Chemical Tuning of Specific Capacitance in Functionalized Fluorographene

. 2019 Jul 09 ; 31 (13) : 4698-4709. [epub] 20190607

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31371868

Owing to its high surface area and excellent conductivity, graphene is considered an efficient electrode material for supercapacitors. However, its restacking in electrolytes hampers its broader utilization in this field. Covalent graphene functionalization is a promising strategy for providing more efficient electrode materials. The chemistry of fluorographene is particularly attractive as it allows scalable chemical production of useful graphene derivatives. Nevertheless, the influence of chemical composition on the capacitance of graphene derivatives is a largely unexplored field in nanomaterials science, limiting further development of efficient graphene-based electrode materials. In the present study, we obtained well-defined graphene derivatives differing in chemical composition but with similar morphologies by controlling the reaction time of 5-aminoisophthalic acid with fluorographene. The gravimetric specific capacitance ranged from 271 to 391 F g-1 (in 1 M Na2SO4), with the maximum value achieved by a delicate balance between the amount of covalently grafted functional groups and density of the sp2 carbon network governing the conductivity of the material. Molecular dynamics simulations showed that covalent grafting of functional groups with charged and ionophilic/hydrophilic character significantly enhanced the ionic concentration and hydration due to favorable electrostatic interactions among the charged centers and ions/water molecules. Therefore, conductive and hydrophilic graphitic surfaces are important features of graphene-based supercapacitor electrode materials. These findings provide important insights into the role of chemical composition on capacitance and pave the way toward designing more efficient graphene-based supercapacitor electrode materials.

Zobrazit více v PubMed

Simon P.; Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. 10.1038/nmat2297. PubMed DOI

Li X.; Shao J.; Kim S. K.; Yao C.; Wang J.; Miao Y. R.; Zheng Q.; Sun P.; Zhang R.; Braun P. V. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat. Commun. 2018, 9, 257810.1038/s41467-018-04937-8. PubMed DOI PMC

Song K.; Song W. L.; Fan L. Z. Scalable fabrication of exceptional 3D carbon networks for supercapacitors. J. Mater. Chem. A 2015, 3, 16104–16111. 10.1039/C5TA03899E. DOI

Kumar K. S.; Choudhary N.; Jung Y.; Thomas J. Recent Advances in Two-Dimensional Nanomaterials for Supercapacitor Electrode Applications. ACS Energy Lett. 2018, 3, 482–495. 10.1021/acsenergylett.7b01169. DOI

Zhang S.; Sui L.; Kang H.; Dong H.; Dong L.; Yu L. High Performance of N-Doped Graphene with Bubble-like Textures for Supercapacitors. Small 2018, 14, 170257010.1002/smll.201702570. PubMed DOI

Song B.; Sizemore C.; Li L.; Huang X.; Lin Z.; Moon K.; Wong C. P. Triethanolamine functionalized graphene-based composites for high performance supercapacitors. J. Mater. Chem. A 2015, 3, 21789–21796. 10.1039/C5TA05674H. DOI

Liu J.; Wang B.; Mirri F.; Pasquali M.; Motta N. High performance solid-state supercapacitors based on compressed graphene foam. RSC Adv. 2015, 5, 84836–84839. 10.1039/C5RA13914G. DOI

Ren Q. H.; Zhang Y.; Lu H. L.; Wang Y. P.; Liu W. J.; Ji X. M.; Devi A.; Jiang A. Q.; Zhang D. W. Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High- Performance Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 468–476. 10.1021/acsami.7b13392. PubMed DOI

Liu C.; Zhao S.; Lu Y.; Chang Y.; Xu D.; Wang Q.; Dai Z.; Bao J.; Han M. 3D Porous Nanoarchitectures Derived from SnS/S-Doped Graphene Hybrid Nanosheets for Flexible All-Solid-State Supercapacitors. Small 2017, 13, 160349410.1002/smll.201603494. PubMed DOI

Chen Y.; Guan J. H.; Gan H.; Chen B. Z.; Shi X. C. Electrochemical growth of α-MnO2 on carbon fibers for high performance binder-free electrodes of supercapacitors. J. Appl. Electrochem. 2018, 48, 105–113. 10.1007/s10800-017-1142-6. DOI

