Phosphoryl-Graphene for High-Efficiency Uranium Separation and Recycling
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39977601
PubMed Central
PMC11931496
DOI
10.1021/acsami.4c22385
Knihovny.cz E-zdroje
- Klíčová slova
- graphene derivatives, molecular dynamics simulations, phosphoryl-functionalized graphene, two-dimensional (2D) materials, uranium adsorption,
- Publikační typ
- časopisecké články MeSH
To enhance the sustainability of nuclear energy and protect the environment, the efficient extraction of uranium from various water sources has emerged as an essential strategy for addressing the long-term challenges of nuclear waste management. In this study, we designed phosphoryl-functionalized graphene (PG) for efficient uranyl adsorption and synthesized the material from fluorinated graphene using phosphoryl ethanolamine under solvothermal conditions. The resultant PG features a unique 2D structure equipped with solvent-exposed phosphoryl groups, making it highly suitable for uranium adsorption in aqueous solutions. Notably, PG demonstrated a high sorption efficiency (∼77%) with rapid extraction capability (∼5 min) for U(VI) from aqueous media at pH 7, achieving an adsorption capacity of 316 mg U g-1. It also demonstrates good recyclability and stability even after 3 cycles and exhibits a significant seawater adsorption capacity of 117.8 mg U g-1. Both X-ray photoelectron spectroscopy analysis and molecular dynamics simulations revealed a preferential binding of uranyl ions to the phosphoryl groups of PG. This work paves the way for designing and developing functional graphene derivatives for efficient uranium extraction from various water resources, with promising potential for the recovery of other radioactive elements.
Zobrazit více v PubMed
Chen T.; Yu K.; Dong C.; Yuan X.; Gong X.; Lian J.; Cao X.; Li M.; Zhou L.; Hu B.; He R.; Zhu W.; Wang X. Advanced Photocatalysts for Uranium Extraction: Elaborate Design and Future Perspectives. Coord. Chem. Rev. 2022, 467, 214615.10.1016/j.ccr.2022.214615. DOI
Davies R. V.; Kennedy J.; McIlroy R. W.; Spence R.; Hill K. M. Extraction of Uranium from Sea Water. Nature 1964, 203 (4950), 1110–1115. 10.1038/2031110a0. DOI
Wang Y.; Lu Z.; Luo M.; Zhao Z.; Wei Y.; Wang H. Enhanced Uranium Adsorption Performance of Porous MXene Nanosheets. Sep. Purif. Technol. 2024, 335, 126134.10.1016/j.seppur.2023.126134. DOI
Zhang D.; Fang L.; Liu L.; Zhao B.; Hu B.; Yu S.; Wang X. Uranium Extraction from Seawater by Novel Materials: A Review. Sep. Purif. Technol. 2023, 320, 124204.10.1016/j.seppur.2023.124204. DOI
Xiao-Teng Z.; Dong-Mei J.; Yi-Qun X.; Jun-Chang C.; Shuai H.; Liang-Shu X. Adsorption of Uranium(VI) from Aqueous Solution by Modified Rice Stem. J. Chem. 2019, 2019 (1), 6409504.10.1155/2019/6409504. DOI
Naik M.-U.-D. Adsorbents for the Uranium Capture from Seawater for a Clean Energy Source and Environmental Safety: A Review. ACS Omega 2024, 9 (11), 12380–12402. 10.1021/acsomega.3c07961. PubMed DOI PMC
