213003. PubMed DOI
Choi J. W. Aurbach D. Nat. Rev. Mater. 2016;1:16013. doi: 10.1038/natrevmats.2016.13. DOI
Albertus P. Babinec S. Litzelman S. Newman A. Nat. Energy. 2018;3:16–21. doi: 10.1038/s41560-017-0047-2. DOI
Salanne M. Rotenberg B. Naoi K. Kaneko K. Taberna P.-L. Grey C. P. Dunn B. Simon P. Nat. Energy. 2016;1:16070. doi: 10.1038/nenergy.2016.70. DOI
Lin T. Chen I.-W. Liu F. Yang C. Bi H. Xu F. Huang F. Science. 2015;350:1508–1513. doi: 10.1126/science.aab3798. PubMed DOI
Hou J. Cao C. Idrees F. Ma X. ACS Nano. 2015;9:2556–2564. doi: 10.1021/nn506394r. PubMed DOI
Zhu Y. Murali S. Stoller M. D. Ganesh K. J. Cai W. Ferreira P. J. Pirkle A. Wallace R. M. Cychosz K. A. Thommes M. Su D. Stach E. A. Ruoff R. S. Science. 2011;332:1537–1541. doi: 10.1126/science.1200770. PubMed DOI
Izadi-Najafabadi A. Yasuda S. Kobashi K. Yamada T. Futaba D. N. Hatori H. Yumura M. Iijima S. Hata K. Adv. Mater. 2010;22:E235–E241. doi: 10.1002/adma.200904349. PubMed DOI
EP2357046B1, 2013
Simon P. Gogotsi Y. Acc. Chem. Res. 2013;46:1094–1103. doi: 10.1021/ar200306b. PubMed DOI
Li H. Tao Y. Zheng X. Luo J. Kang F. Cheng H.-M. Yang Q.-H. Energy Environ. Sci. 2016;9:3135–3142. doi: 10.1039/C6EE00941G. DOI
Yu D. Goh K. Wang H. Wei L. Jiang W. Zhang Q. Dai L. Chen Y. Nat. Nanotechnol. 2014;9:555–562. doi: 10.1038/nnano.2014.93. PubMed DOI
Weber R. Genovese M. Louli A. J. Hames S. Martin C. Hill I. G. Dahn J. R. Nat. Energy. 2019;4:683–689. doi: 10.1038/s41560-019-0428-9. DOI
Murali S. Quarles N. Zhang L. L. Potts J. R. Tan Z. Lu Y. Zhu Y. Ruoff R. S. Nano Energy. 2013;2:764–768. doi: 10.1016/j.nanoen.2013.01.007. DOI
Yang X. Cheng C. Wang Y. Qiu L. Li D. Science. 2013;341:534–537. doi: 10.1126/science.1239089. PubMed DOI
Xu Y. Lin Z. Zhong X. Huang X. Weiss N. O. Huang Y. Duan X. Nat. Commun. 2014;5:5554. doi: 10.1038/ncomms6554. PubMed DOI
Jin H. Feng X. Li J. Li M. Xia Y. Yuan Y. Yang C. Dai B. Lin Z. Wang J. Lu J. Wang S. Angew. Chem., Int. Ed. 2019;58:2397–2401. doi: 10.1002/anie.201813686. PubMed DOI
Li P. Li H. Han D. Shang T. Deng Y. Tao Y. Lv W. Yang Q.-H. Adv. Sci. 2019;6:1802355. doi: 10.1002/advs.201802355. PubMed DOI PMC
Acerce M. Voiry D. Chhowalla M. Nat. Nanotechnol. 2015;10:313–318. doi: 10.1038/nnano.2015.40. PubMed DOI
Li Z. Gadipelli S. Li H. Howard C. A. Brett D. J. L. Shearing P. R. Guo Z. Parkin I. P. Li F. Nat. Energy. 2020;5:160–168. doi: 10.1038/s41560-020-0560-6. DOI