Ai Z.; Hu Z.; Liu Y.; Fan M.; Liu P. Novel 3D flower-like CoNi2S4/carbon nanotube composites as high-performance electrode materials for supercapacitors. New J. Chem. 2016, 40, 340–347. 10.1039/C5NJ02279G. DOI

Gueon D.; Moon J. H. MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High- Performance Supercapacitors. ACS Sustainable Chem. Eng. 2017, 5, 2445–2453. 10.1021/acssuschemeng.6b02803. DOI

An N.; Zhang F.; Hu Z.; Li Z.; Li L.; Yang Y.; Guo B.; Lei Z. Non-covalently functionalizing a graphene framework by anthraquinone for high-rate electrochemical energy storage. RSC Adv. 2015, 5, 23942–23951. 10.1039/C4RA16092D. DOI

Niu H.; Yang X.; Jiang H.; Zhou D.; Li X.; Zhang T.; Liu J.; Wang Q.; Qu F. Hierarchical core-shell heterostructure of porous carbon nanofiber@ZnCo2O4 nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors. J. Mater. Chem. A 2015, 3, 24082–24094. 10.1039/C5TA07439H. DOI

Lin J.; Jia H.; Liang H.; Chen S.; Cai Y.; Qi J.; Qu C.; Cao J.; Fei W.; Feng J. In Situ Synthesis of Vertical Standing Nanosized NiO Encapsulated in Graphene as Electrodes for High- Performance Supercapacitors. Adv. Sci. 2018, 5, 170068710.1002/advs.201700687. PubMed DOI PMC

Patil U.; Lee S. C.; Kulkarni S.; Sohn J. S.; Nam M. S.; Han S.; Jun S. C. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 2015, 7, 6999–7021. 10.1039/C5NR01135C. PubMed DOI

Chabi S.; Peng C.; Yang Z.; Xia Y.; Zhu Y. Three dimensional (3D) flexible graphene foam/ polypyrrole composite: towards highly efficient supercapacitors. RSC Adv. 2015, 5, 3999–4008. 10.1039/C4RA13743D. DOI

Wang Z.; Zhang Q.; Long S.; Luo Y.; Yu P.; Tan Z.; Bai J.; Qu B.; Yang Y.; Shi J.; Zhou H.; Xiao Z. Y.; Hong W.; Bai H. Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 10437–10444. 10.1021/acsami.7b19635. PubMed DOI

Geim A. K.; Novoselov K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. 10.1038/nmat1849. PubMed DOI

Liu C.; Yu Z.; Neff D.; Zhamu A.; Jang B. Z. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863–4868. 10.1021/nl102661q. PubMed DOI

Lee J. U.; Yoon D.; Cheong H. Estimation of Young’s Modulus of Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 4444–4448. 10.1021/nl301073q. PubMed DOI

Mao S.; Lu G.; Chen J. Three-dimensional graphene-based composites for energy applications. Nanoscale 2015, 7, 6924–6943. 10.1039/C4NR06609J. PubMed DOI

Ke Q.; Wang J. Graphene-based materials for supercapacitor electrodes - A review. J. Materiomics 2016, 2, 37–54. 10.1016/j.jmat.2016.01.001. DOI

Chiu C. T.; Chen D. H. One-step hydrothermal synthesis of three dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors. Nanotechnology 2018, 29, 17560210.1088/1361-6528/aaaff5. PubMed DOI

Bakandritsos A.; Jakubec P.; Pykal M.; Otyepka M. Covalently functionalized graphene as a supercapacitor electrode material. Flat Chem. 2019, 13, 25–33. 10.1016/j.flatc.2018.12.004. DOI

Caliman C. C.; Mesquita A. F.; Cipriano D. F.; Freitas J. C. C.; Cotta A. A. C.; Macedo W. A. A.; Porto A. O. One-pot synthesis of amine-functionalized graphene oxide by microwave-assisted reactions: an outstanding alternative for supporting materials in supercapacitors. RSC Adv. 2018, 8, 6136–6145. 10.1039/C7RA13514A. PubMed DOI PMC

