Chemistry, properties, and applications of fluorographene
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
29238741
PubMed Central
PMC5721099
DOI
10.1016/j.apmt.2017.05.004
PII: S2352-9407(17)30112-9
Knihovny.cz E-zdroje
- Klíčová slova
- Chemistry, Covalent functionalization, Fluorographene, Graphene derivatives,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Fluorographene, formally a two-dimensional stoichiometric graphene derivative, attracted remarkable attention of the scientific community due to its extraordinary physical and chemical properties. We overview the strategies for the preparation of fluorinated graphene derivatives, based on top-down and bottom-up approaches. The physical and chemical properties of fluorographene, which is considered as one of the thinnest insulators with a wide electronic band gap, are presented. Special attention is paid to the rapidly developing chemistry of fluorographene, which was advanced in the last few years. The unusually high reactivity of fluorographene, which can be chemically considered perfluorinated hydrocarbon, enables facile and scalable access to a wide portfolio of graphene derivatives, such as graphene acid, cyanographene and allyl-graphene. Finally, we summarize the so far reported applications of fluorographene and fluorinated graphenes, spanning from sensing and bioimaging to separation, electronics and energy technologies.
Zobrazit více v PubMed
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. PubMed
Georgakilas V., Tiwari J.N., Kemp K.C., Perman J.A., Bourlinos A.B., Kim K.S., Zboril R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing catalytic, and biomedical applications. Chem. Rev. 2016;116:5464–5519. PubMed
Criado A., Melchionna M., Marchesan S., Prato M. The covalent functionalization of graphene on substrates. Angew. Chem. Int. Ed. 2015;54:10734–10750. PubMed
Georgakilas V., Perman J.A., Tucek J., Zboril R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015;115:4744–4822. PubMed
Eigler S., Hirsch A. Chemistry with graphene and graphene Oxide—Challenges for synthetic chemists. Angew. Chem. Int. Ed. 2014;53:7720–7738. PubMed
Chua C.K., Pumera M. Covalent chemistry on graphene. Chem. Soc. Rev. 2013;42:3222–3233. PubMed
Georgakilas V., Otyepka M., Bourlinos A.B., Chandra V., Kim N., Kemp K.C., Hobza P., Zboril R., Kim K.S. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012;112:6156–6214. PubMed
Cheng C., Li S., Thomas A., Kotov N.A., Haag R. Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem. Rev. 2017;117:1826–1914. PubMed
Heerema S.J., Dekker C. Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 2016;11:127–136. PubMed
El-Kady M.F., Shao Y., Kaner R.B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016;1:16033.
Ambrosi A., Chua C.K., Latiff N.M., Loo A.H., Wong C.H.A., Eng A.Y.S., Bonanni A., Pumera M. Graphene and its electrochemistry −an update. Chem. Soc. Rev. 2016;45:2458–2493. PubMed
Wang L., Pumera M. Electrochemical catalysis at low dimensional carbons: graphene, carbon nanotubes and beyond −a review. Appl. Mater. Today. 2016;5:134–141.
Orecchioni M., Ménard-Moyon C., Delogu L.G., Bianco A. Graphene and the immune system: challenges and potentiality. Adv. Drug Deliv. Rev. 2016;105(Part B):163–175. PubMed
Li X., Yu J., Wageh S., Al-Ghamdi A.A., Xie J. Graphene in photocatalysis: a review. Small. 2016;12:6640–6696. PubMed
Song Y., Fang W., Brenes R., Kong J. Challenges and opportunities for graphene as transparent conductors in optoelectronics. Nano Today. 2015;10:681–700.
Bonaccorso F., Colombo L., Yu G., Stoller M., Tozzini V., Ferrari A.C., Ruoff R.S., Pellegrini V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015;347:1246501. PubMed
Yang Z., Ren J., Zhang Z., Chen X., Guan G., Qiu L., Zhang Y., Peng H. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015;115:5159–5223. PubMed
Liu Z., Lau S.P., Yan F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev. 2015;44:5638–5679. PubMed
Koppens F.H.L., Mueller T., Avouris P., Ferrari A.C., Vitiello M.S., Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014;9:780–793. PubMed
Li J., Niu L., Zheng Z., Yan F. Photosensitive graphene transistors. Adv. Mater. 2014;26:5239–5273. PubMed
Jariwala D., Sangwan V.K., Lauhon L.J., Marks T.J., Hersam M.C. Carbon nanomaterials for electronics optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013;42:2824–2860. PubMed
Grigorenko A.N., Polini M., Novoselov K.S. Graphene plasmonics. Nat. Photonics. 2012;6:749–758.