Lai W. Xu D. Wang X. Wang Z. Liu Y. Zhang X. Li Y. Liu X. Phys. Chem. Chem. Phys. 2017;19:24076–24081. doi: 10.1039/C7CP04439A. PubMed DOI
Rajeena U. Raveendran P. Ramakrishnan R. M. J. Fluorine Chem. 2020;235:109555. doi: 10.1016/j.jfluchem.2020.109555. DOI
Yarbrough W. A. J. Am. Ceram. Soc. 1992;75:3179–3200. doi: 10.1111/j.1151-2916.1992.tb04411.x. DOI
Liu Z.-J. Ding S.-J. Wang P.-F. Zhang D. W. Zhang J.-Y. Wang J.-T. Kohse-Hoinghaus K. Thin Solid Films. 2000;368:208–210. doi: 10.1016/S0040-6090(00)00766-5. DOI
Schmidt I. Benndorf C. Diamond Relat. Mater. 1997;6:964–969. doi: 10.1016/S0925-9635(96)00744-3. DOI
Robertson J. Mater. Sci. Eng., R. 2002;37:129–281. doi: 10.1016/S0927-796X(02)00005-0. DOI
Pischedda V. Radescu S. Dubois M. Batisse N. Balima F. Cavallari C. Cardenas L. Carbon. 2017;114:690–699. doi: 10.1016/j.carbon.2016.12.051. DOI
Touhara H. Kadono K. Fujii Y. Watanabe N. Z. Anorg. Allg. Chem. 1987;544:7–20. doi: 10.1002/zaac.19875440102. DOI
Bakharev P. V. Huang M. Saxena M. Lee S. W. Joo S. H. Park S. O. Dong J. Camacho-Mojica D. C. Jin S. Kwon Y. Biswal M. Ding F. Kwak S. K. Lee Z. Ruoff R. S. Nat. Nanotechnol. 2020;15:59–66. doi: 10.1038/s41565-019-0582-z. PubMed DOI
Sivek J. Leenaerts O. Partoens B. Peeters F. M. J. Phys. Chem. C. 2012;116:19240–19245. doi: 10.1021/jp3027012. DOI
Karlický F. Kumara R. D. Otyepka M. Zbořil R. ACS Nano. 2013;7:6434–6464. doi: 10.1021/nn4024027. PubMed DOI
Medveď M. Zoppellaro G. Ugolotti J. Matochová D. Lazar P. Pospíšil T. Bakandritsos A. Tuček J. Zbořil R. Otyepka M. Nanoscale. 2018;10:4696–4707. doi: 10.1039/C7NR09426D. PubMed DOI PMC
Zaoralová D. Hrubý V. Šedajová V. Mach R. Kupka V. Ugolotti J. Bakandritsos A. Medved M. Otyepka M. ACS Sustainable Chem. Eng. 2020;8:4764–4772. doi: 10.1021/acssuschemeng.9b07161. DOI
Zoppellaro G. Bakandritsos A. Tuček J. Błoński P. Susi T. Lazar P. Bad’ura Z. Steklý T. Opletalová A. Otyepka M. Zbořil R. Adv. Mater. 2019;31:1902587. doi: 10.1002/adma.201902587. PubMed DOI
Liu Y. Shen Y. Sun L. Li J. Liu C. Ren W. Li F. Gao L. Chen J. Liu F. Sun Y. Tang N. Cheng H.-M. Du Y. Nat. Commun. 2016;7:1–9. PubMed PMC
Mazur A. S. Vovk M. A. Tolstoy P. M. Fullerenes, Nanotubes, Carbon Nanostruct. 2020;28:202–213. doi: 10.1080/1536383X.2019.1686622. DOI
Johnson R. L. Anderson J. M. Shanks B. H. Schmidt-Rohr K. Chem. Mater. 2014;26:5523–5532. doi: 10.1021/cm501562t. DOI
Giraudet J. Dubois M. Hamwi A. Stone W. E. E. Pirotte P. Masin F. J. Phys. Chem. B. 2005;109:175–181. doi: 10.1021/jp046833j. PubMed DOI