Shi J.; Zhao Z.; Wu J.; Yu Y.; Peng Z.; Li B.; Liu Y.; Kang H.; Liu Z. Synthesis of Aminopyrene-tetraone-Modified Reduced Graphene Oxide as an Electrode Material for High-Performance Supercapacitors. ACS Sustainable Chem. Eng. 2018, 6, 4729–4738. 10.1021/acssuschemeng.7b03814. DOI

Bourlinos A. B.; Bakandritsos A.; Liaros N.; Couris S.; Safarova K.; Otyepka M.; Zbořil R. Water dispersible functionalized graphene fluoride with significant nonlinear optical response. Chem. Phys. Lett. 2012, 543, 101–105. 10.1016/j.cplett.2012.06.021. DOI

Bourlinos A. B.; Safarova K.; Siskova K.; Zbořil R. The production of chemically converted graphenes from graphite fluoride. Carbon 2012, 50, 1425–1428. 10.1016/j.carbon.2011.10.012. DOI

Wang X.; Dai Y.; Gao J.; Huang J.; Li B.; Fan C.; Yang J.; Liu X. High-Yield Production of Highly Fluorinated Graphene by Direct Heating Fluorination of Graphene-oxide. ACS Appl. Mater. Interfaces 2013, 5, 8294–8299. 10.1021/am402958p. PubMed DOI

Bakandritsos A.; Pykal M.; Błoński P.; Jakubec P.; Chronopoulos D. D.; Poláková K.; Georgakilas V.; Čépe K.; Tomanec O.; Ranc V.; Bourlinos A. B.; Zbořil R.; Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11, 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC

Cheong Y. H.; Nasir M. Z. M.; Bakandritsos A.; Pykal M.; Jakubec P.; Zbořil R.; Otyepka M.; Pumera M. Cyanographene and Graphene Acid: The Functional Group of Graphene Derivative Determines the Application in Electrochemical Sensing and Capacitors. ChemElectroChem. 2018, 229–234. 10.1002/celc.201800675. DOI

Bakandritsos A.; Chronopoulos D. D.; Jakubec P.; Pykal M.; Čépe K.; Steriotis T.; Kalytchuk S.; Petr M.; Zbořil R.; Otyepka M. High-Performance Supercapacitors Based on a Zwitterionic Network of Covalently Functionalized Graphene with Iron Tetraaminophthalocyanine. Adv. Funct. Mater. 2018, 28, 180111110.1002/adfm.201801111. DOI

Peng X.; Liu H.; Yin Q.; Wu J.; Chen P.; Zhang G.; Liu G.; Wu C.; Xie Y. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat. Commun. 2016, 7, 1178210.1038/ncomms11782. PubMed DOI PMC

Jung Y.; Yang Y.; Kim T.; Shin H. S.; Hong S.; Cha S.; Kwon S. Enhanced Electrochemical Stability of a Zwitterionic-Polymer- Functionalized Electrode for Capacitive Deionization. ACS Appl. Mater. Interfaces 2018, 10, 6207–6217. 10.1021/acsami.7b14609. PubMed DOI

Forse A. C.; Merlet C.; Griffin J. M.; Grey C. P. New Perspectives on the Charging Mechanisms of Supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731–5744. 10.1021/jacs.6b02115. PubMed DOI PMC

Pykal M.; Langer M.; Prudilová B. B.; Pavel Banáš P.; Otyepka M. Ion Interactions across Graphene in Electrolyte Aqueous Solutions. J. Phys. Chem. C 2019, 123, 9799–9806. 10.1021/acs.jpcc.8b12055. DOI

Vusa C. S. R.; Venkatesan M.; Aneesh K.; Berchmans S.; Arumugam P. Tactical tuning of the surface and interfacial properties of graphene: A Versatile and rational electrochemical approach. Sci. Rep. 2017, 7, 835410.1038/s41598-017-08627-1. PubMed DOI PMC

