Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
SGT-100038
Indian Institute of Technology Jammu
323000-0424/07
Queensland University of Technology
Australian Research Council
FT180100058
Future Fellowship
Operational Programme Research
CZ.02.1.01/0.0/0.0/16_019/0000754
Development and Education-European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000416
Development and Education-European Regional Development Fund
Ministry of Education
German Research Foundation
EXC 2089
Fundamentals of Energy Conversion Processes
PubMed
33274794
PubMed Central
PMC11468759
DOI
10.1002/adma.202004560
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, MXenes, asymmetric supercapacitors, covalent assemblies, metal-organic frameworks,
- Publikační typ
- časopisecké články MeSH
In this work, the covalent attachment of an amine functionalized metal-organic framework (UiO-66-NH2 = Zr6 O4 (OH)4 (bdc-NH2 )6 ; bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) (UiO-Universitetet i Oslo) to the basal-plane of carboxylate functionalized graphene (graphene acid = GA) via amide bonds is reported. The resultant GA@UiO-66-NH2 hybrid displayed a large specific surface area, hierarchical pores and an interconnected conductive network. The electrochemical characterizations demonstrated that the hybrid GA@UiO-66-NH2 acts as an effective charge storing material with a capacitance of up to 651 F g-1 , significantly higher than traditional graphene-based materials. The results suggest that the amide linkage plays a key role in the formation of a π-conjugated structure, which facilitates charge transfer and consequently offers good capacitance and cycling stability. Furthermore, to realize the practical feasibility, an asymmetric supercapacitor using a GA@UiO-66-NH2 positive electrode with Ti3 C2 TX MXene as the opposing electrode has been constructed. The cell is able to deliver a power density of up to 16 kW kg-1 and an energy density of up to 73 Wh kg-1 , which are comparable to several commercial devices such as Pb-acid and Ni/MH batteries. Under an intermediate level of loading, the device retained 88% of its initial capacitance after 10 000 cycles.
Department of Chemistry Indian Institute of Technology Jammu Nagrota Jammu and Kashmir 181221 India
Sandia National Laboratories 7011 East Avenue MS9161 Livermore CA 94550 USA
Zobrazit více v PubMed
Horike S., Shimomura S., Kitagawa S., Nat. Chem. 2009, 1, 695. PubMed
Rosi N. L., Eckert J., Eddaoudi M., Vodak D. T., Kim J., O'Keeffe M., Yaghi O. M., Science 2003, 300, 1127. PubMed
Jiao L., Wang Y., Jiang H. L., Xu Q., Adv. Mater. 2018, 30, 1703663. PubMed
Shekhah O., Liu J., Fischer R. A., Wöll C., Chem. Soc. Rev. 2011, 40, 1081. PubMed
Woellner M., Hausdorf S., Klein N., Mueller P., Smith M. W., Kaskel S., Adv. Mater. 2018, 30, 1704679. PubMed
Stavila V., Talin A. A., Allendorf M. D., Chem. Soc. Rev. 2014, 43, 5994. PubMed
Burtch N. C., Heinen J., Bennett T. D., Dubbeldam D., Allendorf M. D., Adv. Mater. 2018, 30, 1704124. PubMed
Xiao X., Zou L., Pang H., Xu Q., Chem. Soc. Rev. 2020, 49, 301. PubMed
Geim A. K., Novoselov K. S., Nat. Mater. 2007, 6, 183. PubMed
Cheng C., Li S., Thomas A., Kotov N. A., Haag R., Chem. Rev. 2017, 117, 1826. PubMed
Li C., Shi G., Adv. Mater. 2014, 26, 3992. PubMed
Van Ngo T., Moussa M., Tung T. T., Coghlan C., Losic D., Electrochim. Acta 2020, 329, 135104.
Kumar R., Jayaramulu K., Maji T. K., Rao C. N. R., Chem. Commun. 2013, 49, 4947. PubMed
Du M., Li Q., Zhao Y., Liu C.‐S., Pang H., Coord. Chem. Rev. 2020, 416, 213341.
Zheng Y., Zheng S., Xue H., Pang H., Adv. Funct. Mater. 2018, 28, 1804950.