Liu H.; Fu T.; Mao Y. Metal–Organic Framework-Based Materials for Adsorption and Detection of Uranium(VI) from Aqueous Solution. ACS Omega 2022, 7 (17), 14430–14456. 10.1021/acsomega.2c00597. PubMed DOI PMC
Mittal H.; Alfantazi A. M.; Alhassan S. M. Recent Developments in the Adsorption of Uranium Ions from Wastewater/Seawater using Carbon-Based Adsorbents. J. Environ. Chem. Eng. 2024, 12 (1), 111705.10.1016/j.jece.2023.111705. DOI
Hao M.; Xie Y.; Liu X.; Chen Z.; Yang H.; Waterhouse G. I. N.; Ma S.; Wang X. Modulating Uranium Extraction Performance of Multivariate Covalent Organic Frameworks through Donor–Acceptor Linkers and Amidoxime Nanotraps. JACS Au. 2023, 3 (1), 239–251. 10.1021/jacsau.2c00614. PubMed DOI PMC
Cui W.-R.; Zhang C.-R.; Jiang W.; Li F.-F.; Liang R.-P.; Liu J.; Qiu J.-D. Regenerable and Stable sp2 Carbon-Conjugated Covalent Organic Frameworks for Selective Detection and Extraction of Uranium. Nat. Commun. 2020, 11 (1), 436.10.1038/s41467-020-14289-x. PubMed DOI PMC
Zhong L.; Feng X.; Zhang Q.; Xie X.; Luo F. An Imidazole-Based Covalent-Organic Framework Enabling a Super-Efficiency in Sunlight-Driven Uranium Extraction from Seawater. Chem. Sci. 2024, 15 (28), 10882–10891. 10.1039/D4SC02554G. PubMed DOI PMC
Xiong X. H.; Yu Z. W.; Gong L. L.; Tao Y.; Gao Z.; Wang L.; Yin W. H.; Yang L. X.; Luo F. Ammoniating Covalent Organic Framework (COF) for High-Performance and Selective Extraction of Toxic and Radioactive Uranium Ions. Adv. Sci. 2019, 6 (16), 1900547.10.1002/advs.201900547. PubMed DOI PMC
Niu C.-P.; Zhang C.-R.; Liu X.; Liang R.-P.; Qiu J.-D. Synthesis of Propenone-Linked Covalent Organic Frameworks via Claisen-Schmidt Reaction for Photocatalytic Removal of Uranium. Nat. Commun. 2023, 14 (1), 4420.10.1038/s41467-023-40169-1. PubMed DOI PMC
Lim Y. J.; Goh K.; Goto A.; Zhao Y.; Wang R. Uranium and Lithium Extraction from Seawater: Challenges and Opportunities for a Sustainable Energy Future. J. Mater. Chem. A 2023, 11 (42), 22551–22589. 10.1039/D3TA05099H. DOI
Jayaramulu K.; Mukherjee S.; Morales D. M.; Dubal D. P.; Nanjundan A. K.; Schneemann A.; Masa J.; Kment S.; Schuhmann W.; Otyepka M.; Zbořil R.; Fischer R. A. Graphene-Based Metal–Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem. Rev. 2022, 122 (24), 17241–17338. 10.1021/acs.chemrev.2c00270. PubMed DOI PMC
Naikoo G. A.; Arshad F.; Almas M.; Hassan I. U.; Pedram M. Z.; Aljabali A. A. A.; Mishra V.; Serrano-Aroca Á.; Birkett M.; Charbe N. B.; Goyal R.; Negi P.; El-Tanani M.; Tambuwala M. M. 2D Materials, Synthesis, Characterization and Toxicity: A Critical Review. Chem.-Biol. Interact. 2022, 365, 110081.10.1016/j.cbi.2022.110081. PubMed DOI
Zeng M.; Xiao Y.; Liu J.; Yang K.; Fu L. Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chem. Rev. 2018, 118 (13), 6236–6296. 10.1021/acs.chemrev.7b00633. PubMed DOI