Dubey G., Urcuyo R., Abb S., Rinke G., Burghard M., Rauschenbach S., Kern K. Chemical modification of graphene via hyperthermal molecular reaction. J. Am. Chem. Soc. 2014;136:13482–13485. PubMed
Englert J.M., Vecera P., Knirsch K.C., Schäfer R.A., Hauke F., Hirsch A. Scanning-Raman-Microscopy for the statistical analysis of covalently functionalized graphene. ACS Nano. 2013;7:5472–5482. PubMed
Bian S., Scott A.M., Cao Y., Liang Y., Osuna S., Houk K.N., Braunschweig A.B. Covalently patterned graphene surfaces by a force-accelerated diels–alder reaction. J. Am. Chem. Soc. 2013;135:9240–9243. PubMed
Englert J.M., Dotzer C., Yang G., Schmid M., Papp C., Gottfried J.M., Steinrück H.-P., Spiecker E., Hauke F., Hirsch A. Covalent bulk functionalization of graphene. Nat. Chem. 2011;3:279–286. PubMed
Economopoulos S.P., Rotas G., Miyata Y., Shinohara H., Tagmatarchis N. Exfoliation and chemical modification using microwave irradiation affording highly functionalized graphene. ACS Nano. 2010;4:7499–7507. PubMed
Eng A.Y.S., Chua C.K., Pumera M. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling. Nanoscale. 2015;7:20256–20266. PubMed
Sofo J.O., Chaudhari A.S., Barber G.D. Graphane: a two-dimensional hydrocarbon. Phys. Rev. B. 2007;75:153401.
Robinson J.T., Burgess J.S., Junkermeier C.E., Badescu S.C., Reinecke T.L., Perkins F.K., Zalalutdniov M.K., Baldwin J.W., Culbertson J.C., Sheehan P.E., Snow E.S. Properties of fluorinated graphene films. Nano Lett. 2010;10:3001–3005. PubMed
Nair R.R., Ren W., Jalil R., Riaz I., Kravets V.G., Britnell L., Blake P., Schedin F., Mayorov A.S., Yuan S., Katsnelson M.I., Cheng H.-M., Strupinski W., Bulusheva L.G., Okotrub A.V., Grigorieva I.V., Grigorenko A.N., Novoselov K.S., Geim A.K. Fluorographene: a two-Dimensional counterpart of teflon. Small. 2010;6:2877–2884. PubMed
Zbořil R., Karlický F., Bourlinos A.B., Steriotis T.A., Stubos A.K., Georgakilas V., Šafářová K., Jančík D., Trapalis C., Otyepka M. Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small. 2010;6:2885–2891. PubMed PMC
Chronopoulos D.D., Bakandritsos A., Lazar P., Pykal M., Čépe K., Zbořil R., Otyepka M. High-Yield alkylation and arylation of graphene via grignard reaction with fluorographene. Chem. Mater. 2017;29:926–930. PubMed PMC
Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D.D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V., Bourlinos A.B., Zbořil R., Otyepka M. Cyanographene and graphene acid: emerging derivatives enabling high-Yield and selective functionalization of graphene. ACS Nano. 2017;11:2982–2991. PubMed PMC
Lazar P., Otyepková E., Karlický F., Čépe K., Otyepka M. The surface and structural properties of graphite fluoride. Carbon. 2015;94:804–809.
Cheng S.-H., Zou K., Okino F., Gutierrez H.R., Gupta A., Shen N., Eklund P.C., Sofo J.O., Zhu J. Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B. 2010;81:205435.
Gong P., Wang Z., Wang J., Wang H., Li Z., Fan Z., Xu Y., Han X., Yang S. One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage. J. Mater. Chem. 2012;22:16950–16956.
Bourlinos A.B., Safarova K., Siskova K., Zbořil R. The production of chemically converted graphenes from graphite fluoride. Carbon. 2012;50:1425–1428.
Sun C., Feng Y., Li Y., Qin C., Zhang Q., Feng W. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale. 2014;6:2634–2641. PubMed
Zhang M., Ma Y., Zhu Y., Che J., Xiao Y. Two-dimensional transparent hydrophobic coating based on liquid-phase exfoliated graphene fluoride. Carbon. 2013;63:149–156.
Zhu M., Xie X., Guo Y., Chen P., Ou X., Yu G., Liu M. Fluorographene nanosheets with broad solvent dispersibility and their applications as a modified layer in organic field-effect transistors. Phys. Chem. Chem. Phys. 2013;15:20992–21000. PubMed
Chang H., Cheng J., Liu X., Gao J., Li M., Li J., Tao X., Ding F., Zheng Z. Facile synthesis of wide-Bandgap fluorinated graphene semiconductors. Chem. −Eur. J. 2011;17:8896–8903. PubMed
Wang Z., Wang J., Li Z., Gong P., Ren J., Wang H., Han X., Yang S. Cooperatively exfoliated fluorinated graphene with full-color emission. RSC Adv. 2012;2:11681–11686.
