Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors

. 2021 Jan ; 33 (4) : e2004560. [epub] 20201204

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33274794

Grantová podpora
SGT-100038 Indian Institute of Technology Jammu
323000-0424/07 Queensland University of Technology
Australian Research Council
FT180100058 Future Fellowship
Operational Programme Research
CZ.02.1.01/0.0/0.0/16_019/0000754 Development and Education-European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000416 Development and Education-European Regional Development Fund
Ministry of Education
German Research Foundation
EXC 2089 Fundamentals of Energy Conversion Processes

In this work, the covalent attachment of an amine functionalized metal-organic framework (UiO-66-NH2 = Zr6 O4 (OH)4 (bdc-NH2 )6 ; bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) (UiO-Universitetet i Oslo) to the basal-plane of carboxylate functionalized graphene (graphene acid = GA) via amide bonds is reported. The resultant GA@UiO-66-NH2 hybrid displayed a large specific surface area, hierarchical pores and an interconnected conductive network. The electrochemical characterizations demonstrated that the hybrid GA@UiO-66-NH2 acts as an effective charge storing material with a capacitance of up to 651 F g-1 , significantly higher than traditional graphene-based materials. The results suggest that the amide linkage plays a key role in the formation of a π-conjugated structure, which facilitates charge transfer and consequently offers good capacitance and cycling stability. Furthermore, to realize the practical feasibility, an asymmetric supercapacitor using a GA@UiO-66-NH2 positive electrode with Ti3 C2 TX MXene as the opposing electrode has been constructed. The cell is able to deliver a power density of up to 16 kW kg-1 and an energy density of up to 73 Wh kg-1 , which are comparable to several commercial devices such as Pb-acid and Ni/MH batteries. Under an intermediate level of loading, the device retained 88% of its initial capacitance after 10 000 cycles.

Zobrazit více v PubMed

Horike S., Shimomura S., Kitagawa S., Nat. Chem. 2009, 1, 695. PubMed

Rosi N. L., Eckert J., Eddaoudi M., Vodak D. T., Kim J., O'Keeffe M., Yaghi O. M., Science 2003, 300, 1127. PubMed

Jiao L., Wang Y., Jiang H. L., Xu Q., Adv. Mater. 2018, 30, 1703663. PubMed

Shekhah O., Liu J., Fischer R. A., Wöll C., Chem. Soc. Rev. 2011, 40, 1081. PubMed

Woellner M., Hausdorf S., Klein N., Mueller P., Smith M. W., Kaskel S., Adv. Mater. 2018, 30, 1704679. PubMed

Stavila V., Talin A. A., Allendorf M. D., Chem. Soc. Rev. 2014, 43, 5994. PubMed

Burtch N. C., Heinen J., Bennett T. D., Dubbeldam D., Allendorf M. D., Adv. Mater. 2018, 30, 1704124. PubMed

Xiao X., Zou L., Pang H., Xu Q., Chem. Soc. Rev. 2020, 49, 301. PubMed

Geim A. K., Novoselov K. S., Nat. Mater. 2007, 6, 183. PubMed

Cheng C., Li S., Thomas A., Kotov N. A., Haag R., Chem. Rev. 2017, 117, 1826. PubMed

Li C., Shi G., Adv. Mater. 2014, 26, 3992. PubMed

Van Ngo T., Moussa M., Tung T. T., Coghlan C., Losic D., Electrochim. Acta 2020, 329, 135104.

Kumar R., Jayaramulu K., Maji T. K., Rao C. N. R., Chem. Commun. 2013, 49, 4947. PubMed

Du M., Li Q., Zhao Y., Liu C.‐S., Pang H., Coord. Chem. Rev. 2020, 416, 213341.

Zheng Y., Zheng S., Xue H., Pang H., Adv. Funct. Mater. 2018, 28, 1804950.

Liu X.‐W., Sun T.‐J., Hu J.‐L., Wang S.‐D., J. Mater. Chem. A 2016, 4, 3584.