Liu X.‐W., Sun T.‐J., Hu J.‐L., Wang S.‐D., J. Mater. Chem. A 2016, 4, 3584.
Wang Z., Huang J., Mao J., Guo Q., Chen Z., Lai Y., J. Mater. Chem. A 2020, 8, 2934.
Li S.‐L., Xu Q., Energy Environ. Sci. 2013, 6, 1656.
Zhang K., Kirlikovali K. O., Le Q. V., Jin Z., Varma R. S., Jang H. W., Farha O. K., Shokouhimehr M., ACS Appl. Nano Mater. 2020, 3, 3964. PubMed
Jahan M., Bao Q., Yang J.‐X., Loh K. P., J. Am. Chem. Soc. 2010, 132, 14487. PubMed
Huang X., Zheng B., Liu Z., Tan C., Liu J., Chen B., Li H., Chen J., Zhang X., Fan Z., Zhang W., Guo Z., Huo F., Yang Y., Xie L.‐H., Huang W., Zhang H., ACS Nano 2014, 8, 8695. PubMed
Mao J., Ge M., Huang J., Lai Y., Lin C., Zhang K., Meng K., Tang Y., J. Mater. Chem. A 2017, 5, 11873.
Bu Y., Li F., Zhang Y., Liu R., Luo X., Xu L., RSC Adv. 2016, 6, 40560.
Jayaramulu K., Dubal D. P., Schneemann A., Ranc V., Perez‐Reyes C., Stráská J., Kment Š., Otyepka M., Fischer R. A., Zbořil R., Adv. Funct. Mater. 2019, 29, 1902539.
Jayaramulu K., Geyer F., Petr M., Zboril R., Vollmer D., Fischer R. A., Adv. Mater. 2017, 29, 1605307. PubMed
Jayaramulu K., Datta K. K., Rosler C., Petr M., Otyepka M., Zboril R., Fischer R. A., Angew. Chem., Int. Ed. 2016, 55, 1178. PubMed
Georgakilas V., Otyepka M., Bourlinos A. B., Chandra V., Kim N., Kemp K. C., Hobza P., Zboril R., Kim K. S., Chem. Rev. 2012, 112, 6156. PubMed
Bottari G., Herranz M. Á., Wibmer L., Volland M., Rodríguez‐Pérez L., Guldi D. M., Hirsch A., Martín N., D'Souza F., Torres T., Chem. Soc. Rev. 2017, 46, 4464. PubMed
Chen D., Feng H., Li J., Chem. Rev. 2012, 112, 6027. PubMed
Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D. D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V., Bourlinos A. B., Zbořil R., Otyepka M., ACS Nano 2017, 11, 2982. PubMed PMC
Lenarda, Bakandritsos A., Bevilacqua M., Tavagnacco C., Melchionna M., Naldoni A., Steklý T., Otyepka M., Zbořil R., Fornasiero P., ACS Omega 2019, 4, 19944. PubMed PMC
Papadakis I., Kyrginas D., Stathis A., Couris S., Potsi G., Bourlinos A. B., Tomanec O., Otyepka M., Zboril R., J. Phys. Chem. C 2019, 123, 25856. PubMed
Bakandritsos A., Kadam R. G., Kumar P., Zoppellaro G., Medved M., Tuček J., Montini T., Tomanec O., Andrýsková P., Drahoš B., Varma R. S., Otyepka M., Gawande M. B., Fornasiero P., Zbořil R., Adv. Mater. 2019, 31, 1900323. PubMed
Bakandritsos A., Jakubec P., Pykal M., Otyepka M., FlatChem 2019, 13, 25. PubMed PMC
Cavka J. H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., Lillerud K. P., J. Am. Chem. Soc. 2008, 130, 13850. PubMed
Howarth A. J., Liu Y., Li P., Li Z., Wang T. C., Hupp J. T., Farha O. K., Nat. Rev. Mater. 2016, 1, 15018.
Anasori B., Lukatskaya M. R., Gogotsi Y., Nat. Rev. Mater. 2017, 2, 16098.