Yang Y., Lu G., Li Y., Liu Z., Huang X. One-step preparation of fluorographene: a highly efficient, low-cost, and large-scale approach of exfoliating fluorographite. ACS Appl. Mater. Interfaces. 2013;5:13478–13483. PubMed
Wang X., Wang W., Liu Y., Ren M., Xiao H., Liu X. Controllable defluorination of fluorinated graphene and weakening of C?F bonding under the action of nucleophilic dipolar solvent. Phys. Chem. Chem. Phys. 2016;18:3285–3293. PubMed
Withers F., Dubois M., Savchenko A.K. Electron properties of fluorinated single-layer graphene transistors. Phys. Rev. B. 2010;82:073403.
Zhang M., Liu L., He T., Wu G., Chen P. Melamine assisted solid exfoliation approach for the synthesis of few-layered fluorinated graphene nanosheets. Mater. Lett. 2016;171:191–194.
Bulusheva L.G., Tur V.A., Fedorovskaya E.O., Asanov I.P., Pontiroli D., Riccò M., Okotrub A.V. Structure and supercapacitor performance of graphene materials obtained from brominated and fluorinated graphites. Carbon. 2014;78:137–146.
Jankovský O., Mazánek V., Klímová K., Sedmidubský D., Kosina J., Pumera M., Sofer Z. Simple synthesis of fluorinated graphene: thermal exfoliation of fluorographite. Chem. −Eur. J. 2016;22:17696–17703. PubMed
Jeon K.-J., Lee Z., Pollak E., Moreschini L., Bostwick A., Park C.-M., Mendelsberg R., Radmilovic V., Kostecki R., Richardson T.J., Rotenberg E. Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. ACS Nano. 2011;5:1042–1046. PubMed
Mazánek V., Jankovský O., Luxa J., Sedmidubský D., Janoušek Z., Šembera F., Mikulics M., Sofer Z. Tuning of fluorine content in graphene: towards large-scale production of stoichiometric fluorographene. Nanoscale. 2015;7:13646–13655. PubMed
Stine R., Lee W.-K., Whitener K.E., Robinson J.T., Sheehan P.E. Chemical stability of graphene fluoride produced by exposure to XeF2. Nano Lett. 2013;13:4311–4316. PubMed
Yu X., Lin K., Qiu K., Cai H., Li X., Liu J., Pan N., Fu S., Luo Y., Wang X. Increased chemical enhancement of Raman spectra for molecules adsorbed on fluorinated reduced graphene oxide. Carbon. 2012;50:4512–4517.
Chen M., Zhou H., Qiu C., Yang H., Yu F., Sun L. Layer-dependent fluorination and doping of graphene via plasma treatment. Nanotechnology. 2012;23:115706. PubMed
Ho K.-I., Liao J.-H., Huang C.-H., Hsu C.-L., Zhang W., Lu A.-Y., Li L.-J., Lai C.-S., Su C.-Y. One-Step formation of a single atomic-layer transistor by the selective fluorination of a graphene film. Small. 2014;10:989–997. PubMed
Wang B., Wang J., Zhu J. Fluorination of graphene: a spectroscopic and microscopic study. ACS Nano. 2014;8:1862–1870. PubMed
Baraket M., Walton S.G., Lock E.H., Robinson J.T., Perkins F.K. The functionalization of graphene using electron-beam generated plasmas. Appl. Phys. Lett. 2010;96:231501.
Yang H., Chen M., Zhou H., Qiu C., Hu L., Yu F., Chu W., Sun S., Sun L. Preferential and reversible fluorination of monolayer graphene. J. Phys. Chem. C. 2011;115:16844–16848.
Sherpa S.D., Levitin G., Hess D.W. Effect of the polarity of carbon-fluorine bonds on the work function of plasma-fluorinated epitaxial graphene. Appl. Phys. Lett. 2012;101:111602.
Bruno G., Bianco G.V., Giangregorio M.M., Losurdo M., Capezzuto P. Photothermally controlled structural switching in fluorinated polyene––graphene hybrids. Phys. Chem. Chem. Phys. 2014;16:13948–13955. PubMed
Sherpa S.D., Kunc J., Hu Y., Levitin G., De H., Berger C., Hess D.W. Local work function measurements of plasma-fluorinated epitaxial graphene. Appl. Phys. Lett. 2014;104:081607.
Tahara K., Iwasaki T., Furuyama S., Matsutani A., Hatano M. Asymmetric transport property of fluorinated graphene. Appl. Phys. Lett. 2013;103:143106.
Lee W.H., Suk J.W., Chou H., Lee J., Hao Y., Wu Y., Piner R., Akinwande D., Kim K.S., Ruoff R.S. Selective-area fluorination of graphene with fluoropolymer and laser irradiation. Nano Lett. 2012;12:2374–2378. PubMed
Sysoev V.I., Okotrub A.V., Asanov I.P., Gevko P.N., Bulusheva L.G. Advantage of graphene fluorination instead of oxygenation for restorable adsorption of gaseous ammonia and nitrogen dioxide. Carbon. 2017;118:225–232.
Wang X., Dai Y., Gao J., Huang J., Li B., Fan C., Yang J., Liu X. High-yield production of highly fluorinated graphene by direct heating fluorination of graphene-oxide. ACS Appl. Mater. Interfaces. 2013;5:8294–8299. PubMed
Jankovský O., Šimek P., Sedmidubský D., Matějková S., Janoušek Z., Šembera F., Pumera M., Sofer Z. Water-soluble highly fluorinated graphite oxide. RSC Adv. 2013;4:1378–1387.
Poh H.L., Sofer Z., Klímová K., Pumera M. Fluorographenes via thermal exfoliation of graphite oxide in SF6, SF4 and MoF6 atmospheres. J. Mater. Chem. C. 2014;2:5198–5207.
Sofer Z., Šimek P., Mazánek V., Šembera F., Janoušek Z., Pumera M. Fluorographane (C1HxF1-x-)n: synthesis and properties. Chem. Commun. 2015;51:5633–5636. PubMed
Bon S.B., Valentini L., Verdejo R., Garcia Fierro J.L., Peponi L., Lopez-Manchado M.A., Kenny J.M. Plasma fluorination of chemically derived graphene sheets and subsequent modification with butylamine. Chem. Mater. 2009;21:3433–3438.
Gong P., Wang Z., Li Z., Mi Y., Sun J., Niu L., Wang H., Wang J., Yang S. Photochemical synthesis of fluorinated graphene via a simultaneous fluorination and reduction route. RSC Adv. 2013;3:6327–6330.
Wang Z., Wang J., Li Z., Gong P., Liu X., Zhang L., Ren J., Wang H., Yang S. Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon. 2012;50:5403–5410.
Pu L., Ma Y., Zhang W., Hu H., Zhou Y., Wang Q., Pei C. Simple method for the fluorinated functionalization of graphene oxide. RSC Adv. 2013;3:3881–3884.
Yang X., Jia X., Ji X. Acid induced fluorinated graphene oxide. RSC Adv. 2015;5:9337–9340.
Samanta K., Some S., Kim Y., Yoon Y., Min M., Lee S.M., Park Y., Lee H. Highly hydrophilic and insulating fluorinated reduced graphene oxide. Chem. Commun. 2013;49:8991–8993. PubMed
Gao X., (Shirley) Tang X. Effective reduction of graphene oxide thin films by a fluorinating agent: diethylaminosulfur trifluoride. Carbon. 2014;76:133–140.
Zhao F.-G., Zhao G., Liu X.-H., Ge C.-W., Wang J.-T., Li B.-L., Wang Q.-G., Li W.-S., Chen Q.-Y. Fluorinated graphene: facile solution preparation and tailorable properties by fluorine-content tuning. J. Mater. Chem. A. 2014;2:8782–8789.
Yadav S.K., Lee J.H., Park H., Hong S.M., Han T.H., Koo C.M. Facile and ecofriendly fluorination of graphene oxide. Bull. Korean Chem. Soc. 2014;35:2139–2142.
Bruna M., Massessi B., Cassiago C., Battiato A., Vittone E., Speranza G., Borini S. Synthesis and properties of monolayer graphene oxyfluoride. J. Mater. Chem. 2011;21:18730–18737.
Samarakoon D.K., Chen Z., Nicolas C., Wang X.-Q. Structural and electronic properties of fluorographene. Small. 2011;7:965–969. PubMed
Charlier J.-C., Gonze X., Michenaud J.-P. First-principles study of graphite monofluoride (CF)n. Phys. Rev. B. 1993;47:16162–16168. PubMed
Takagi Y., Kusakabe K. Transition from direct band gap to indirect band gap in fluorinated carbon. Phys. Rev. B. 2002;65:121103.
Boukhvalov D.W., Katsnelson M.I. Chemical functionalization of graphene. J. Phys. Condens. Matter. 2009;21:344205. PubMed
Karlický F., Zbořil R., Otyepka M. Band gaps and structural properties of graphene halides and their derivates: a hybrid functional study with localized orbital basis sets. J. Chem. Phys. 2012;137:034709. PubMed
Karlický F., Otyepka M. Band gaps and optical spectra from single- and double-layer fluorographene to graphite fluoride: many-body effects and excitonic states. Ann. Phys. 2014;526:408–414.
Barone V., Hod O., Peralta J.E., Scuseria G.E. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Acc. Chem. Res. 2011;44:269–279. PubMed
Krukau A.V., Vydrov O.A., Izmaylov A.F., Scuseria G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006;125:224106. PubMed
Leenaerts O., Peelaers H., Hernández-Nieves A.D., Partoens B., Peeters F.M. First-principles investigation of graphene fluoride and graphane. Phys. Rev. B. 2010;82:195436.
Karlický F., Otyepka M. Band gaps and optical spectra of chlorographene, fluorographene and graphane from G0W0 GW0 and GW calculations on top of PBE and HSE06 orbitals. J. Chem. Theory Comput. 2013;9:4155–4164. PubMed
Wei W., Jacob T. Electronic and optical properties of fluorinated graphene: a many-body perturbation theory study. Phys. Rev. B. 2013;87:115431.
Wang B., Sparks J.R., Gutierrez H.R., Okino F., Hao Q., Tang Y., Crespi V.H., Sofo J.O., Zhu J. Photoluminescence from nanocrystalline graphite monofluoride. Appl. Phys. Lett. 2010;97:141915.
Yuan S., Rösner M., Schulz A., Wehling T.O., Katsnelson M.I. Electronic structures and optical properties of partially and fully fluorinated graphene. Phys. Rev. Lett. 2015;114:047403. PubMed
Sahin H., Torun E., Bacaksiz C., Horzum S., Kang J., Senger R.T., Peeters F.M. Computing optical properties of ultra-thin crystals, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016;6:351–368.
Wang Y., Lee W.C., Manga K.K., Ang P.K., Lu J., Liu Y.P., Lim C.T., Loh K.P. Fluorinated graphene for promoting neuro-Induction of stem cells. Adv. Mater. 2012;24:4285–4290. PubMed
Peelaers H., Hernández-Nieves A.D., Leenaerts O., Partoens B., Peeters F.M. Vibrational properties of graphene fluoride and graphane. Appl. Phys. Lett. 2011;98:051914.
Ueta A., Tanimura Y., Prezhdo O.V. Infrared spectral signatures of surface-fluorinated graphene: a molecular dynamics study. J. Phys. Chem. Lett. 2012;3:246–250.
Zhou S., Sherpa S.D., Hess D.W., Bongiorno A. Chemical bonding of partially fluorinated graphene. J. Phys. Chem. C. 2014;118:26402–26408.
Dubecký M., Otyepková E., Lazar P., Karlický F., Petr M., Čépe K., Banáš P., Zbořil R., Otyepka M. Reactivity of fluorographene: a facile way toward graphene derivatives. J. Phys. Chem. Lett. 2015;6:1430–1434. PubMed
Sandford G. Perfluoroalkanes. Tetrahedron. 2003;59:437–454.
Parmentier J., Schlienger S., Dubois M., Disa E., Masin F., Centeno T.A. Structural/textural properties and water reactivity of fluorinated activated carbons. Carbon. 2012;50:5135–5147.
Singh S.K., Srinivasan S.G., Neek-Amal M., Costamagna S., van Duin A.C.T., Peeters F.M. Thermal properties of fluorinated graphene. Phys. Rev. B. 2013;87:104114.
Otyepková E., Lazar P., Čépe K., Tomanec O., Otyepka M. Organic adsorbates have higher affinities to fluorographene than to graphene. Appl. Mater. Today. 2016;5:142–149.
Karlický F., Otyepková E., Lo R., Pitoňák M., Jurečka P., Pykal M., Hobza P., Otyepka M. Adsorption of organic molecules to van der waals materials: comparison of fluorographene and fluorographite with graphene and graphite. J. Chem. Theory Comput. 2017;13:1328–1340. PubMed PMC
Romero-Aburto R., Narayanan T.N., Nagaoka Y., Hasumura T., Mitcham T.M., Fukuda T., Cox P.J., Bouchard R.R., Maekawa T., Kumar D.S., Torti S.V., Mani S.A., Ajayan P.M. Fluorinated graphene oxide; a new multimodal material for biological applications. Adv. Mater. 2013;25:5632–5637. PubMed PMC
Oh H.-G., Nam H.-G., Kim D.-H., Kim M.-H., Jhee K.-H., Song K.S. Neuroblastoma cells grown on fluorine or oxygen treated graphene sheets. Mater. Lett. 2014;131:328–331.
Teo W.Z., Chua C.K., Sofer Z., Pumera M. Fluorinated nanocarbons cytotoxicity. Chem. −Eur. J. 2015;21:13020–13026. PubMed
Teo W.Z., Sofer Z., Šembera F., Janoušek Z., Pumera M. Cytotoxicity of fluorographene. RSC Adv. 2015;5:107158–107165.
O’Hagan D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008;37:308–319. PubMed
Lee J.H., Koon G.K.W., Shin D.W., Fedorov V.E., Choi J.-Y., Yoo J.-B., Özyilmaz B. Property control of graphene by employing semi-Ionic liquid fluorination. Adv. Funct. Mater. 2013;23:3329–3334.
Ren M., Wang X., Dong C., Li B., Liu Y., Chen T., Wu P., Cheng Z., Liu X. Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation. Phys. Chem. Chem. Phys. 2015;17:24056–24062. PubMed
Stine R., Ciszek J.W., Barlow D.E., Lee W.-K., Robinson J.T., Sheehan P.E. High-Density amine-Terminated monolayers formed on fluorinated CVD-Grown graphene. Langmuir. 2012;28:7957–7961. PubMed
Whitener K.E., Stine R., Robinson J.T., Sheehan P.E. Graphene as electrophile: reactions of graphene fluoride. J. Phys. Chem. C. 2015;119:10507–10512.
Bosch-Navarro C., Walker M., Wilson N.R., Rourke J.P. Covalent modification of exfoliated fluorographite with nitrogen functionalities. J. Mater. Chem. C. 2015;3:7627–7631.
Li B., He T., Wang Z., Cheng Z., Liu Y., Chen T., Lai W., Wang X., Liu X. Chemical reactivity of C–F bonds attached to graphene with diamines depending on their nature and location. Phys. Chem. Chem. Phys. 2016;18:17495–17505. PubMed
Ye X., Ma L., Yang Z., Wang J., Wang H., Yang S. Covalent functionalization of fluorinated graphene and subsequent application as water-based lubricant additive. ACS Appl. Mater. Interfaces. 2016;8:7483–7488. PubMed
Gong P., Wang J., Sun W., Wu D., Wang Z., Fan Z., Wang H., Han X., Yang S. Tunable photoluminescence and spectrum split from fluorinated to hydroxylated graphene. Nanoscale. 2014;6:3316–3324. PubMed
Tuček J., Holá K., Bourlinos A.B., Błoński P., Bakandritsos A., Ugolotti J., Dubecký M., Karlický F., Ranc V., Čépe K., Otyepka M., Zbořil R. Room temperature organic magnets derived from sp3 functionalized graphene. Nat. Commun. 2017;8:14525. PubMed PMC
Urbanová V., Holá K., Bourlinos A.B., Čépe K., Ambrosi A., Loo A.H., Pumera M., Karlický F., Otyepka M., Zbořil R. Thiofluorographene–Hydrophilic graphene derivative with semiconducting and genosensing properties. Adv. Mater. 2015;27:2305–2310. PubMed
Kovaříček P., Bastl Z., Valeš V., Kalbac M. Covalent reactions on chemical vapor deposition grown graphene studied by surface-enhanced raman spectroscopy. Chem. −Eur. J. 2016;22:5404–5408. PubMed
Lazar P., Chua C.K., Holá K., Zbořil R., Otyepka M., Pumera M. Dichlorocarbene-Functionalized fluorographene: synthesis and reaction mechanism. Small. 2015;11:3790–3796. PubMed
Mazánek V., Libánská A., Šturala J., Bouša D., Sedmidubský D., Pumera M., Janoušek Z., Plutnar J., Sofer Z. Fluorographene modified by grignard reagents: a broad range of functional nanomaterials. Chem. −Eur. J. 2017;23:1956–1964. PubMed
Toshikatsu Ishikawa, Tamotsu Hori, Lubricant comprising a novel lubricating improver of inorganic graphite fluoride, Patent No US3607747A, 1969.
Fusaro R.L., Sliney H.E. Graphite fluoride (CFx)n—A new solid lubricant. E Trans. 1970;13:56–65.
R. Fusaro, Organopolysiloxane-bonded graphite fluoride as a solid lubricant., NASA Tech. Note −8033. (1975).
Wang L.-F., Ma T.-B., Hu Y.-Z., Wang H., Shao T.-M. Ab initio study of the friction mechanism of fluorographene and graphane. J. Phys. Chem. C. 2013;117:12520–12525.
Feng W., Long P., Feng Y., Li Y. Two-Dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. 2016;3 (n/a-n/a) PubMed PMC
Kheirabadi N., Shafiekhani A. Graphene/Li-ion battery. J. Appl. Phys. 2012;112:124323.
Nobuatsu Watanabe, Masataro Fukuda, Primary cell for electric batteries, Patent No US3536532A, 1969.
Yoshinori Toyoguchi, Takashi Iijima, Masataro Fukuda, Active material for positive electrode of battery, US Patent No US4271242A, 1979.
Watanabe N., Nakajima Touhara T.H. first ed. Elsevier; Amsterdam: 1988. Graphite Fluorides: Studies in Inorganic Chemistry.
Nakajima T. Fluorine compounds as energy conversion materials. J. Fluor. Chem. 2013;149:104–111.
Jeon I.-Y., Ju M.J., Xu J., Choi H.-J., Seo J.-M., Kim M.-J., Choi I.T., Kim H.M., Kim J.C., Lee J.-J., Liu H.K., Kim H.K., Dou S., Dai L., Baek J.-B. Edge-Fluorinated graphene nanoplatelets as high performance electrodes for dye-Sensitized solar cells and lithium ion batteries. Adv. Funct. Mater. 2015;25:1170–1179.
Meduri P., Chen H., Xiao J., Martinez J.J., Carlson T., Zhang J.-G., Deng Z.D. Tunable electrochemical properties of fluorinated graphene. J. Mater. Chem. A. 2013;1:7866–7869.
Wang X., Wang W., Liu Y., Ren M., Xiao H., Liu X. Controllable defluorination of fluorinated graphene and weakening of C-F bonding under the action of nucleophilic dipolar solvent. Phys. Chem. Chem. Phys. PCCP. 2016;18:3285–3293. PubMed
Hou K., Gong P., Wang J., Yang Z., Ma L., Yang S. Construction of highly ordered fluorinated graphene composite coatings with various fluorine contents for enhanced lubrication performance. Tribol. Lett. 2015;60:6.
Zhan L., Yang S., Wang Y., Wang Y., Ling L., Feng X. Fabrication of fully fluorinated graphene nanosheets towards high-Performance lithium storage. Adv. Mater. Interfaces. 2014;1(3)
Vizintin A., Lozinšek M., Chellappan R.K., Foix D., Krajnc A., Mali G., Drazic G., Genorio B., Dedryvère R., Dominko R. Fluorinated reduced graphene oxide as an interlayer in Li–S batteries. Chem. Mater. 2015;27:7070–7081.
Xie J., Li C., Cui Z., Guo X. Transition-Metal-Free magnesium-Based batteries activated by anionic insertion into fluorinated graphene nanosheets. Adv. Funct. Mater. 2015;25:6519–6526.
Peng W., Li H., Song S. Synthesis of fluorinated graphene/CoAl-layered double hydroxide composites as electrode materials for supercapacitors. ACS Appl. Mater. Interfaces. 2017;9:5204–5212. PubMed
An H., Li Y., Long P., Gao Y., Qin C., Cao C., Feng Y., Feng W. Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J. Power Sources. 2016;312:146–155.
Chia X., Ambrosi A., Otyepka M., Zbořil R., Pumera M. Fluorographites (CFx)n exhibit improved heterogeneous electron-transfer rates with increasing level of fluorination: towards the sensing of biomolecules. Chem. −Eur. J. 2014;20:6665–6671. PubMed
Urbanová V., Karlický F., Matěj A., Šembera F., Janoušek Z., Perman J.A., Ranc V., Čépe K., Michl J., Otyepka M., Zbořil R. Fluorinated graphenes as advanced biosensors −effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. Nanoscale. 2016;8:12134–12142. PubMed
Das S., Sudhagar P., Verma V., Song D., Ito E., Lee S.Y., Kang Y.S., Choi W. Amplifying charge-Transfer characteristics of graphene for triiodide reduction in dye-Sensitized solar cells. Adv. Funct. Mater. 2011;21:3729–3736.
Ho K.-I., Huang C.-H., Liao J.-H., Zhang W., Li L.-J., Lai C.-S., Su C.-Y. Fluorinated graphene as high performance dielectric materials and the applications for graphene nanoelectronics. Sci. Rep. 2014;4:5893. PubMed PMC
Ho K.-I., Boutchich M., Su C.-Y., Moreddu R., Marianathan E.S.R., Montes L., Lai C.-S. A self-Aligned high-Mobility graphene transistor: decoupling the channel with fluorographene to reduce scattering. Adv. Mater. 2015;27:6519–6525. PubMed
Zheng X., Zhang M., Shi X., Wang G., Zheng L., Yu Y., Huang A., Chu P.K., Gao H., Ren W., Di Z., Wang X. Fluorinated graphene in interface engineering of Ge-based nanoelectronics. Adv. Funct. Mater. 2015;25:1805–1813.
Zhao J., Cabrera C.R., Xia Z., Chen Z. Single-sided fluorine–functionalized graphene: a metal–free electrocatalyst with high efficiency for oxygen reduction reaction. Carbon. 2016;104:56–63.
Zhang J., Dai L. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. Int. Ed. 2016;55:13296–13300. PubMed
Vineesh T.V., Nazrulla M.A., Krishnamoorthy S., Narayanan T.N., Alwarappan S. Synergistic effects of dopants on the spin density of catalytic active centres of N-doped fluorinated graphene for oxygen reduction reaction. Appl. Mater. Today. 2015;1:74–79.