Wang Z., Huang J., Mao J., Guo Q., Chen Z., Lai Y., J. Mater. Chem. A 2020, 8, 2934.

Li S.‐L., Xu Q., Energy Environ. Sci. 2013, 6, 1656.

Zhang K., Kirlikovali K. O., Le Q. V., Jin Z., Varma R. S., Jang H. W., Farha O. K., Shokouhimehr M., ACS Appl. Nano Mater. 2020, 3, 3964. PubMed

Jahan M., Bao Q., Yang J.‐X., Loh K. P., J. Am. Chem. Soc. 2010, 132, 14487. PubMed

Huang X., Zheng B., Liu Z., Tan C., Liu J., Chen B., Li H., Chen J., Zhang X., Fan Z., Zhang W., Guo Z., Huo F., Yang Y., Xie L.‐H., Huang W., Zhang H., ACS Nano 2014, 8, 8695. PubMed

Mao J., Ge M., Huang J., Lai Y., Lin C., Zhang K., Meng K., Tang Y., J. Mater. Chem. A 2017, 5, 11873.

Bu Y., Li F., Zhang Y., Liu R., Luo X., Xu L., RSC Adv. 2016, 6, 40560.

Jayaramulu K., Dubal D. P., Schneemann A., Ranc V., Perez‐Reyes C., Stráská J., Kment Š., Otyepka M., Fischer R. A., Zbořil R., Adv. Funct. Mater. 2019, 29, 1902539.

Jayaramulu K., Geyer F., Petr M., Zboril R., Vollmer D., Fischer R. A., Adv. Mater. 2017, 29, 1605307. PubMed

Jayaramulu K., Datta K. K., Rosler C., Petr M., Otyepka M., Zboril R., Fischer R. A., Angew. Chem., Int. Ed. 2016, 55, 1178. PubMed

Georgakilas V., Otyepka M., Bourlinos A. B., Chandra V., Kim N., Kemp K. C., Hobza P., Zboril R., Kim K. S., Chem. Rev. 2012, 112, 6156. PubMed

Bottari G., Herranz M. Á., Wibmer L., Volland M., Rodríguez‐Pérez L., Guldi D. M., Hirsch A., Martín N., D'Souza F., Torres T., Chem. Soc. Rev. 2017, 46, 4464. PubMed

Chen D., Feng H., Li J., Chem. Rev. 2012, 112, 6027. PubMed

Bakandritsos A., Pykal M., Błoński P., Jakubec P., Chronopoulos D. D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V., Bourlinos A. B., Zbořil R., Otyepka M., ACS Nano 2017, 11, 2982. PubMed PMC

Lenarda, Bakandritsos A., Bevilacqua M., Tavagnacco C., Melchionna M., Naldoni A., Steklý T., Otyepka M., Zbořil R., Fornasiero P., ACS Omega 2019, 4, 19944. PubMed PMC

Papadakis I., Kyrginas D., Stathis A., Couris S., Potsi G., Bourlinos A. B., Tomanec O., Otyepka M., Zboril R., J. Phys. Chem. C 2019, 123, 25856. PubMed

Bakandritsos A., Kadam R. G., Kumar P., Zoppellaro G., Medved M., Tuček J., Montini T., Tomanec O., Andrýsková P., Drahoš B., Varma R. S., Otyepka M., Gawande M. B., Fornasiero P., Zbořil R., Adv. Mater. 2019, 31, 1900323. PubMed

Bakandritsos A., Jakubec P., Pykal M., Otyepka M., FlatChem 2019, 13, 25. PubMed PMC

Cavka J. H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., Lillerud K. P., J. Am. Chem. Soc. 2008, 130, 13850. PubMed

Howarth A. J., Liu Y., Li P., Li Z., Wang T. C., Hupp J. T., Farha O. K., Nat. Rev. Mater. 2016, 1, 15018.

Anasori B., Lukatskaya M. R., Gogotsi Y., Nat. Rev. Mater. 2017, 2, 16098.

Wang H., Zhu C., Chao D., Yan Q., Fan H. J., Adv. Mater. 2017, 29, 1702093. PubMed

Choudhary N., Li C., Moore J., Nagaiah N., Zhai L., Jung Y., Thomas J., Adv. Mater. 2017, 29, 1605336. PubMed

Xiong D., Li X., Bai Z., Lu S., Small 2018, 14, 1703419. PubMed

Overman S. A., Thomas G. J., Biochemistry 1995, 34, 5440. PubMed

Overman S. A., Thomas G. J., Biochemistry 1998, 37, 5654. PubMed

Chu X., Deng T., Zhang W., Wang D., Liu X., Zhang C., Qin T., Zhang L., Zhang B., Chen C., Zheng W., J. Energy Chem. 2018, 27, 507.

Choi K. M., Jeong H. M., Park J. H., Zhang Y.‐B., Kang J. K., Yaghi O. M., ACS Nano 2014, 8, 7451. PubMed

Mohammadi Zardkhoshoui A., Hosseiny Davarani S. S., Nanoscale 2020, 12, 1643. PubMed

Fu D., Zhou H., Zhang X.‐M., Han G., Chang Y., Li H., ChemistrySelect 2016, 1, 285.

Rahmanifar M. S., Hesari H., Noori A., Masoomi M. Y., Morsali A., Mousavi M. F., Electrochim. Acta 2018, 275, 76.

Zhong Y., Cao X., Ying L., Cui L., Barrow C., Yang W., Liu J., J. Colloid Interface Sci. 2020, 561, 265. PubMed

Wang J., Polleux J., Lim J., Dunn B., J. Phys. Chem. C 2007, 111, 14925.

Horn M., Gupta B., MacLeod J., Liu J., Motta N., Curr. Opin. Green Sustainable Chem. 2019, 17, 42.

Simon P., Gogotsi Y., Dunn B., Science 2014, 343, 1210. PubMed

Biswas S., Drzal L. T., Chem. Mater. 2010, 22, 5667.

Otero T. F., Padilla J., J. Electroanal. Chem. 2004, 561, 167.

An J., Liu J., Zhou Y., Zhao H., Ma Y., Li M., Yu M., Li S., J. Phys. Chem. C 2012, 116, 19699.

Lukatskaya M. R., Kota S., Lin Z., Zhao M.‐Q., Shpigel N., Levi M. D., Halim J., Taberna P.‐L., Barsoum M. W., Simon P., Gogotsi Y., Nat. Energy 2017, 2, 17105.

Dubal D. P., Ayyad O., Ruiz V., Gómez‐Romero P., Chem. Soc. Rev. 2015, 44, 1777. PubMed

Dubal D. P., Chodankar N. R., Holze R., Kim D.‐H., Gomez‐Romero P., ChemSusChem 2017, 10, 1771. PubMed

Dubal D. P., Chodankar N. R., Vinu A., Kim D.‐H., Gomez‐Romero P., ChemSusChem 2017, 10, 2742. PubMed

Jiang Q., Kurra N., Alhabeb M., Gogotsi Y., Alshareef H. N., Adv. Energy Mater. 2018, 8, 1703043.

Zhang J., Jiang J., Li H., Zhao X. S., Energy Environ. Sci. 2011, 4, 4009.

Burke A., Electrochim. Acta 2007, 53, 1083.

Campbell P. G., Merrill M. D., Wood B. C., Montalvo E., Worsley M. A., Baumann T. F., Biener J., J. Mater. Chem. A 2014, 2, 17764.

Quartarone E., Mustarelli P., J. Electrochem. Soc. 2020, 167, 050508.

Randau S., Weber D. A., Kötz O., Koerver R., Braun P., Weber A., Ivers‐Tiffée E., Adermann T., Kulisch J., Zeier W. G., Richter F. H., Janek J., Nat. Energy 2020, 5, 259.

Horn M., MacLeod J., Liu M., Webb J., Motta N., Econ. Anal. Policy 2019, 61, 93.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...