Angizi S.; Alem S. A. A.; Hasanzadeh Azar M.; Shayeganfar F.; Manning M. I.; Hatamie A.; Pakdel A.; Simchi A. A Comprehensive Review on Planar Boron Nitride Nanomaterials: From 2D Nanosheets towards 0D Quantum Dots. Prog. Mater. Sci. 2022, 124, 100884.10.1016/j.pmatsci.2021.100884. DOI
Gupta D.; Chauhan V.; Kumar R. A Comprehensive Review on Synthesis and Applications of Molybdenum Disulfide (MoS2) Material: Past and Recent Developments. Inorg. Chem. Commun. 2020, 121, 108200.10.1016/j.inoche.2020.108200. DOI
Gogotsi Y.; Anasori B. The Rise of MXenes. ACS Nano 2019, 13 (8), 8491–8494. 10.1021/acsnano.9b06394. PubMed DOI
Debnath R.; Sutradhar P.; Saha M. Design of Porous Graphene Materials from Organic Precursors. Cryst. Res. Technol. 2023, 58 (3), 2200186.10.1002/crat.202200186. DOI
Saini H.; Srinivasan N.; Šedajová V.; Majumder M.; Dubal D. P.; Otyepka M.; Zbořil R.; Kurra N.; Fischer R. A.; Jayaramulu K. Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano 2021, 15 (12), 18742–18776. 10.1021/acsnano.1c06402. PubMed DOI
Guirguis A.; Maina J. W.; Zhang X.; Henderson L. C.; Kong L.; Shon H.; Dumée L. F. Applications of Nano-Porous Graphene Materials – Critical Review on Performance and Challenges. Mater. Horiz. 2020, 7 (5), 1218–1245. 10.1039/C9MH01570A. DOI
Ambade R. B.; Lee K. H.; Kang D. J.; Han T. H. Advances in Porous Graphene and Scalable Wet-Spinning Fiber Assembly. Acc. Mater. Res. 2023, 4 (5), 389–402. 10.1021/accountsmr.2c00186. DOI
Tao Y.; Sui Z.-Y.; Han B.-H. Advanced Porous Graphene Materials: From In-Plane Pore Generation to Energy Storage Applications. J. Mater. Chem. A 2020, 8 (13), 6125–6143. 10.1039/D0TA00154F. DOI
Asghar F.; Shakoor B.; Fatima S.; Munir S.; Razzaq H.; Naheed S.; Butler I. S. Fabrication and Prospective Applications of Graphene Oxide-Modified Nanocomposites for Wastewater Remediation. RSC Adv. 2022, 12 (19), 11750–11768. 10.1039/D2RA00271J. PubMed DOI PMC
Bhol P.; Yadav S.; Altaee A.; Saxena M.; Misra P. K.; Samal A. K. Graphene-Based Membranes for Water and Wastewater Treatment: A Review. ACS Appl. Nano Mater. 2021, 4 (4), 3274–3293. 10.1021/acsanm.0c03439. DOI
Austria H. F. M.; Subrahmanya T. M.; Setiawan O.; Widakdo J.; Chiao Y.-H.; Hung W.-S.; Wang C.-F.; Hu C.-C.; Lee K.-R.; Lai J.-Y. A Review on the Recent Advancements in Graphene-Based Membranes and Their Applications as Stimuli-Responsive Separation Materials. J. Mater. Chem. A 2021, 9 (38), 21510–21531. 10.1039/D1TA04882A. DOI
Dervin S.; Dionysiou D. D.; Pillai S. C. 2D Nanostructures for Water Purification: Graphene and Beyond. Nanoscale 2016, 8 (33), 15115–15131. 10.1039/C6NR04508A. PubMed DOI
Joshi R. K.; Alwarappan S.; Yoshimura M.; Sahajwalla V.; Nishina Y. Graphene Oxide: The New Membrane Material. Appl. Mater. Today 2015, 1 (1), 1–12. 10.1016/j.apmt.2015.06.002. DOI
Khaliha S.; Bianchi A.; Kovtun A.; Tunioli F.; Boschi A.; Zambianchi M.; Paci D.; Bocchi L.; Valsecchi S.; Polesello S.; Liscio A.; Bergamini M.; Brunetti M.; Luisa Navacchia M.; Palermo V.; Melucci M. Graphene Oxide Nanosheets for Drinking Water Purification by Tandem Adsorption and Microfiltration. Sep. Purif. Technol. 2022, 300, 121826.10.1016/j.seppur.2022.121826. DOI
Tiwary S. K.; Singh M.; Chavan S. V.; Karim A. Graphene Oxide-Based Membranes for Water Desalination and Purification. npj 2D Mater. Appl. 2024, 8 (1), 27.10.1038/s41699-024-00462-z. DOI
Shah I. A.; Bilal M.; Ihsanullah I.; Ali S.; Yaqub M. Revolutionizing Water Purification: Unleashing Graphene Oxide (GO) Membranes. J. Environ. Chem. Eng. 2023, 11 (6), 111450.10.1016/j.jece.2023.111450. DOI
Chronopoulos D. D.; Bakandritsos A.; Pykal M.; Zbořil R.; Otyepka M. Chemistry, Properties, and Applications of Fluorographene. Appl. Mater. Today 2017, 9, 60–70. 10.1016/j.apmt.2017.05.004. PubMed DOI PMC
Urbanová V.; Karlický F.; Matěj A.; Šembera F.; Janoušek Z.; Perman J. A.; Ranc V.; Čépe K.; Michl J.; Otyepka M.; Zbořil R. Fluorinated Graphenes as Advanced Biosensors – Effect of Fluorine Coverage on Electron Transfer Properties and Adsorption of Biomolecules. Nanoscale 2016, 8 (24), 12134–12142. 10.1039/C6NR00353B. PubMed DOI
Dubecký M.; Otyepková E.; Lazar P.; Karlický F.; Petr M.; čépe K.; Banáš P.; Zbořil R.; Otyepka M. Reactivity of Fluorographene: A Facile Way toward Graphene Derivatives. J. Phys. Chem. Lett. 2015, 6 (8), 1430–1434. 10.1021/acs.jpclett.5b00565. PubMed DOI
Kolařík J.; Bakandritsos A.; Bad’ura Z.; Lo R.; Zoppellaro G.; Kment Š.; Naldoni A.; Zhang Y.; Petr M.; Tomanec O.; Filip J.; Otyepka M.; Hobza P.; Zbořil R. Carboxylated Graphene for Radical-Assisted Ultra-Trace-Level Water Treatment and Noble Metal Recovery. ACS Nano 2021, 15 (2), 3349–3358. 10.1021/acsnano.0c10093. PubMed DOI
Hrubý V.; Zaoralová D.; Medved M.; Bakandritsos A.; Zbořil R.; Otyepka M. Emerging Graphene Derivatives as Active 2D Coordination Platforms for Single-Atom Catalysts. Nanoscale 2022, 14 (37), 13490–13499. 10.1039/D2NR03453K. PubMed DOI PMC
Van Der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26 (16), 1701–1718. 10.1002/jcc.20291. PubMed DOI
Jorgensen W. L.; Maxwell D. S.; Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118 (45), 11225–11236. 10.1021/ja9621760. DOI
Zhang J.; Mallants D.; Brady P. V. Molecular Dynamics Study of Uranyl Adsorption from Aqueous Solution to Smectite. Appl. Clay Sci. 2022, 218, 106361.10.1016/j.clay.2021.106361. DOI
Greathouse J. A.; O’Brien R. J.; Bemis G.; Pabalan R. T. Molecular Dynamics Study of Aqueous Uranyl Interactions with Quartz (010). J. Phys. Chem. B 2002, 106 (7), 1646–1655. 10.1021/jp013250q. DOI
Watkins E. K.; Jorgensen W. L. Perfluoroalkanes: Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations. J. Phys. Chem. A 2001, 105 (16), 4118–4125. 10.1021/jp004071w. DOI
Bayly C. I.; Cieplak P.; Cornell W.; Kollman P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 97 (40), 10269–10280. 10.1021/j100142a004. DOI
Joung I. S.; Cheatham T. E. III Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112 (30), 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91 (24), 6269–6271. 10.1021/j100308a038. DOI