Stankovich S. Dikin D. A. Piner R. D. Kohlhaas K. A. Kleinhammes A. Jia Y. Wu Y. Nguyen S. T. Ruoff R. S. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI
Gao W. Alemany L. B. Ci L. Ajayan P. M. Nat. Chem. 2009;1:403–408. doi: 10.1038/nchem.281. PubMed DOI
Mayo D. W., in Course Notes on the Interpretation of Infrared and Raman Spectra, eds. D. W. yo, F. A. Miller and R. W. Hannah, John Wiley & Sons, Inc., 2004, pp. 101–140
Senthilnathan J. Weng C.-C. Liao J.-D. Yoshimura M. Sci. Rep. 2013;3:srep02414. PubMed PMC
Bakandritsos A. Kadam R. G. Kumar P. Zoppellaro G. Medved’ M. Tuček J. Montini T. Tomanec O. Andrýsková P. Drahoš B. Varma R. S. Otyepka M. Gawande M. B. Fornasiero P. Zbořil R. Adv. Mater. 2019;31:1900323. doi: 10.1002/adma.201900323. PubMed DOI
Lazar P. Mach R. Otyepka M. J. Phys. Chem. C. 2019;123:10695–10702. doi: 10.1021/acs.jpcc.9b02163. DOI
Wu X. Zhao H. Pei J. Yan D. Appl. Phys. Lett. 2017;110:133102. doi: 10.1063/1.4979166. DOI
Hulicova-Jurcakova D. Seredych M. Lu G. Q. Bandosz T. J. Adv. Funct. Mater. 2009;19:438–447. doi: 10.1002/adfm.200801236. DOI
Weinstein L. Dash R. Mater. Today. 2013;16:356–357. doi: 10.1016/j.mattod.2013.09.005. DOI
Yoon Y. Lee K. Kwon S. Seo S. Yoo H. Kim S. Shin Y. Park Y. Kim D. Choi J.-Y. Lee H. ACS Nano. 2014;8:4580–4590. doi: 10.1021/nn500150j. PubMed DOI
Wang J. Tang J. Ding B. Malgras V. Chang Z. Hao X. Wang Y. Dou H. Zhang X. Yamauchi Y. Nat. Commun. 2017;8:15717. doi: 10.1038/ncomms15717. PubMed DOI PMC
Stoller M. D. Ruoff R. S. Energy Environ. Sci. 2010;3:1294–1301. doi: 10.1039/C0EE00074D. DOI
Zhang S. Pan N. Adv. Energy Mater. 2015;5:1401401. doi: 10.1002/aenm.201401401. DOI
Noori A. El-Kady M. F. Rahmanifar M. S. Kaner R. B. Mousavi M. F. Chem. Soc. Rev. 2019;48:1272–1341. doi: 10.1039/C8CS00581H. PubMed DOI
Weber R. Genovese M. Louli A. J. Hames S. Martin C. Hill I. G. Dahn J. R. Nat. Energy. 2019;4:683–689. doi: 10.1038/s41560-019-0428-9. DOI
Lin X. Salari M. Arava L. M. R. Ajayan P. M. Grinstaff M. W. Chem. Soc. Rev. 2016;45:5848–5887. doi: 10.1039/C6CS00012F. PubMed DOI
Timperman L. Galiano H. Lemordant D. Anouti M. Electrochem. Commun. 2011;13:1112–1115. doi: 10.1016/j.elecom.2011.07.010. DOI
Alvarado J. Schroeder M. A. Zhang M. Borodin O. Gobrogge E. Olguin M. Ding M. S. Gobet M. Greenbaum S. Meng Y. S. Xu K. Mater. Today. 2018;21:341–353. doi: 10.1016/j.mattod.2018.02.005. DOI
2D Nitrogen-Doped Graphene Materials for Noble Gas Separation
Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts