Molecular Covalent Functionalization of Graphene and Its Derivatives: An Effective Strategy to Boost Electrocatalytic HER
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
41141821
PubMed Central
PMC12547768
DOI
10.1021/acsomega.5c06793
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Graphene-based electrocatalysts have been developed, and they exhibited enhanced activity due to their superior electronic conductivity. The robustness of such graphene materials can be further enhanced by altering their chemical and physical properties using different techniques. Molecular covalent functionalization is one of the effective strategies to alter the chemical composition, electronic structure, surface area, as well as dispersibility of graphene materials. Despite the significant literature on its contribution to improving the electrocatalytic activity for the hydrogen evolution reaction (HER), there is no review article available. Therefore, we have tried to fill this void by examining recent developments in the field of molecular covalent functionalized graphene and its derivatives for water electrolysis. We have also thoroughly discussed the role of individual components (graphene support, linker, and functional molecules bearing the main active sites) to improve the performance of the electrocatalyst by inducing synergistic effects and enriching surface properties. Moreover, the main characteristics of effective electrocatalysts, such as the surface area, functionality, dispersibility, conductivity, stability, and electronic structure, have also been reviewed. Finally, challenges and future perspectives are outlined to assist researchers in designing more effective electrocatalysts for the HER.
Zobrazit více v PubMed
Abbasian Hamedani E., Alenabi S. A., Talebi S.. Hydrogen as an Energy Source: A Review of Production Technologies and Challenges of Fuel Cell Vehicles. Energy Rep. 2024;12:3778–3794. doi: 10.1016/j.egyr.2024.09.030. DOI
Blay-Roger R., Bach W., Bobadilla L. F., Reina T. R., Odriozola J. A., Amils R., Blay V.. Natural Hydrogen in the Energy Transition: Fundamentals, Promise, and Enigmas. Renewable Sustainable Energy Rev. 2024;189:113888. doi: 10.1016/j.rser.2023.113888. DOI
Afanasev P., Askarova A., Alekhina T., Popov E., Markovic S., Mukhametdinova A., Cheremisin A., Mukhina E.. An Overview of Hydrogen Production Methods: Focus on Hydrocarbon Feedstock. Int. J. Hydrogen Energy. 2024;78:805–828. doi: 10.1016/j.ijhydene.2024.06.369. DOI
Horri B. A., Ozcan H.. Green Hydrogen Production by Water Electrolysis: Current Status and Challenges. Curr. Opin. Green Sustainable Chem. 2024;47:100932. doi: 10.1016/j.cogsc.2024.100932. DOI
Deng R., Zhang B., Zhang Q.. Electrochemical Water Splitting for Scale Hydrogen Production: From the Laboratory to Industrial Applications. ChemCatChem. 2024;16(14):e202301165. doi: 10.1002/cctc.202301165. DOI
Kazemi A., Manteghi F., Tehrani Z.. Metal Electrocatalysts for Hydrogen Production in Water Splitting. ACS Omega. 2024;9(7):7310–7335. doi: 10.1021/acsomega.3c07911. PubMed DOI PMC
Wang S., Lu A., Zhong C.-J.. Hydrogen Production from Water Electrolysis: Role of Catalysts. Nano Convergence. 2021;8(1):4. doi: 10.1186/s40580-021-00254-x. PubMed DOI PMC
Guo F., Macdonald T. J., Sobrido A. J., Liu L., Feng J., He G.. Recent Advances in ultralow-Pt-loading Electrocatalysts for the Efficient Hydrogen Evolution. Adv. Sci. 2023;10(21):2301098. doi: 10.1002/advs.202301098. PubMed DOI PMC
Ma W., Zhang X., Li W., Jiao M., Zhang L., Ma R., Zhou Z.. Advanced Pt-Based Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Medium. Nanoscale. 2023;15(28):11759–11776. doi: 10.1039/D3NR01940C. PubMed DOI
Song A., Song S., Duanmu M., Tian H., Liu H., Qin X., Shao G., Wang G.. Recent Progress of Non-noble Metallic Heterostructures for the Electrocatalytic Hydrogen Evolution. Small Sci. 2023;3(9):2300036. doi: 10.1002/smsc.202300036. PubMed DOI PMC
Zhu Y., Lin Q., Zhong Y., Tahini H. A., Shao Z., Wang H.. Metal Oxide-Based Materials as an Emerging Family of Hydrogen Evolution Electrocatalysts. Energy Environ. Sci. 2020;13(10):3361–3392. doi: 10.1039/D0EE02485F. DOI
Wang L.-L., Wang X.-R., Wang H.-J., Zhang C., Li J.-J., Feng G.-J., Cheng X.-X., Qin X.-R., Yu Z.-Y., Lu T.-B.. Tailoring Lewis Acidity of Metal Oxides on Nickel to Boost Electrocatalytic Hydrogen Evolution in Neutral Electrolyte. J. Am. Chem. Soc. 2025;147(9):7555–7563. doi: 10.1021/jacs.4c16596. PubMed DOI
Farooq K., Yang Z., Murtaza M., Naseeb M. A., Waseem A., Zhu Y., Xia Y.. MXene-Enhanced Metal–Organic Framework-Derived CoP Nanocomposites as Highly Efficient Trifunctional Electrocatalysts for OER, HER, and ORR. Adv. Energy Sustainability Res. 2025;6:2400400. doi: 10.1002/aesr.202400400. DOI
Yu L., Zhu Q., Song S., McElhenny B., Wang D., Wu C., Qin Z., Bao J., Yu Y., Chen S., Ren Z.. Non-Noble Metal-Nitride Based Electrocatalysts for High-Performance Alkaline Seawater Electrolysis. Nat. Commun. 2019;10(1):5106. doi: 10.1038/s41467-019-13092-7. PubMed DOI PMC
Li C., Zhang F., Liu Z., Wang Q., Yuan S., Zhang A.. Reinforcing the Hydrogen Evolution Reaction through Graphite-Encapsulated MoS2 Structures with Enhanced Defects. J. Electron. Mater. 2025;54:2787–2796. doi: 10.1007/s11664-025-11777-y. DOI
Sahoo S., Al Mahmud A., Sood A., Dhakal G., Tiwari S. K., Zo S., Kim H. M., Han S. S.. Microwave-Assisted Facile Synthesis of Graphitic-C3N4/Reduced Graphene Oxide/MoS2 Composite as the Bifunctional Electrocatalyst for Electrochemical Water Splitting. J. Sci. Adv. Mater. Devices. 2025;10(1):100843. doi: 10.1016/j.jsamd.2024.100843. DOI
Ren X., Pan B., Li S., Peng Y., Li F.. Cobalt-Based Phosphide Supported on Carbon Nanotubes for the HER: Effect of Phosphating Degree on HER Performance. CrystEngComm. 2025;27:3054–3060. doi: 10.1039/D5CE00158G. DOI
Ren X., Qiu L., Li M., Tian F., He L., Guo X., Wu F., Liu Y., Sheng J., Yang W., Yu Y.. Hierarchically Interfacial Sulfide/Phosphides Achieve Industry-Level Water Electrolyzer in Alkaline Conditions at 3 A Cm-2. Appl. Catal., B. 2025;378:125622. doi: 10.1016/j.apcatb.2025.125622. DOI
Fetohi A. E., Khater D. Z., Amin R., El-Khatib K.. Nickel Sulfide–Transition Metal Sulfides Bi-Electrocatalyst Supported on Nickel Foam for Water Splitting. J. Phys. Chem. Solids. 2025;207:112906. doi: 10.1016/j.jpcs.2025.112906. DOI
Manikandababu C., Navaneethan S., Kumar M. S., Ramkumar S., Muthukannan K., Karthik P. S.. Construction of MoS2@ RGO Hybrid Catalyst: An Efficient and Highly Stable Electrocatalyst for Enhanced Hydrogen Generation Reactions. Chem. Phys. Impact. 2025;10:100874. doi: 10.1016/j.chphi.2025.100874. DOI
Chen M., Yang Y., Ding Y., Liu J.. Toward a Molecular-Scale Picture of Water Electrolysis: Mechanistic Insights, Fundamental Kinetics and Electrocatalyst Dynamic Evolution. Coord. Chem. Rev. 2025;536:216651. doi: 10.1016/j.ccr.2025.216651. DOI
Ndala Z. B., Shumbula N. P., Tsoeu S. E., Majola T. W., Gqoba S. S., Linganiso C. E., Tetana Z. N., Moloto N.. Enhanced Electrocatalytic Hydrogen Evolution via Nitrogen-Induced Electron Density Modulation in ReSe 2/2D Carbon Heterostructures. RSC Adv. 2025;15(18):14200–14216. doi: 10.1039/D5RA01096A. PubMed DOI PMC
Jilani A., Ibrahim H.. Development in Photoelectrochemical Water Splitting Using Carbon-Based Materials: A Path to Sustainable Hydrogen Production. Energies. 2025;18(7):1603. doi: 10.3390/en18071603. DOI
Yadav S. K., Kumar A., Mehta N.. Beyond Graphene Basics: A Holistic Review of Electronic Structure, Synthesis Strategies, Properties, and Graphene-Based Electrode Materials for Supercapacitor Applications. Prog. Solid State Chem. 2025;78:100519. doi: 10.1016/j.progsolidstchem.2025.100519. DOI
Jha B. K., Yoon J.-C., Jang J.-H.. 3D Graphene for Energy Technologies: Chemical Strategies and Industrial Challenges. Acc. Mater. Res. 2025;6:799–813. doi: 10.1021/accountsmr.4c00381. DOI
Singh J., Tyagi P. K., Singh V.. Potential Application of Reduced Graphene Oxide in Electrocatalyst for Hydrogen/Oxygen Evaluation Reaction in Water-Splitting. Diamond Relat. Mater. 2025;154:112113. doi: 10.1016/j.diamond.2025.112113. DOI
Li D., Kong F., Sun B., Ni X., Hu J., Wu Q., Wang M., Ju A.. Efficient and Rapid Preparation of High-Performance Porous Reduced Graphene Films as HER/OER Bifunctional Electrocatalysts for Overall Water Splitting. Int. J. Hydrogen Energy. 2025;120:412–421. doi: 10.1016/j.ijhydene.2025.03.299. DOI
Wang J., Qian S., Jia D., Zhang Y., Xue H., Jiang T., Zhang H., Tian J.. Covalent Grafting of Graphene Quantum Dots onto Stepped TiO2-Mediated Electronic Modulation for Electrocatalytic Hydrogen Evolution. Inorg. Chem. 2025;64:1532–1540. doi: 10.1021/acs.inorgchem.4c04811. PubMed DOI
Vidal-Barreiro I., Sánchez P., de Lucas-Consuegra A., Romero A.. A New Doped Graphene-Based Catalyst for Hydrogen Evolution Reaction Under Low-Electrolyte Concentration and Biomass-Rich Environments. Energy Fuels. 2025;39(9):4515–4524. doi: 10.1021/acs.energyfuels.4c06084. PubMed DOI PMC
Perumal S., Nallal M., Atchudan R., Jang K., Park K. H., Lee W.. One-Spot Synthesis of Gold Nanoparticles Loaded Polymer Functionalized Graphene Composite: As a Bifunctional Cathode Material for HER and ORR Applications. J. Alloys Compd. 2025;1010:178137. doi: 10.1016/j.jallcom.2024.178137. DOI
Deng J., Ren P., Deng D., Bao X.. Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angew. Chem., Int. Ed. 2015;54(7):2100–2104. doi: 10.1002/anie.201409524. PubMed DOI
Yue X., Huang S., Jin Y., Shen P. K.. Nitrogen and Fluorine Dual-Doped Porous Graphene-Nanosheets as Efficient Metal-Free Electrocatalysts for Hydrogen-Evolution in Acidic Media. Catal. Sci. Technol. 2017;7(11):2228–2235. doi: 10.1039/C7CY00384F. DOI
Hossain M. D., Liu Z., Zhuang M., Yan X., Xu G., Gadre C. A., Tyagi A., Abidi I. H., Sun C., Wong H.. et al. Rational Design of Graphene-supported Single Atom Catalysts for Hydrogen Evolution Reaction. Adv. Energy Mater. 2019;9(10):1803689. doi: 10.1002/aenm.201803689. DOI
Su P., Pei W., Wang X., Ma Y., Jiang Q., Liang J., Zhou S., Zhao J., Liu J., Lu G. Q.. Exceptional Electrochemical HER Performance with Enhanced Electron Transfer between Ru Nanoparticles and Single Atoms Dispersed on a Carbon Substrate. Angew. Chem. 2021;133(29):16180–16186. doi: 10.1002/ange.202103557. PubMed DOI
Wu Q., Huang Y., Yu J.. Cobalt Phosphide Nanoparticles Supported by Vertically Grown Graphene Sheets on Carbon Black with N-Doping Treatment as Bifunctional Electrocatalysts for Overall Water Splitting. Energy Fuels. 2023;37(23):19156–19165. doi: 10.1021/acs.energyfuels.3c03578. DOI
Lin C., Tang H., Xu J., Zhang Q., Chen D., Zuo X., Yang Q., Li G.. Enhancing Electrocatalytic Activity and Stability of Hydrogen Evolution Reaction via Mo2C-Ru Dual Active Site Catalyst with Graphene Interface Engineering. Appl. Surf. Sci. 2025;690:162575. doi: 10.1016/j.apsusc.2025.162575. DOI
Duan J., Chen S., Jaroniec M., Qiao S. Z.. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catal. 2015;5(9):5207–5234. doi: 10.1021/acscatal.5b00991. DOI
Nunes M., Fernandes D. M., Morales M., Rodríguez-Ramos I., Guerrero-Ruiz A., Freire C.. Cu and Pd Nanoparticles Supported on a Graphitic Carbon Material as Bifunctional HER/ORR Electrocatalysts. Catal. Today. 2020;357:279–290. doi: 10.1016/j.cattod.2019.04.043. DOI
Xu Y., Tu W., Zhang B., Yin S., Huang Y., Kraft M., Xu R.. Nickel Nanoparticles Encapsulated in Few-layer Nitrogen-doped Graphene Derived from Metal–Organic Frameworks as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Adv. Mater. 2017;29(11):1605957. doi: 10.1002/adma.201605957. PubMed DOI
Wang Y., Zheng Y., han S., Chen F., Hu J.. Enhancing Oxygen Evolution over a Highly Fluorinated Porphyrin-Based COF Covalently Anchored on Graphene Oxide. Appl. Surf. Sci. 2025;698:163089. doi: 10.1016/j.apsusc.2025.163089. DOI
Hong Y., Li L., Huang B., Tang X., Zhai W., Hu T., Yuan K., Chen Y.. Molecular Control of Carbon-based Oxygen Reduction Electrocatalysts through Metal Macrocyclic Complexes Functionalization. Adv. Energy Mater. 2021;11(33):2100866. doi: 10.1002/aenm.202100866. DOI
Lee H., Heo E., Yoon H.. Physically Exfoliating 2D Materials: A Versatile Combination of Different Materials into a Layered Structure. Langmuir. 2023;39(51):18678–18695. doi: 10.1021/acs.langmuir.3c02418. PubMed DOI
Wetzl C., Silvestri A., Garrido M., Hou H., Criado A., Prato M.. The Covalent Functionalization of Surface-Supported Graphene: An Update. Angew. Chem. 2023;135(6):e202212857. doi: 10.1002/ange.202212857. PubMed DOI
Park M., Kim N., Lee J., Gu M., Kim B.-S.. Versatile Graphene Oxide Nanosheets via Covalent Functionalization and Their Applications. Mater. Chem. Front. 2021;5(12):4424–4444. doi: 10.1039/D1QM00066G. DOI
Anjali, Mishra A., Khurana M., Pani B., Awasthi S. K.. Recent Advances in Functionalization of Graphene Oxide and Its Role in Catalytic Organic Transformations: A Comprehensive Review (2018–2024) ChemistrySelect. 2025;10(5):e202404742. doi: 10.1002/slct.202404742. DOI
Mani P., Ahn H., Son Y., Kim J., Rao P. C., Ahn H. S., Yoon M.. Confining Electrocatalytic Nickel Complex in Metal–Organic Frameworks for Efficient Hydrogen-Evolution. Inorg. Chem. Commun. 2025;178:114463. doi: 10.1016/j.inoche.2025.114463. DOI
Atyf Z., Guergueb M., Lenne Q., Ghilane J.. Modulation of Hydrogen Evolution Reaction (HER) Activity in Palladium Catalyst through Surface Functionalization of Carbon Support. Carbon. 2025;239:120348. doi: 10.1016/j.carbon.2025.120348. DOI
Fesseha Y. A., Kuchayita K. K., Su W.-N., Chiu C.-W., Cheng C.-C.. Organic-Inorganic Conjugated Polymer-Exfoliated Tungsten Disulfide Nanosheet PN Heterojunction Composites for Efficient and Stable Hydrogen Evolution Reactions. Chem. Eng. J. 2025;509:161501. doi: 10.1016/j.cej.2025.161501. DOI
Das G., Roy S. S., Abou Ibrahim F., Merhi A., Dirawi H. N., Benyettou F., Das A. K., Prakasam T., Varghese S., Sharma S. K.. et al. Electrocatalytic Water Splitting in Isoindigo-Based Covalent Organic Frameworks. Angew. Chem. 2025;137(13):e202419836. doi: 10.1002/ange.202419836. PubMed DOI
Huang T., Xiao J., Liu X., Liu X., He J., Jiang J., Xu G., Zhang L.. Engineering Ru and Ni Sites Relay Catalysis and Strong Metal-Support Interaction for Synergetic Enhanced Electrocatalytic Hydrogen Evolution Performance. Chem. Eng. J. 2025;509:161348. doi: 10.1016/j.cej.2025.161348. DOI
Li Z., Guo K., Yin C., Li Y., Mertens S. F.. Fabricating Graphene-Based Molecular Electronics via Surface Modification by Physisorption and Chemisorption. Molecules. 2025;30(4):926. doi: 10.3390/molecules30040926. PubMed DOI PMC
Borane N., Boddula R., Odedara N., Singh J., Andhe M., Patel R.. Comprehensive Review on Synthetic Methods and Functionalization of Graphene Oxide: Emerging Applications. Nano-Struct. Nano-Objects. 2024;39:101282. doi: 10.1016/j.nanoso.2024.101282. DOI
Cao S., Liu Y., Bo T., Xu R., Mu N., Zhou W.. Prediction of Functionalized Graphene as Potential Catalysts for Overall Water Splitting. Appl. Surf. Sci. 2022;578:151989. doi: 10.1016/j.apsusc.2021.151989. DOI
Boateng E., Thiruppathi A. R., Hung C.-K., Chow D., Sridhar D., Chen A.. Functionalization of Graphene-Based Nanomaterials for Energy and Hydrogen Storage. Electrochim. Acta. 2023;452:142340. doi: 10.1016/j.electacta.2023.142340. DOI
Wang A., Shen X., Wang Q., Cheng L., Zhu W., Shang D., Song Y.. Enhanced Optical Limiting and Hydrogen Evolution of Graphene Oxide Nanohybrids Covalently Functionalized by Covalent Organic Polymer Based on Porphyrin. Dalton Trans. 2021;50(20):7007–7016. doi: 10.1039/D1DT00756D. PubMed DOI
Wang A., Li C., Zhang J., Chen X., Cheng L., Zhu W.. Graphene-Oxide-Supported Covalent Organic Polymers Based on Zinc Phthalocyanine for Efficient Optical Limiting and Hydrogen Evolution. J. Colloid Interface Sci. 2019;556:159–171. doi: 10.1016/j.jcis.2019.08.052. PubMed DOI
Karuppasamy L., Gurusamy L., Anandan S., Liu C.-H., Wu J. J.. Graphene Nanosheets Supported High-Defective Pd Nanocrystals as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chem. Eng. J. 2021;425:131526. doi: 10.1016/j.cej.2021.131526. DOI
Li Z., Dai X., Du K., Ma Y., Liu M., Sun H., Ma X., Zhang X.. Reduced Graphene Oxide/O-MWCNT Hybrids Functionalized with p-Phenylenediamine as High-Performance MoS2 Electrocatalyst Support for Hydrogen Evolution Reaction. J. Phys. Chem. C. 2016;120(3):1478–1487. doi: 10.1021/acs.jpcc.5b09523. DOI
Puthirath A. B., Shirodkar S., Fei M., Baburaj A., Kato K., Saju S. K., Prasannachandran R., Chakingal N., Vajtai R., Yakobson B. I., Ajayan P. M.. Complementary Behaviour of EDL and HER Activity in Functionalized Graphene Nanoplatelets. Nanoscale. 2020;12(3):1790–1800. doi: 10.1039/C9NR08102J. PubMed DOI
Deng B., Wang D., Jiang Z., Zhang J., Shi S., Jiang Z.-J., Liu M.. Amine Group Induced High Activity of Highly Torn Amine Functionalized Nitrogen-Doped Graphene as the Metal-Free Catalyst for Hydrogen Evolution Reaction. Carbon. 2018;138:169–178. doi: 10.1016/j.carbon.2018.06.008. DOI
Hu B., Wu Y., Wang K., Guo H., Lei Z., Liu Z., Wang L.. Gram-Scale Mechanochemical Synthesis of Atom-Layer MoS2 Semiconductor Electrocatalyst via Functionalized Graphene Quantum Dots for Efficient Hydrogen Evolution. Small. 2024;20(2):2305344. doi: 10.1002/smll.202305344. PubMed DOI
Yang K., Chen H., Li Z., Wang Y., Li B., Wang C., Qiu S., Chen F.. Advanced Research on Graphene-Based Nano-Materials: Synthesis, Structure, Dispersibility and Tribological Applications. ChemNanoMat. 2025;11(1):e202400428. doi: 10.1002/cnma.202400428. DOI
Jeong J. H., Kang S., Kim N., Joshi R., Lee G.-H.. Recent Trends in Covalent Functionalization of 2D Materials. Phys. Chem. Chem. Phys. 2022;24(18):10684–10711. doi: 10.1039/D1CP04831G. PubMed DOI
Georgieva M., Vasileva B., Speranza G., Wang D., Stoyanov K., Draganova-Filipova M., Zagorchev P., Sarafian V., Miloshev G., Krasteva N.. Amination of Graphene Oxide Leads to Increased Cytotoxicity in Hepatocellular Carcinoma Cells. Int. J. Mol. Sci. 2020;21(7):2427. doi: 10.3390/ijms21072427. PubMed DOI PMC
Vu M. T., Ngan Nguyen T. T., Hung T. Q., Pham-Truong T.-N., Osial M., Decorse P., Nguyen T. T., Piro B., Thu V. T.. Insights into Structural Behaviors of Thiolated and Aminated Reduced Graphene Oxide Supports to Understand Their Effect on MOR Efficiency. Langmuir. 2023;39(39):13897–13907. doi: 10.1021/acs.langmuir.3c01446. PubMed DOI
Serodre T., Oliveira N. A., Miquita D. R., Ferreira M. P., Santos A. P., Resende V. G., Furtado C. A.. Surface Silanization of Graphene Oxide under Mild Reaction Conditions. J. Braz. Chem. Soc. 2019;30:2488–2499. doi: 10.21577/0103-5053.20190167. DOI
Gómez M. J., Loiácono A., Pérez L. A., Franceschini E. A., Lacconi G. I.. Highly Efficient Hybrid Ni/Nitrogenated Graphene Electrocatalysts for Hydrogen Evolution Reaction. ACS Omega. 2019;4(1):2206–2216. doi: 10.1021/acsomega.8b02895. PubMed DOI PMC
Ensafi A. A., Afiuni S. S., Rezaei B.. NiO Nanoparticles Decorated at Nile Blue-Modified Reduced Graphene Oxide, New Powerful Electrocatalysts for Water Splitting. J. Electroanal. Chem. 2018;816:160–170. doi: 10.1016/j.jelechem.2018.03.054. DOI
Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D. D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V.. et al. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano. 2017;11(3):2982–2991. doi: 10.1021/acsnano.6b08449. PubMed DOI PMC
Kapuria A., Mondal T. K., Shaw B. K., Su Y.-K., Saha S. K.. Polysulfide Functionalized Reduced Graphene Oxide for Electrocatalytic Hydrogen Evolution Reaction and Supercapacitor Applications. Int. J. Hydrogen Energy. 2023;48(45):17014–17025. doi: 10.1016/j.ijhydene.2023.01.214. DOI
Georgitsopoulou S., Stola N. D., Bakandritsos A., Georgakilas V.. Advancing the Boundaries of the Covalent Functionalization of Graphene Oxide. Surf. Interfaces. 2021;26:101320. doi: 10.1016/j.surfin.2021.101320. DOI
Nguyen T. N. T., Kumar S., Cao X. T.. Synthesis of Dendrimer Stabilized High-Density Silver Nanoparticles on Reduced Graphene Oxide for Catalytic and Antibacterial Properties. Energy Adv. 2024;3(9):2399–2406. doi: 10.1039/D4YA00284A. DOI
Bani-Yaseen A. D., Elbashier E.. Computational Insights on the Electrocatalytic Behavior of [Cp* Rh] Molecular Catalysts Immobilized on Graphene for Heterogeneous Hydrogen Evolution Reaction. Sci. Rep. 2020;10(1):5777. doi: 10.1038/s41598-020-62758-6. PubMed DOI PMC
Yao P., Gao X., Xie F., Lv G., Yang H., Snyders R., Bittencourt C., Li W.. Fe Doped 1T/2H MoS2/Reduced Graphene Oxide for Hydrogen Evolution Reaction. J. Alloys Compd. 2025;1014:178678. doi: 10.1016/j.jallcom.2025.178678. DOI
Urhan B. K., Dinç S., Demir Ü.. Free-Standing Ni Nanoparticles Wrapped in Electrochemically Reduced Graphene Oxide: A Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Conditions. Sep. Purif. Technol. 2025;362:131834. doi: 10.1016/j.seppur.2025.131834. DOI
Tazeen, Z. ; Ameer, M. E. ; Iqbal, Y. ; Ahmad, N. ; Arshad, M. ; Qamar, M. A. . A Decade of Breakthroughs: MOF-Graphene Oxide Catalysts for Water Splitting Efficiency Rev. Inorg. Chem. 2025. 10.1515/revic-2024-0098. DOI
Wang Z., Li J., Liu S., Shao G., Zhao X.. A Covalent Organic Framework/Graphene Aerogel Electrocatalyst for Enhanced Overall Water Splitting. Nanoscale. 2022;14(45):16944–16951. doi: 10.1039/D2NR04378E. PubMed DOI
Anjana R., Hanamantrao D. P., Banu G. N., Raja V., Isaac R. R., John J. S., Vediappan K., Jose S. P., Neppolian B., Sajan D.. Hydrothermal Synthesis of Graphitic Carbon Nitride/Ce Doped Fe2O3 Heterostructures for Supercapattery Device and Hydrogen Evolution Reaction. J. Energy Storage. 2025;116:116021. doi: 10.1016/j.est.2025.116021. DOI
Shinde S. S., Sami A., Lee J.. Nitrogen-and Phosphorus-doped Nanoporous Graphene/Graphitic Carbon Nitride Hybrids as Efficient Electrocatalysts for Hydrogen Evolution. ChemCatChem. 2015;7(23):3873–3880. doi: 10.1002/cctc.201500701. DOI
Qian Y., Yu J., Zhang F., Fei Z., Shi H., Kang D. J., Pang H.. Hierarchical Binary Metal Sulfides Nanoflakes Decorated on Graphene with Precious-Metal-like Activity for Water Electrolysis. Chem. Eng. J. 2023;470:144372. doi: 10.1016/j.cej.2023.144372. DOI
Ouyang Y., Li Q., Shi L., Ling C., Wang J.. Molybdenum Sulfide Clusters Immobilized on Defective Graphene: A Stable Catalyst for the Hydrogen Evolution Reaction. J. Mater. Chem. A. 2018;6(5):2289–2294. doi: 10.1039/C7TA09828F. DOI
Larson V. A., Lehnert N.. Covalent Attachment of Cobalt Bis (Benzylaminedithiolate) to Reduced Graphene Oxide as a Thin-Film Electrocatalyst for Hydrogen Production with Remarkable Dioxygen Tolerance. ACS Catal. 2024;14(1):192–210. doi: 10.1021/acscatal.3c03788. DOI
Maccaferri G., Zanardi C., Xia Z. Y., Kovtun A., Liscio A., Terzi F., Palermo V., Seeber R.. Systematic Study of the Correlation between Surface Chemistry, Conductivity and Electrocatalytic Properties of Graphene Oxide Nanosheets. Carbon. 2017;120:165–175. doi: 10.1016/j.carbon.2017.05.030. DOI
Qamar S., Ramzan N., Aleem W.. Graphene Dispersion, Functionalization Techniques and Applications: A Review. Synth. Met. 2024;307:117697. doi: 10.1016/j.synthmet.2024.117697. DOI
Ghaffarkhah A., Hosseini E., Kamkar M., Sehat A. A., Dordanihaghighi S., Allahbakhsh A., van der Kuur C., Arjmand M.. Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. Small. 2022;18(2):2102683. doi: 10.1002/smll.202102683. PubMed DOI
Borse R. A., Kale M. B., Sonawane S. H., Wang Y.. Fluorographene and Its Composites: Fundamentals, Electrophysical Properties, DFT Studies, and Advanced Applications. Adv. Funct. Mater. 2022;32(26):2202570. doi: 10.1002/adfm.202202570. DOI
Gutiérrez-Cruz A., Ruiz-Hernández A. R., Vega-Clemente J. F., Luna-Gazcón D. G., Campos-Delgado J.. A Review of Top-down and Bottom-up Synthesis Methods for the Production of Graphene, Graphene Oxide and Reduced Graphene Oxide. J. Mater. Sci. 2022;57(31):14543–14578. doi: 10.1007/s10853-022-07514-z. DOI
Agarwal V., Zetterlund P. B.. Strategies for Reduction of Graphene Oxide–A Comprehensive Review. Chem. Eng. J. 2021;405:127018. doi: 10.1016/j.cej.2020.127018. DOI
Ansari S. A.. Graphene Quantum Dots: Novel Properties and Their Applications for Energy Storage Devices. Nanomaterials. 2022;12(21):3814. doi: 10.3390/nano12213814. PubMed DOI PMC
Chronopoulos D. D., Bakandritsos A., Lazar P., Pykal M., Čépe K., Zbořil R., Otyepka M.. High-Yield Alkylation and Arylation of Graphene via Grignard Reaction with Fluorographene. Chem. Mater. 2017;29(3):926–930. doi: 10.1021/acs.chemmater.6b05040. PubMed DOI PMC
Chronopoulos D. D., Bakandritsos A., Pykal M., Zbořil R., Otyepka M.. Chemistry, Properties, and Applications of Fluorographene. Appl. Mater. Today. 2017;9:60–70. doi: 10.1016/j.apmt.2017.05.004. PubMed DOI PMC
Cao Z., Quintano V., Joshi R.. Covalent Functionalization of Graphene Oxide. Carbon Rep. 2023;2(4):199–205. doi: 10.7209/carbon.020401. DOI
Niyogi S., Bekyarova E., Hong J., Khizroev S., Berger C., de Heer W., Haddon R. C.. Covalent Chemistry for Graphene Electronics. J. Phys. Chem. Lett. 2011;2(19):2487–2498. doi: 10.1021/jz200426d. DOI
Bhuyan M. S. A., Uddin M. N., Islam M. M., Bipasha F. A., Hossain S. S.. Synthesis of Graphene. Int. Nano Lett. 2016;6(2):65–83. doi: 10.1007/s40089-015-0176-1. DOI
Jankovský O., Marvan P., Nováček M., Luxa J., Mazanek V., Klímová K., Sedmidubský D., Sofer Z.. Synthesis Procedure and Type of Graphite Oxide Strongly Influence Resulting Graphene Properties. Appl. Mater. Today. 2016;4:45–53. doi: 10.1016/j.apmt.2016.06.001. DOI
Marcano D. C., Kosynkin D. V., Berlin J. M., Sinitskii A., Sun Z., Slesarev A., Alemany L. B., Lu W., Tour J. M.. Improved Synthesis of Graphene Oxide. ACS Nano. 2010;4(8):4806–4814. doi: 10.1021/nn1006368. PubMed DOI
Lombardi L., Bandini M.. Graphene Oxide as a Mediator in Organic Synthesis: A Mechanistic Focus. Angew. Chem. 2020;132(47):20951–20962. doi: 10.1002/ange.202006932. PubMed DOI
Blurton M. T., Walker M., Tang F., Ladislaus P., Raine T., Degirmenci V., McNally T.. Silane Functionalization of Graphene Nanoplatelets. Mater. Today Nano. 2024;28:100518. doi: 10.1016/j.mtnano.2024.100518. DOI
Amin M. A., Mersal G. A., Shaltout A. A., Badawi A., El-Sheshtawy H. S., Das M. R., Boman J., Ibrahim M. M.. Non-Covalent Functionalization of Graphene Oxide-Supported 2-Picolyamine-Based Zinc (II) Complexes as Novel Electrocatalysts for Hydrogen Production. Catalysts. 2022;12(4):389. doi: 10.3390/catal12040389. DOI
Jia H.-L., Zhao J., Gu L., Peng Z.-J., Bao Z.-L., Sun X.-L., Guan M.-Y.. Highly Active Co–N-Doped Graphene as an Efficient Bifunctional Electrocatalyst (ORR/HER) for Flexible All-Solid-State Zinc–Air Batteries. Sustainable Energy Fuels. 2020;4(12):6165–6173. doi: 10.1039/D0SE01324B. DOI
Nesaragi A. R., Dongre S S., Iqbal A., Thapa R., Balakrishna R. G., Patil S. A.. Graphitic-Carbon Nitride Immobilized Schiff Base Palladium (II): Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction and Density Functional Theory Calculations. Int. J. Hydrogen Energy. 2025;117:314–324. doi: 10.1016/j.ijhydene.2025.03.166. DOI
Rakspun J., Chiang Y.-J., Chen J.-Y., Yeh C.-Y., Amornkitbamrung V., Chanlek N., Vailikhit V., Hasin P.. Modification of Reduced Graphene Oxide Layers by Electron-Withdrawing/Donating Units on Molecular Dopants: Facile Metal-Free Counter Electrode Electrocatalysts for Dye-Sensitized Solar Cells. Sol. Energy. 2020;203:175–186. doi: 10.1016/j.solener.2020.04.037. DOI
Pramoda K., Servottam S., Kaur M., Rao C.. Layered Nanocomposites of Polymer-Functionalized Reduced Graphene Oxide and Borocarbonitride with MoS2 and MoSe2 and Their Hydrogen Evolution Reaction Activity. ACS Appl. Nano Mater. 2020;3(2):1792–1799. doi: 10.1021/acsanm.9b02482. DOI
Sahoo L., Dutta S., Devi A., Rashi, Pati S. K., Patra A.. The Impact of Ligand Chain Length on the HER Performance of Atomically Precise Pt 6 (SR) 12 Nanoclusters. Nanoscale. 2025;17(3):1544–1554. doi: 10.1039/D4NR03316G. PubMed DOI
Cheng R., He X., Li K., Ran B., Zhang X., Qin Y., He G., Li H., Fu C.. Rational Design of Organic Electrocatalysts for Hydrogen and Oxygen Electrocatalytic Applications. Adv. Mater. 2024;36(25):2402184. doi: 10.1002/adma.202402184. PubMed DOI
Yang D.-H., Tao Y., Ding X., Han B.-H.. Porous Organic Polymers for Electrocatalysis. Chem. Soc. Rev. 2022;51(2):761–791. doi: 10.1039/D1CS00887K. PubMed DOI
Du J., Yang H., Wang C.-L., Zhan S.-Z.. A Nickel (II) Complex of 2, 6-Pyridinedicarboxylic Acid Ion, an Efficient Electro-Catalyst for Both Hydrogen Evolution and Oxidation. Mol. Catal. 2021;516:111947. doi: 10.1016/j.mcat.2021.111947. DOI
Pratama D. S. A., Haryanto A., Lee C. W.. Heterostructured Mixed Metal Oxide Electrocatalyst for the Hydrogen Evolution Reaction. Front. Chem. 2023;11:1141361. doi: 10.3389/fchem.2023.1141361. PubMed DOI PMC
Wang B., Liao Y., E Y., Wang R., Hu J., Ma M., He G.. In-Situ Construction of Integrated Transition Metals and Metal Oxides with Carbon Nanomaterial Heterostructures to Modulate Electron Redistribution for Boosted Water Splitting. Int. J. Hydrogen Energy. 2024;83:107–114. doi: 10.1016/j.ijhydene.2024.08.085. DOI
Torres-Méndez C., Axelsson M., Tian H.. Small Organic Molecular Electrocatalysts for Fuels Production. Angew. Chem., Int. Ed. 2024;63(7):e202312879. doi: 10.1002/anie.202312879. PubMed DOI
Huang S., Chen K., Li T.-T.. Porphyrin and Phthalocyanine Based Covalent Organic Frameworks for Electrocatalysis. Coord. Chem. Rev. 2022;464:214563. doi: 10.1016/j.ccr.2022.214563. DOI
Dao X., Nie M., Sun H., Dong W., Xue Z., Li Q., Liao J., Wang X., Zhao X., Yang D., Teng L.. Electrochemical Performance of Metal-Organic Framework MOF (Ni) Doped Graphene. Int. J. Hydrogen Energy. 2022;47(38):16741–16749. doi: 10.1016/j.ijhydene.2022.03.176. DOI
Xu Y., Fan K., Zou Y., Fu H., Dong M., Dou Y., Wang Y., Chen S., Yin H., Al-Mamun M.. et al. Rational Design of Metal Oxide Catalysts for Electrocatalytic Water Splitting. Nanoscale. 2021;13(48):20324–20353. doi: 10.1039/D1NR06285A. PubMed DOI
Rani A., Sagar S., Ahmed I., Haldar K. K.. Surface Modification of Co3O4 by HfO2 for Efficient Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution. ChemNanoMat. 2025;11(6):e202500085. doi: 10.1002/cnma.202500085. DOI
Chu W., Yu Y., Sun D., Qu Y., Meng F., Qiu Y., Lin S., Huang L., Ren J., Su Q., Xu B.. Uniform Cobalt Nanoparticles Embedded in Nitrogen-Doped Graphene with Abundant Defects as High-Performance Bifunctional Electrocatalyst in Overall Water Splitting. Int. J. Hydrogen Energy. 2022;47(49):21191–21203. doi: 10.1016/j.ijhydene.2022.04.235. DOI
Raj S. K., Bhadu G. R., Upadhyay P., Kulshrestha V.. Three-Dimensional Ni/Fe Doped Graphene Oxide@ MXene Architecture as an Efficient Water Splitting Electrocatalyst. Int. J. Hydrogen Energy. 2022;47(99):41772–41782. doi: 10.1016/j.ijhydene.2022.05.204. DOI
Alotaibi N. H., Shah J. H., Nisa M. U., Mohammad S., Özcan H. G., Abid A. G., Allakhverdiev S. I.. Catalytic Enhancement of Graphene Oxide by Trace Molybdenum Oxide Nanoparticles Doping: Optimized Electrocatalyst for Green Hydrogen Production. Int. J. Hydrogen Energy. 2024;62:488–497. doi: 10.1016/j.ijhydene.2024.03.032. DOI
Hossain M. N., Zhang L., Neagu R., Sun S.. Exploring the Properties, Types, and Performance of Atomic Site Catalysts in Electrochemical Hydrogen Evolution Reactions. Chem. Soc. Rev. 2025;54:3323–3386. doi: 10.1039/D4CS00333K. PubMed DOI
Zhang Y., Sarmah A., Banavath R., Arole K., Deshpande S., Cao H., Dasari S. S., Yollin P., Cook D., Parliman R. W.. et al. Hydrocarbon-Derived Graphene Nanoparticles and Their Networked Morphology. Adv. Eng. Mater. 2025;27(1):2402236. doi: 10.1002/adem.202402236. DOI
Fan L.-Z., Liu J.-L., Ud-Din R., Yan X., Qu X.. The Effect of Reduction Time on the Surface Functional Groups and Supercapacitive Performance of Graphene Nanosheets. Carbon. 2012;50(10):3724–3730. doi: 10.1016/j.carbon.2012.03.046. DOI
Wang P., Yang C., Yao J., Li H., Hu Z., Li Z.. Two-Dimensional Metal Organic Frame-Work Nanosheet in Electrocatalysis. Chem. Sci. 2025;16:6583–6597. doi: 10.1039/D5SC01390A. PubMed DOI PMC
Lin J.-H.. The Influence of the Interlayer Distance on the Performance of Thermally Reduced Graphene Oxide Supercapacitors. Materials. 2018;11(2):263. doi: 10.3390/ma11020263. PubMed DOI PMC
Sun Z., Fang S., Hu Y. H.. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chem. Rev. 2020;120(18):10336–10453. doi: 10.1021/acs.chemrev.0c00083. PubMed DOI
Cheng R., Min Y., Li H., Fu C.. Electronic Structure Regulation in the Design of Low-Cost Efficient Electrocatalysts: From Theory to Applications. Nano Energy. 2023;115:108718. doi: 10.1016/j.nanoen.2023.108718. DOI
Maio A., Pibiri I., Morreale M., Mantia F. P. L., Scaffaro R.. An Overview of Functionalized Graphene Nanomaterials for Advanced Applications. Nanomaterials. 2021;11(7):1717. doi: 10.3390/nano11071717. PubMed DOI PMC
Fan Y., Yu J., Chen J., Zhang J., Liang Y., Song H., Zhang S.. Tuning Interlayer Spacing and Structural Disorder in Graphene Nanosheets via Organic Amine-Functionalization to Construct Hierarchical Porous Carbons for Boosting Capacitive Deionization. Desalination. 2025;600:118469. doi: 10.1016/j.desal.2024.118469. DOI
Arif M., Yasin G., Shakeel M., Mushtaq M. A., Ye W., Fang X., Ji S., Yan D.. Highly Active Sites of NiVB Nanoparticles Dispersed onto Graphene Nanosheets towards Efficient and pH-Universal Overall Water Splitting. J. Energy Chem. 2021;58:237–246. doi: 10.1016/j.jechem.2020.10.014. DOI
Shen B., Huang H., Jiang Y., Xue Y., He H.. 3D Interweaving MXene–Graphene Network–Confined Ni–Fe Layered Double Hydroxide Nanosheets for Enhanced Hydrogen Evolution. Electrochim. Acta. 2022;407:139913. doi: 10.1016/j.electacta.2022.139913. DOI
Bai L., Duan Z., Wen X., Si R., Zhang Q., Guan J.. Highly Dispersed Ruthenium-Based Multifunctional Electrocatalyst. ACS Catal. 2019;9(11):9897–9904. doi: 10.1021/acscatal.9b03514. DOI
Tran T. S., Balu R., de Campo L., Dutta N. K., Choudhury N. R.. Sulfonated Polythiophene-Interfaced Graphene for Water-Redispersible Graphene Powder with High Conductivity and Electrocatalytic Activity. Energy Adv. 2023;2(3):365–374. doi: 10.1039/D2YA00298A. DOI
Mir R. A., Upadhyay S., Pandey O.. A Review on Recent Advances and Progress in Mo2C@ C: A Suitable and Stable Electrocatalyst for HER. Int. J. Hydrogen Energy. 2023;48(35):13044–13067. doi: 10.1016/j.ijhydene.2022.12.179. DOI
Zhai W., Ma Y., Chen D., Ho J. C., Dai Z., Qu Y.. Recent Progress on the Long-term Stability of Hydrogen Evolution Reaction Electrocatalysts. InfoMat. 2022;4(9):e12357. doi: 10.1002/inf2.12357. DOI
Dai L.. Functionalization of Graphene for Efficient Energy Conversion and Storage. Acc. Chem. Res. 2013;46(1):31–42. doi: 10.1021/ar300122m. PubMed DOI
Huynh T. M. T., Phan T. H.. Covalent Molecular Anchoring of Metal-Free Porphyrin on Graphitic Surfaces toward Improved Electrocatalytic Activities in Acidic Medium. Coatings. 2024;14(6):745. doi: 10.3390/coatings14060745. DOI
Park H., Park S. Y.. Enhancing the Alkaline Hydrogen Evolution Reaction of Graphene Quantum Dots by Ethylenediamine Functionalization. ACS Appl. Mater. Interfaces. 2022;14(23):26733–26741. doi: 10.1021/acsami.2c04703. PubMed DOI
Digraskar R. V., Sapner V. S., Ghule A. V., Sathe B. R.. Enhanced Overall Water-Splitting Performance: Oleylamine-Functionalized GO/Cu2ZnSnS4 Composite as a Nobel Metal-Free and Nonprecious Electrocatalyst. ACS Omega. 2019;4(21):18969–18977. doi: 10.1021/acsomega.9b01680. PubMed DOI PMC
Kayan D. B., Baran T., Menteş A.. Functionalized rGO-Pd Nanocomposites as High-Performance Catalysts for Hydrogen Generation via Water Electrolysis. Electrochim. Acta. 2022;422:140513. doi: 10.1016/j.electacta.2022.140513. DOI
Pramoda K., Gupta U., Chhetri M., Bandyopadhyay A., Pati S., Rao C.. Nanocomposites of C3N4 with Layers of MoS2 and Nitrogenated RGO, Obtained by Covalent Cross-Linking: Synthesis, Characterization, and HER Activity. ACS Appl. Mater. Interfaces. 2017;9(12):10664–10672. doi: 10.1021/acsami.7b00085. PubMed DOI
Hu B., Huang K., Tang B., Lei Z., Wang Z., Guo H., Lian C., Liu Z., Wang L.. Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution. Nano-Micro Lett. 2023;15(1):217. doi: 10.1007/s40820-023-01182-7. PubMed DOI PMC
Wei D., Chen L., Tian L., Ramakrishna S., Ji D.. Hierarchically Structured CoNiP/CoNi Nanoparticle/Graphene/Carbon Foams as Effective Bifunctional Electrocatalysts for HER and OER. Ind. Eng. Chem. Res. 2023;62(12):4987–4994. doi: 10.1021/acs.iecr.3c00224. DOI
Zhang X., Su Z., Jiang L., Wang S., Gai H., Deng Z., Chen Y., Zhang Z., Zhu W., Zhao Z.. et al. Femtosecond Laser Synthesis of Metastable PtRu/Graphene Electrocatalysts for Efficient Hydrogen Evolution Reaction in Acidic and Alkaline Solutions. J. Colloid Interface Sci. 2025;690:137265. doi: 10.1016/j.jcis.2025.137265. PubMed DOI
Alves D., Moral R. A., Jayakumari D., Dempsey E., Breslin C. B.. Factorial Optimization of CoCuFe-LDH/Graphene Ternary Composites as Electrocatalysts for Water Splitting. ACS Appl. Mater. Interfaces. 2024;16(38):50846–50858. doi: 10.1021/acsami.4c10870. PubMed DOI PMC
Mohammadi S., Gholivand M. B., Mirzaei M., Amiri M.. Iron Phosphide Nanoparticles Anchored on 3D Nitrogen-Doped Graphene as an Efficient Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Media. Mater. Today Commun. 2024;41:110758. doi: 10.1016/j.mtcomm.2024.110758. DOI
Wang H., Ye B., Li C., Tang T., Li S., Shi S., Wu C., Zhang Y.. Vertical Graphene-Supported NiMo Nanoparticles as Efficient Electrocatalysts for Hydrogen Evolution Reaction under Alkaline Conditions. Materials. 2023;16(8):3171. doi: 10.3390/ma16083171. PubMed DOI PMC
Qiao Y., Tang Q., Han Y., Duan X., Liang J., Sun J.-F.. Co, N, and P Co-Doped Few-Layer Graphene Derived from Cobalt Phthalocyanine-Based Covalent Organic Polymers as Bifunctional Electrocatalysts for Overall Water Splitting. J. Phys. Chem. Solids. 2024;189:111979. doi: 10.1016/j.jpcs.2024.111979. DOI
Wang S., He X., Wang S., Huang X., Wu M., Xiang D.. FeCoS2/Co4S3/N-Doped Graphene Composite as Efficient Electrocatalysts for Overall Water Splitting. Electrochim. Acta. 2023;441:141790. doi: 10.1016/j.electacta.2022.141790. DOI
Feng Y., Zhu L., Pei A., Zhang S., Liu K., Wu F., Li W.. Platinum–Palladium-on-Reduced Graphene Oxide as Bifunctional Electrocatalysts for Highly Active and Stable Hydrogen Evolution and Methanol Oxidation Reaction. Nanoscale. 2023;15(42):16904–16913. doi: 10.1039/D3NR04014C. PubMed DOI
Prytkova A., Kirsanova M. A., Kiiamov A. G., Tayurskii D. A., Dimiev A. M.. Ni–Pd Nanocomposites on Reduced Graphene Oxide Support as Electrocatalysts for Hydrogen Evolution Reactions. ACS Appl. Nano Mater. 2023;6(16):14902–14909. doi: 10.1021/acsanm.3c02461. DOI
Huang S.-Y., Le P.-A., Nguyen V.-T., Lu Y.-C., Sung C.-W., Cheng H.-W., Hsiao C.-Y., Dang V. D., Chiu P.-W., Wei K.-H.. Surface Plasma–Induced Tunable Nitrogen Doping through Precursors Provides 1T-2H MoSe2/Graphene Sheet Composites as Electrocatalysts for the Hydrogen Evolution Reaction. Electrochim. Acta. 2022;426:140767. doi: 10.1016/j.electacta.2022.140767. DOI
Wang X., Le J. B., Fei Y., Gao R., Jing M., Yuan W., Li C. M.. Self-Assembled Ultrasmall Mixed Co–W Phosphide Nanoparticles on Pristine Graphene with Remarkable Synergistic Effects as Highly Efficient Electrocatalysts for Hydrogen Evolution. J. Mater. Chem. A. 2022;10(14):7694–7704. doi: 10.1039/D2TA00555G. DOI
Caliskan S., Wang A., Qin F., House S. D., Lee J.-K.. Molybdenum Carbide-Reduced Graphene Oxide Composites as Electrocatalysts for Hydrogen Evolution. ACS Appl. Nano Mater. 2022;5(3):3790–3798. doi: 10.1021/acsanm.1c04253. DOI
Chen D., Mao Y., Liu C., Cao Y., Xia Z., Wu Q., Xiao Y., Wang W.. Ru-Substituted Co Nanoalloys Encapsulated within Graphene as Efficient Electrocatalysts for Accelerating Water Dissociation in Alkaline Solution. Appl. Surf. Sci. 2022;580:152294. doi: 10.1016/j.apsusc.2021.152294. DOI
Khan I., Baig N., Bake A., Haroon M., Ashraf M., Al-Saadi A., Tahir M. N., Wooh S.. Robust Electrocatalysts Decorated Three-Dimensional Laser-Induced Graphene for Selective Alkaline OER and HER. Carbon. 2023;213:118292. doi: 10.1016/j.carbon.2023.118292. DOI