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18 (12), 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling Through Velocity Rescaling. J. Chem. Phys. 2007, 126 (1), 014101.10.1063/1.2408420. PubMed DOI
Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81 (8), 3684–3690. 10.1063/1.448118. DOI
Šedajová V.; Kim M.-B.; Langer R.; Kumar G. S.; Liu L.; Badura Z.; Haag J. V.; Zoppellaro G.; Zbořil R.; Thallapally P. K.; et al. 2D Nitrogen-Doped Graphene Materials for Noble Gas Separation. Small 2025, 21, 2408525.10.1002/smll.202408525. PubMed DOI PMC
Puziy A. M.; Poddubnaya O. I.; Socha R. P.; Gurgul J.; Wisniewski M. XPS and NMR Studies of Phosphoric Acid Activated Carbons. Carbon 2008, 46 (15), 2113–2123. 10.1016/j.carbon.2008.09.010. DOI
Pelavin M.; Hendrickson D. N.; Hollander J. M.; Jolly W. L. Phosphorus 2p Electron Binding Energies. Correlation with Extended Hueckel Charges. J. Phys. Chem. 1970, 74 (5), 1116–1121. 10.1021/j100700a027. DOI
Chen Y.; Song X.; Zhao T.; Xiao Y.; Wang Y.; Chen X. A Phosphorylethanolamine-Functionalized Super-Hydrophilic 3D Graphene-Based Foam Filter for Water Purification. J. Hazard. Mater. 2018, 343, 298–303. 10.1016/j.jhazmat.2017.09.045. PubMed DOI
Choi C. H.; Park S. H.; Woo S. I. Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity. ACS Nano 2012, 6 (8), 7084–7091. 10.1021/nn3021234. PubMed DOI
Zaoralová D.; Hrubý V.; Šedajová V.; Mach R.; Kupka V.; Ugolotti J.; Bakandritsos A.; Medved’ M.; Otyepka M. Tunable Synthesis of Nitrogen Doped Graphene from Fluorographene under Mild Conditions. ACS Sustainable Chem. Eng. 2020, 8 (12), 4764–4772. 10.1021/acssuschemeng.9b07161. DOI
Singh S. K.; Srinivasan S. G.; Neek-Amal M.; Costamagna S.; van Duin A. C. T.; Peeters F. M. Thermal Properties of Fluorinated Graphene. Phys. Rev. B 2013, 87 (10), 104114.10.1103/PhysRevB.87.104114. DOI
Wang D.; Song J.; Lin S.; Wen J.; Ma C.; Yuan Y.; Lei M.; Wang X.; Wang N.; Wu H. A Marine-Inspired Hybrid Sponge for Highly Efficient Uranium Extraction from Seawater. Adv. Funct. Mater. 2019, 29 (32), 1901009.10.1002/adfm.201901009. DOI
Di T.; Tan D.; Yu Q.; Lin J.; Zhu T.; Li T.; Li L. Ultra-High Performance of Hyper-Crosslinked Phosphate-Based Polymer for Uranium and Rare Earth Element Adsorption in Aqueous Solution. Langmuir 2019, 35 (43), 13860–13871. 10.1021/acs.langmuir.9b02459. PubMed DOI
Xiang W.; Liu H.; Zhu J.; Gong H.; Cao Q. Room Temperature Hydroxyl Group-Assisted Preparation of Hydrophobicity-Adjustable Metal-Organic Framework UiO-66 Composites: Towards Continuous Oil Collection and Emulsion Separation. Chem. - Eur. J. 2023, 29 (37), e20230066210.1002/chem.202300662. PubMed DOI
Han X.-Y.; Ma W.-X.; Zhang H.-R.; Chen G.-E.; Shi Y.; Xu Z.-L. Self Assembled PP Membrane with Photocatalytic Self-Cleaning Performance for Efficient Oil/Water Emulsion Separation. Colloids Surf., A 2023, 669, 131383.10.1016/j.colsurfa.2023.131383. DOI