Wang H., Zhu C., Chao D., Yan Q., Fan H. J., Adv. Mater. 2017, 29, 1702093. PubMed
Choudhary N., Li C., Moore J., Nagaiah N., Zhai L., Jung Y., Thomas J., Adv. Mater. 2017, 29, 1605336. PubMed
Xiong D., Li X., Bai Z., Lu S., Small 2018, 14, 1703419. PubMed
Overman S. A., Thomas G. J., Biochemistry 1995, 34, 5440. PubMed
Overman S. A., Thomas G. J., Biochemistry 1998, 37, 5654. PubMed
Chu X., Deng T., Zhang W., Wang D., Liu X., Zhang C., Qin T., Zhang L., Zhang B., Chen C., Zheng W., J. Energy Chem. 2018, 27, 507.
Choi K. M., Jeong H. M., Park J. H., Zhang Y.‐B., Kang J. K., Yaghi O. M., ACS Nano 2014, 8, 7451. PubMed
Mohammadi Zardkhoshoui A., Hosseiny Davarani S. S., Nanoscale 2020, 12, 1643. PubMed
Fu D., Zhou H., Zhang X.‐M., Han G., Chang Y., Li H., ChemistrySelect 2016, 1, 285.
Rahmanifar M. S., Hesari H., Noori A., Masoomi M. Y., Morsali A., Mousavi M. F., Electrochim. Acta 2018, 275, 76.
Zhong Y., Cao X., Ying L., Cui L., Barrow C., Yang W., Liu J., J. Colloid Interface Sci. 2020, 561, 265. PubMed
Wang J., Polleux J., Lim J., Dunn B., J. Phys. Chem. C 2007, 111, 14925.
Horn M., Gupta B., MacLeod J., Liu J., Motta N., Curr. Opin. Green Sustainable Chem. 2019, 17, 42.
Simon P., Gogotsi Y., Dunn B., Science 2014, 343, 1210. PubMed
Biswas S., Drzal L. T., Chem. Mater. 2010, 22, 5667.
Otero T. F., Padilla J., J. Electroanal. Chem. 2004, 561, 167.
An J., Liu J., Zhou Y., Zhao H., Ma Y., Li M., Yu M., Li S., J. Phys. Chem. C 2012, 116, 19699.
Lukatskaya M. R., Kota S., Lin Z., Zhao M.‐Q., Shpigel N., Levi M. D., Halim J., Taberna P.‐L., Barsoum M. W., Simon P., Gogotsi Y., Nat. Energy 2017, 2, 17105.
Dubal D. P., Ayyad O., Ruiz V., Gómez‐Romero P., Chem. Soc. Rev. 2015, 44, 1777. PubMed
Dubal D. P., Chodankar N. R., Holze R., Kim D.‐H., Gomez‐Romero P., ChemSusChem 2017, 10, 1771. PubMed
Dubal D. P., Chodankar N. R., Vinu A., Kim D.‐H., Gomez‐Romero P., ChemSusChem 2017, 10, 2742. PubMed
Jiang Q., Kurra N., Alhabeb M., Gogotsi Y., Alshareef H. N., Adv. Energy Mater. 2018, 8, 1703043.
Zhang J., Jiang J., Li H., Zhao X. S., Energy Environ. Sci. 2011, 4, 4009.
Burke A., Electrochim. Acta 2007, 53, 1083.
Campbell P. G., Merrill M. D., Wood B. C., Montalvo E., Worsley M. A., Baumann T. F., Biener J., J. Mater. Chem. A 2014, 2, 17764.
Quartarone E., Mustarelli P., J. Electrochem. Soc. 2020, 167, 050508.
Randau S., Weber D. A., Kötz O., Koerver R., Braun P., Weber A., Ivers‐Tiffée E., Adermann T., Kulisch J., Zeier W. G., Richter F. H., Janek J., Nat. Energy 2020, 5, 259.
Horn M., MacLeod J., Liu M., Webb J., Motta N., Econ. Anal. Policy 2019, 61, 93.
Lewis Acid Catalyzed Amide Bond Formation in Covalent Graphene-MOF Hybrids