Zhao F. G.; Kong Y. T.; Pan B.; Hu C. M.; Zuo B.; Dong X.; Li B.; Li W. S. In situ tunable pillaring of compact and high density graphite fluoride with pseudocapacitive diamines for supercapacitors with combined predominance in gravimetric and volumetric performances. J. Mater. Chem. A 2019, 7, 3353–3365. 10.1039/C8TA09782H. DOI

Liu Z.; Zhou H.; Huang Z.; Wang W.; Zeng F.; Kuang Y. Graphene covalently functionalized with poly(p-phenylenediamine) as high performance electrode material for supercapacitors. J. Mater. Chem. A 2013, 1, 3454–3462. 10.1039/c3ta01162c. DOI

Khandelwal M.; Hur S. H.; Chung J. S. Tailoring the structural properties of simultaneously reduced and functionalized graphene oxide via alkanolamine(s)/alkyl alkanolamine for energy storage applications. Chem. Eng. J. 2019, 363, 120–132. 10.1016/j.cej.2019.01.110. DOI

Stoller M. D.; Ruoff R. S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 2010, 3, 1294–1301. 10.1039/c0ee00074d. DOI

Khomenko V.; Frackowiak E.; Béguin F. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim. Acta 2005, 50, 2499–2506. 10.1016/j.electacta.2004.10.078. DOI

Van Der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. 10.1002/jcc.20291. PubMed DOI

Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI

Cheng A.; Steele W. A. Computer simulation of ammonia on graphite. I. Low temperature structure of monolayer and bilayer films. J. Chem. Phys. 1990, 92, 3858–3866. 10.1063/1.458562. DOI

Ȧqvist J. Ion Water Interaction Potentials Derived from Free-Energy Perturbation Simulations. J. Phys. Chem. 1990, 94, 8021–8024. 10.1021/j100384a009. DOI

Smith D. E.; Dang L. X. Computer Simulations of NaCl Association in Polarizable Water. J. Chem. Phys. 1994, 100, 3757–3766. 10.1063/1.466363. DOI

Bayly C. I.; Cieplak P.; Cornell W. D.; Kollman P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 1993, 97, 10269–10280. 10.1021/j100142a004. DOI

Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 01410110.1063/1.2408420. PubMed DOI

Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. 10.1063/1.448118. DOI

The PyMOL Molecular Graphics System, version 1.8; Schrodinger, LLC, 2015.

Whitener K. E. Jr.; Stine R.; Robinson J. T.; Sheehan P. E. Graphene as Electrophile: Reactions of Graphene Fluoride. J. Phys. Chem. C 2015, 119, 10507–10512. 10.1021/acs.jpcc.5b02730. DOI

Guérin K.; Pinheiro J. P.; Dubois M.; Fawal Z.; Masin F.; Yazami R.; Hamwi A. Synthesis and Characterization of Highly Fluorinated Graphite Containing sp2 and sp3 Carbon. Chem. Mater. 2004, 16, 1786–1792. 10.1021/cm034974c. DOI

Worsley K. A.; Ramesh P.; Mandal S. K.; Niyogi S.; Itkis M. E.; Haddon R. C. Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 2007, 445, 51–56. 10.1016/j.cplett.2007.07.059. DOI

Bulusheva L. G.; Tur V. A.; Fedorovskaya E. O.; Asanov I. P.; Pontiroli D.; Riccò M.; Okotrub A. V. Structure and supercapacitor performance of graphene materials obtained from brominated and fluorinated graphites. Carbon 2014, 78, 137–146. 10.1016/j.carbon.2014.06.061. DOI

Matochová D.; Medved’ M.; Bakandritsos A.; Steklý T.; Zbořil R.; Otyepka M. 2D Chemistry: Chemical Control of Graphene Derivatization. J. Phys. Chem. Lett. 2018, 9, 3580–3585. 10.1021/acs.jpclett.8b01596. PubMed DOI PMC

Yin X.; Li Y.; Feng Y.; Feng W. Polythiophene /graphite fluoride composites cathode for high power and energy densities lithium primary batteries. Synth. Met. 2016, 220, 560–566. 10.1016/j.synthmet.2016.07.032. DOI

Hou K.; Gong P.; Wang J.; Yang Z.; Ma L.; Yang S. Construction of Highly Ordered Fluorinated Graphene Composite Coatings with Various Fluorine Contents for Enhanced Lubrication Performance. Tribol. Lett. 2015, 60, 6.10.1007/s11249-015-0586-2. DOI

Chronopoulos D. D.; Bakandritsos A.; Lazar P.; Pykal M.; Čépe K.; Zbořil R.; Otyepka M. High-Yield Alkylation and Arylation of Gra-phene via Grignard Reaction with Fluorographene. Chem. Mater. 2017, 29, 926–930. 10.1021/acs.chemmater.6b05040. PubMed DOI PMC

Vermisoglou E. C.; Giannakopoulou T.; Romanos G.; Boukos N.; Psycharis V.; Lei C.; Lekakou C.; Petridis D.; Trapalis C. Graphene-based materials via benzidine-assisted exfoliation and reduction of graphite oxide and their electrochemical properties. Appl. Surf. Sci. 2017, 392, 244–255. 10.1016/j.apsusc.2016.08.079. DOI

Yu Y.; Zhang H.; Cui S. Fabrication of robust multilayer films by triggering the coupling reaction between phenol and primary amine groups with visible light irradiation. Nanoscale 2011, 3, 3819–3824. 10.1039/c1nr10453e. PubMed DOI

Chronopoulos D. D.; Bakandritsos A.; Pykal M.; Zbořil R.; Otyepka M. Chemistry, properties, and applications of fluorographene. Appl. Mater. Today 2017, 9, 60–70. 10.1016/j.apmt.2017.05.004. PubMed DOI PMC

Zhang M.; Ma Y.; Y. Zhu Y.; Che J.; Xiao Y. Two-dimensional transparent hydrophobic coating based on liquid-phase exfoliated graphene fluoride. Carbon 2013, 63, 149–156. 10.1016/j.carbon.2013.06.066. DOI

Englert J. M.; Vecera P.; Knirsch K. C.; Schäfer R. A.; Hauke F.; Hirsch A. Scanning-Raman-Microscopy for the Statistical Analysis of Covalently Functionalized Graphene. ACS Nano 2013, 7, 5472–5482. 10.1021/nn401481h. PubMed DOI

Konkena B.; Vasudevan S. Covalently Linked, Water-Dispersible, Cyclodextrin: Reduced- Graphene Oxide Sheets. Langmuir 2012, 28, 12432–12437. 10.1021/la3020783. PubMed DOI

Hasan S. A.; Tsekoura E. K.; Sternhagen V.; Strømme M. Evolution of the Composition and Suspension Performance of Nitrogen-Doped Graphene. J. Phys. Chem. C 2012, 116, 6530–6536. 10.1021/jp210474x. DOI

Oh Y. J.; Yoo J. J.; Kim Y. I.; Yoon J. K.; Yoon H. N.; Kim J. H.; Park S. B. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim. Acta 2014, 116, 118–128. 10.1016/j.electacta.2013.11.040. DOI

Lounasvuori M. M.; Rosillo-Lopez M.; Salzmann C. G.; Caruana D. J.; Holt K. B. The influence of acidic edge groups on the electrochemical performance of graphene nanoflakes. J. Electroanal. Chem. 2015, 753, 28–34. 10.1016/j.jelechem.2015.05.010. DOI

Gogotsi Y.; Simon P. True Performance Metrics in Electrochemical Energy Storage. Science 2011, 334, 917–918. 10.1126/science.1213003. PubMed DOI

Zhao Y.; Liu M.; Gan L.; Ma X.; Zhu D.; Xu Z.; Chen L. Ultramicroporous carbon nanoparticles for the high-performance electrical double-layer capacitor electrode. Energy Fuels 2014, 28, 1561–1568. 10.1021/ef402070j. DOI

Li M.; Liu C.; Cao H.; Zhao H.; Zhang Y.; Fan Z. KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 14844–14851. 10.1039/C4TA02167C. DOI

Zhu D.; Wang Y.; Lu W.; Zhang H.; Song Z.; Luo D.; Gan L.; Liu M.; Sun D. A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes. Carbon 2017, 111, 667–674. 10.1016/j.carbon.2016.10.016. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...