Zhang X.; Li K.; Li X.; Guo L.; Deng S.; Xu Z.; Zhu G. Facile Preparation of Durable Superhydrophobic DTMS@HKUST-1 Wood Membrane for Continuous Oil-Water Separation in Harsh Conditions. Surf. Interfaces 2024, 44, 103778.10.1016/j.surfin.2023.103778. DOI
Zhang T.; Li Z.; Liu Y.; Ding K.; Guo Y.; Xu Y.; Sun M.; Wang D.; Li Q. Electrospinning Inorganic/Organic Nanohybridization Membranes with Hydrophobic and Oleophobic Performance. Fibers Polym. 2023, 24 (12), 4169–4179. 10.1007/s12221-023-00358-7. DOI
He Z.; Hu N.; Meng X.; Li J.; Wu Q.; Yang G.; Zhang W.; Wang Y. Dopamine/β-Cyclodextrin Synergistically Modified Core-Shell MF@ZIF-8 Porous Membrane for High-Efficient Filtering of Particulate Matter (PM) in Air and Gathering Oil in Water. Chem. Eng. J. 2023, 472, 144810.10.1016/j.cej.2023.144810. DOI
Mao X.; Wang Y.; Gao Z.; Xing W.; Zhang X.; Li L.; Tong A.; Huang L.; Kipper M. J.; Tang J. Acid, Alkali, and Abrasion-Resistant Nanofibrous Membranes Composed of ZIF-8 Metal–Organic Framework and Carbon Nanotubes for Oil–Water Separation. ACS Appl. Nano Mater. 2023, 6 (23), 22363–22372. 10.1021/acsanm.3c04580. DOI
Xu S.; Ren L.-F.; Zhou Q.; Bai H.; Li J.; Shao J. Facile ZIF-8 Functionalized Hierarchical Micronanofiber Membrane for High-Efficiency Separation of Water-in-oil Emulsions. J. Appl. Polym. Sci. 2018, 135 (27), 46462.10.1002/app.46462. DOI
Ye H.; Chen D.; Li N.; Xu Q.; Li H.; He J.; Lu J. Durable and Robust Self-Healing Superhydrophobic Co-PDMS@ZIF-8-Coated MWCNT Films for Extremely Efficient Emulsion Separation. ACS Appl. Mater. Interfaces 2019, 11 (41), 38313–38320. 10.1021/acsami.9b13539. PubMed DOI
Zhan Y.; He S.; Hu J.; Zhao S.; Zeng G.; Zhou M.; Zhang G.; Sengupta A. Robust Super-Hydrophobic/Super-Oleophilic Sandwich-like UIO-66-F4@rGO Composites for Efficient and Multitasking Oil/Water Separation Applications. J. Hazard. Mater. 2020, 388, 121752.10.1016/j.jhazmat.2019.121752. PubMed DOI
Wei Z.; Su Q.; Lin Q.; Wang X.; Long S.; Zhang G.; Yang J. Multifunctional Oxidized Poly (Arylene Sulfide Sulfone)/UiO-66 Nanofibrous Membrane with Efficient Adsorption/Separation Ability in Harsh Environment. Chem. Eng. J. 2022, 430, 133021.10.1016/j.cej.2021.133021. DOI
Ernstsson M.; Dedinaite A.; Rojas O. J.; Claesson P. M. Two Different Approaches to XPS Quantitative Analysis of Polyelectrolyte Adsorption Layers. Surf. Interface Anal. 2023, 55 (1), 26–40. 10.1002/sia.7154. DOI
Glaser T.; Meinecke J.; Länger C.; Luy J.-N.; Tonner R.; Koert U.; Dürr M. Combined XPS and DFT Investigation of the Adsorption Modes of Methyl Enol Ether Functionalized Cyclooctyne on Si(001). ChemPhyschem 2021, 22 (4), 404–409. 10.1002/cphc.202000870. PubMed DOI PMC
Ilton E. S.; Bagus P. S. XPS determination of uranium oxidation states. Surf. Interface Anal. 2011, 43 (13), 1549–1560. 10.1002/sia.3836. DOI
Qiang S.; Wang J.; Wang Y.; Yuan L.; Shi L.; Ding Z.; Wang W.; Liang J.; Li P.; Fan Q. Analysis of the Uranium Chemical State by XPS: Is What you See Real?. Appl. Surf. Sci. 2022, 576, 151886.10.1016/j.apsusc.2021.151886. DOI