2D Nitrogen-Doped Graphene Materials for Noble Gas Separation
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004587
MEYS of the Czech Republic
LM2018124
MEYS of the Czech Republic
Horizon 2020
European Union
CZ.10.03.01/00/22_003/0000048
Ministerstvo Průmyslu a Obchodu
CZ.02.1.01/0.0/0.0/15_003/0000416
Ministerstvo Školství, Mládeže a Tělovýchovy
DE-AC05-76RL0-1830
Battelle
FWP 12152
Basic Energy Sciences
683024
European Research Council - International
PubMed
39506387
PubMed Central
PMC11817904
DOI
10.1002/smll.202408525
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, defect engineering, noble gas separation, selectivity, symmetry‐adapted perturbation theory (SAPT), xenon,
- Publikační typ
- časopisecké články MeSH
Noble gases, notably xenon, play a pivotal role in diverse high-tech applications. However, manufacturing xenon is an inherently challenging task, due to its unique properties and trace abundance in the Earth's atmosphere. Consequently, there is a pressing need for the development of efficient methods for the separation of noble gases. Using mild fluorographene chemistry, nitrogen-doped graphene (GNs) materials are synthesized with abundant aromatic regions and extensive nitrogen doping within the vacancies and holes of the aromatic lattice. Due to the organized interlayer "nanochannels", nitrogen functional groups, and defects within the two-dimensional (2D) structures, GNs exhibits effective selectivity for Xe over Kr at low pressure. This enhanced selectivity is attributed to the stronger binding affinity of Xe to GN compared to Kr. The adsorption is governed by London dispersion forces, as revealed by theoretical calculations using symmetry-adapted perturbation theory (SAPT). Investigation of other GNs differing in nitrogen content, surface area, and pore sizes underscores the significance of nitrogen functional groups, defects, and interlayer nanochannels over the surface area in achieving superior selectivity. This work offers a new perspective on the design and fabrication of functionalized graphene derivatives, exhibiting superior noble gas storage and separation activity exploitable in gas production technologies.
Zobrazit více v PubMed
Banerjee D., Simon C. M., Elsaidi S. K., Haranczyk M., Thallapally P. K., Chem 2018, 4, 466.
D. E. Lott III, Geochem. Geophys. Geosystems 2001, 2, 1068.
Liu J., Fernandez C. A., Martin P. F., Thallapally P. K., Strachan D. M., Ind. Eng. Chem. Res. 2014, 53, 12893.
Diachenko O. V., Stefanovskyy A. N., J. Chem. Technol. 2023, 31, 750.
Lin R. B., Xiang S., Zhou W., Chen B., Chem 2020, 6, 337.
Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., O'Keeffe M., Yaghi O. M., Science 2002, 295, 469. PubMed
Férey G., Chem. Soc. Rev. 2007, 37, 191. PubMed
Furukawa H., Cordova K. E., O'Keeffe M., Yaghi O. M., Science 2013, 341, 1230444. PubMed
Li J. R., Kuppler R. J., Zhou H. C., Chem. Soc. Rev. 2009, 38, 1477. PubMed
Li J. R., Sculley J., Zhou H. C., Chem. Rev. 2012, 112, 869. PubMed
Sumida K., Rogow D. L., Mason J. A., McDonald T. M., Bloch E. D., Herm Z. R., Bae T. H., Long J. R., Chem. Rev. 2012, 112, 724. PubMed
Feldman J., Paul M., Xu G., Rademacher D. X., Wilson J., Nenoff T. M., J. Environ. Radioact. 2020, 220, 106279. PubMed
Assfour B., Dawahra S., Ann. Nucl. Energy 2020, 148, 107730.
Banerjee D., Cairns A. J., Liu J., Motkuri R. K., Nune S. K., Fernandez C. A., Krishna R., Strachan D. M., Thallapally P. K., Acc. Chem. Res. 2015, 48, 211. PubMed
Banerjee D., Simon C. M., Plonka A. M., Motkuri R. K., Liu J., Chen X., Smit B., Parise J. B., Haranczyk M., Thallapally P. K., Nat. Commun. 2016, 7, ncomms11831. PubMed PMC
Niu Z., Fan Z., Pham T., Verma G., Forrest K. A., Space B., Thallapally P. K., Al‐Enizi A. M., Ma S., Angew. Chem., Int. Ed. 2022, 61, 202117807. PubMed
Kim M. B., Robinson A. J., Sushko M. L., Thallapally P. K., J. Ind. Eng. Chem. 2023, 118, 181.
Gantzler N., Kim M. B., Robinson A., Terban M. W., Ghose S., Dinnebier R. E., York A. H., Tiana D., Simon C. M., Thallapally P. K., Cell Rep. Phys. Sci. 2022, 3, 101025.
Lee W. G., Yoon T. U., Bae Y. S., Kim K. S., Baek S. B., RSC Adv. 2019, 9, 36808. PubMed PMC
Deng Z., Liu Y., Wan M., Ge S., Zhao Z., Chen J., Chen S., Deng S., Wang J., Sep. Purif. Technol. 2023, 308, 122942.
Zhu Z., Li B., Liu X., Zhang P., Chen S., Deng Q., Zeng Z., Wang J., Deng S., Sep. Purif. Technol. 2021, 274, 119132.
Jayaramulu K., Mukherjee S., Morales D. M., Dubal D. P., Nanjundan A. K., Schneemann A., Masa J., Kment S., Schuhmann W., Otyepka M., Zbořil R., Fischer R. A., Chem. Rev. 2022, 122, 17241. PubMed PMC
Luque‐Alled J. M., Moreno C., Gorgojo P., Curr. Opin. Chem. Eng. 2023, 39, 100901.