Kakaei K., Balavandi A. Hierarchically porous fluorine-doped graphene nanosheets as efficient metal-free electrocatalyst for oxygen reduction in gas diffusion electrode. J. Colloid Interface Sci. 2017;490:819–824. PubMed
Zhang L., Xia Z. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C. 2011;115:11170–11176.
Liu H.Y., Hou Z.F., Hu C.H., Yang Y., Zhu Z.Z. Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine. J. Phys. Chem. C. 2012;116:18193–18201.
Nair R.R., Sepioni M., Tsai I.-L., Lehtinen O., Keinonen J., Krasheninnikov A.V., Thomson T., Geim A.K., Grigorieva I.V. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012;8:199–202.
Makarova T.L., Zagaynova V.S., Inan G., Okotrub A.V., Chekhova G.N., Pinakov D.V., Bulusheva L.G. Structural evolution and magnetic properties of underfluorinated C2F. J. Supercond. Nov. Magn. 2012;25:79–83.
Feng Q., Tang N., Liu F., Cao Q., Zheng W., Ren W., Wan X., Du Y. Obtaining high localized spin magnetic moments by fluorination of reduced graphene oxide. ACS Nano. 2013;7:6729–6734. PubMed
Friedman A.L., van ’t Erve O.M.J., Robinson J.T., Whitener K.E., Jonker B.T. Hydrogenated graphene as a homoepitaxial tunnel barrier for spin and charge transport in graphene. ACS Nano. 2015;9:6747–6755. PubMed
Gao D., Liu Y., Song M., Shi S., Si M., Xue D. Manifestation of high-temperature ferromagnetism in fluorinated graphitic carbon nitride nanosheets. J. Mater. Chem. C. 2015;3:12230–12235.
Huang X., Liu Q., Huang X., Nie Z., Ruan T., Du Y., Jiang G. Fluorographene as a mass spectrometry probe for high-throughput identification and screening of emerging chemical contaminants in complex samples. Anal. Chem. 2017;89:1307–1314. PubMed
Yang Z., Wang L., Sun W., Li S., Zhu T., Liu W., Liu G. Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning. Appl. Surf. Sci. 2017;401:146–155.
Jayaramulu K., Datta K.K.R., Rösler C., Petr M., Otyepka M., Zboril R., Fischer R.A. Biomimetic Superhydrophobic/Superoleophilic highly fluorinated graphene oxide and ZIF-8 composites for oil–water separation. Angew. Chem. Int. Ed. 2016;55:1178–1182. PubMed
Wu T., Xue Q., Ling C., Shan M., Liu Z., Tao Y., Li X. Fluorine-modified porous graphene as membrane for CO2/N2 separation: molecular dynamic and first-Principles simulations. J. Phys. Chem. C. 2014;118:7369–7376.
Schrier J. Fluorinated and nanoporous graphene materials As sorbents for gas separations. ACS Appl. Mater. Interfaces. 2011;3:4451–4458. PubMed
Gai J.-G., Gong X.-L., Wang W.-W., Zhang X., Kang W.-L. An ultrafast water transport forward osmosis membrane: porous graphene. J. Mater. Chem. A. 2014;2:4023–4028.
Hu Y.H. The first magnetic-nanoparticle-free carbon-based contrast agent of magnetic-resonance imaging-fluorinated graphene oxide. Small. 2014;10:1451–1452. PubMed
Radhakrishnan S., Samanta A., Sudeep P.M., Maldonado K.L., Mani S.A., Acharya G., Tiwary C.S., Singh A.K., Ajayan P.M. Metal-Free dual modal contrast agents based on fluorographene quantum dots. Part. Part. Syst. Charact. 2017;34:1600221.
Sun H., Ji H., Ju E., Guan Y., Ren J., Qu X. Synthesis of fluorinated and nonfluorinated graphene quantum dots through a new top-Down strategy for long-time cellular imaging. Chem. −Eur. J. 2015;21:3791–3797. PubMed
Bourlinos A.B., Bakandritsos A., Liaros N., Couris S., Safarova K., Otyepka M., Zbořil R. Water dispersible functionalized graphene fluoride with significant nonlinear optical response. Chem. Phys. Lett. 2012;543:101–105.
Chantharasupawong P., Philip R., Narayanan N.T., Sudeep P.M., Mathkar A., Ajayan P.M., Thomas J. Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties. J. Phys. Chem. C. 2012;116:25955–25961.
Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts
Electrocatalytic activity for proton reduction by a covalent non-metal graphene-fullerene hybrid
Synthesis and Applications of Graphene Oxide
Human virus detection with graphene-based materials
Chemical Tuning of Specific Capacitance in Functionalized Fluorographene
Alkynylation of graphene via the Sonogashira C-C cross-coupling reaction on fluorographene
2D Chemistry: Chemical Control of Graphene Derivatization