Cheng L., Liu G., Zhao J., Jin W., Acc. Mater. Res. 2021, 2, 114.
Liu P., Hou J., Zhang Y., Li L., Lu X., Tang Z., Inorg. Chem. Front. 2020, 7, 2560.
Liu M., Gurr P. A., Fu Q., Webley P. A., Qiao G. G., J. Mater. Chem. A 2018, 6, 23169.
Jayaramulu K., Devi B., Chem. Mater. 2023, 35, 9473.
Georgakilas V., Otyepka M., Bourlinos A. B., Chandra V., Kim N., Kemp K. C., Hobza P., Zboril R., Kim K. S., Chem. Rev. 2012, 112, 6156. PubMed
Yoo B. M., Shin J. E., Lee H. D., Park H. B., Curr. Opin. Chem. Eng. 2017, 16, 39.
Jiang D., Cooper V. R., Dai S., Nano Lett. 2009, 9, 4019. PubMed
Chi C., Wang X., Peng Y., Qian Y., Hu Z., Dong J., Zhao D., Chem. Mater. 2016, 28, 2921.
Paulista Neto A. J., Fileti E. E., J. Phys. Chem. B 2018, 122, 2578. PubMed
Dasgupta T., Punnathanam S. N., Ayappa K. G., Chem. Eng. Sci. 2015, 121, 279.
Xu Q., Xu H., Chen J., Lv Y., Dong C., Sreeprasad T. S, Inorg. Chem. Front. 2015, 2, 417.
Li Z., Zhang J., Zhang N., Li Z., Bao J., Zhang X., He G., Chen C., Song Y., Carbon 2024, 216, 118524.
Lee S. E., Jang J., Kim J., Woo J. Y., Seo S., Jo S., Kim J. W., Jeon E. S., Jung Y., Han C. S., J. Membr. Sci. 2020, 610, 118178.
Lee K., Yoon Y., Cho Y., Lee S. M., Shin Y., Lei H., Lee H., ACS Nano 2016, 10, 6799. PubMed
Xuan Y., Zhao L., Li D., Pang S., An Y., RSC Adv. 2023, 13, 23169. PubMed PMC
Wu Z. F., Sun P. Z., Wahab O. J., Tan Y. T., Barry D., Periyanagounder D., Pillai P. B., Dai Q., Xiong W. Q., Vega L. F., Lulla K., Yuan S. J., Nair R. R., Daviddi E., Unwin P. R., Geim A. K., Lozada‐Hidalgo M., Nat. Commun. 2023, 14, 7756. PubMed PMC
Vazhappilly T., Ghanty T. K., Mater. Today Commun. 2020, 22, 100738.
Hage F. S., Hardcastle T. P., Gjerding M. N., Kepaptsoglou D. M., Seabourne C. R., Winther K. T., Zan R., Amani J. A., Hofsaess H. C., Bangert U., Thygesen K. S., Ramasse Q. M., ACS Nano 2018, 12, 1837. PubMed
Nigar S., Zhou Z., Wang H., Imtiaz M., RSC Adv. 2017, 7, 51546.
Bokdam M., Khomyakov P. A., Brocks G., Zhong Z., Kelly P. J., Nano Lett. 2011, 11, 4631. PubMed
Li J., Lin L., Rui D., Li Q., Zhang J., Kang N., Zhang Y., Peng H., Liu Z., Xu H. Q., ACS Nano 2017, 11, 4641. PubMed
Mallada B., Edalatmanesh S., Lazar P., Redondo J., Gallardo A., Zbořil R., Jelínek P., Švec M., de la Torre B., ACS Sustainable Chem. Eng. 2020, 8, 3437.
Šedajová V., Bakandritsos A., Błoński P., Medveď M., Langer R., Zaoralová D., Ugolotti J., Dzíbelová J., Jakubec P., Kupka V., Otyepka M., Energy Environ. Sci. 2022, 15, 740. PubMed PMC
Karlický F., Kumara Ramanatha Datta K., Otyepka M., Zbořil R., ACS Nano 2013, 7, 6434. PubMed
Zbořil R., Karlický F., Bourlinos A. B., Steriotis T. A., Stubos A. K., Georgakilas V., Šafářová K., Jančík D., Trapalis C., Otyepka M., Small 2010, 6, 2885. PubMed PMC
Hrubý V., Zaoralová D., Medveď M., Bakandritsos A., Zbořil R., Otyepka M., Nanoscale 2022, 14, 13490. PubMed PMC
Zaoralová D., Hrubý V., Šedajová V., Mach R., Kupka V., Ugolotti J., Bakandritsos A., Medved’ M., Otyepka M., ACS Sustainable Chem. Eng. 2020, 8, 4764.
Zeng D. M., Huang L., Fu X. P., Wang Y. L., Chen J., Liu Q. Y., Inorg. Chem. 2024, 63, 5151. PubMed
Gong W., Xie Y., Wang X., Kirlikovali K. O., Idrees K. B., Sha F., Xie H., Liu Y., Chen B., Cui Y., Farha O. K., J. Am. Chem. Soc. 2023, 145, 2679. PubMed
Zhong S., Wang Q., Cao D., Sci. Rep. 2016, 6, 21295. PubMed PMC
Lee S., Lee J. H., Kim J., Korean J. Chem. Eng. 2018, 35, 214.
Phosphoryl-Graphene for High-Efficiency Uranium Separation and Recycling