Lewis Acid Catalyzed Amide Bond Formation in Covalent Graphene-MOF Hybrids
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37588814
PubMed Central
PMC10426341
DOI
10.1021/acs.jpcc.3c01821
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Covalent hybrids of graphene and metal-organic frameworks (MOFs) hold immense potential in various technologies, particularly catalysis and energy applications, due to the advantageous combination of conductivity and porosity. The formation of an amide bond between carboxylate-functionalized graphene acid (GA) and amine-functionalized UiO-66-NH2 MOF (Zr6O4(OH)4(NH2-bdc)6, with NH2-bdc2- = 2-amino-1,4-benzenedicarboxylate and UiO = Universitetet i Oslo) is a highly efficient strategy for creating such covalent hybrids. Previous experimental studies have demonstrated exceptional properties of these conductive networks, including significant surface area and functionalized hierarchical pores, showing promise as a chemiresistive CO2 sensor and electrode materials for asymmetric supercapacitors. However, the molecular-level origin of the covalent linkages between pristine MOF and GA layers remains unclear. In this study, density functional theory (DFT) calculations were conducted to elucidate the mechanism of amide bond formation between GA and UiO-66-NH2. The theoretical calculations emphasize the crucial role of zirconium within UiO-66, which acts as a catalyst in the reaction cycle. Both commonly observed hexa-coordinated and less common hepta-coordinated zirconium complexes are considered as intermediates. By gaining detailed insights into the binding interactions between graphene derivatives and MOFs, strategies for tailored syntheses of such nanocomposite materials can be developed.
Zobrazit více v PubMed
Kitagawa S.; Kitaura R.; Noro S.-i. Functional Porous Coordination Polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375. 10.1002/anie.200300610. PubMed DOI
Jayaramulu K.; Geyer F.; Schneemann A.; Kment S.; Otyepka M.; Zboril R.; Vollmer D.; Fischer R. A. Hydrophobic Metal-Organic Frameworks. Adv. Mater. 2019, 31, 1900820.10.1002/adma.201900820. PubMed DOI
Allendorf M. D.; Dong R.; Feng X.; Kaskel S.; Matoga D.; Stavila V. Electronic Devices Using Open Framework Materials. Chem. Rev. 2020, 120, 8581–8640. 10.1021/acs.chemrev.0c00033. PubMed DOI
Zhang K.; Kirlikovali K. O.; Le Q. V.; Jin Z.; Varma R. S.; Jang H. W.; Farha O. K.; Shokouhimehr M. Extended Metal-Organic Frameworks on Diverse Supports as Electrode Nanomaterials for Electrochemical Energy Storage. ACS Appl. Nano Mater. 2020, 3, 3964–3990. 10.1021/acsanm.0c00702. DOI
Jayaramulu K.; Mukherjee S.; Morales D. M.; Dubal D. P.; Nanjundan A. K.; Schneemann A.; Masa J.; Kment S.; Schuhmann W.; Otyepka M.; Zbořil R.; Fischer R. A. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem. Rev. 2022, 122, 17241–17338. 10.1021/acs.chemrev.2c00270. PubMed DOI PMC
Hendon C. H.; Rieth A. J.; Korzyński M. D.; Dincǎ M. Grand Challenges and Future Opportunities for Metal-Organic Frameworks. ACS Cent. Sci. 2017, 3, 554–563. 10.1021/acscentsci.7b00197. PubMed DOI PMC
Bonakala S.; Lalitha A.; Shin J. E.; Moghadam F.; Semino R.; Park H. B.; Maurin G. Understanding of the Graphene Oxide/Metal-Organic Framework Interface at the Atomistic Scale. ACS Appl. Mater. Interfaces 2018, 10, 33619–33629. 10.1021/acsami.8b09851. PubMed DOI
Kamencek T.; Zojer E. Understanding the Anisotropic Elastic Properties of Metal-Organic Frameworks at the Nanoscale: The Instructive Example of MOF-74. J. Phys. Chem. C 2021, 125, 24728–24745. 10.1021/acs.jpcc.1c07882. DOI
Zhang L.-C.; Zhang L.; Qin G.; Zheng Q.-R.; Hu M.; Yan Q.-B.; Su G. Two-dimensional magnetic metal-organic frameworks with the Shastry-Sutherland lattice. Chem. Sci. 2019, 10, 10381–10387. 10.1039/C9SC03816G. PubMed DOI PMC
Morales-Vidal J.; García-Muelas R.; Ortuño M. A. Defects as catalytic sites for the oxygen evolution reaction in Earth-abundant MOF-74 revealed by DFT. Catal. Sci. Technol. 2021, 11, 1443–1450. 10.1039/D0CY02163F. DOI
You W.; Liu Y.; Howe J. D.; Tang D.; Sholl D. S. Tuning Binding Tendencies of Small Molecules in Metal-Organic Frameworks with Open Metal Sites by Metal Substitution and Linker Functionalization. J. Phys. Chem. C 2018, 122, 27486–27494. 10.1021/acs.jpcc.8b08855. DOI
Alonso G.; Bahamon D.; Keshavarz F.; Giménez X.; Gamallo P.; Sayós R. Density Functional Theory-Based Adsorption Isotherms for Pure and Flue Gas Mixtures on Mg-MOF-74. Application in CO2 Capture Swing Adsorption Processes. J. Phys. Chem. C 2018, 122, 3945–3957. 10.1021/acs.jpcc.8b00938. DOI
Amirjalayer S.; Tafipolsky M.; Schmid R. Molecular Dynamics Simulation of Benzene Diffusion in MOF-5: Importance of Lattice Dynamics. Angew. Chem., Int. Ed. 2007, 46, 463–466. 10.1002/anie.200601746. PubMed DOI
Liu D.; Zou D.; Zhu H.; Zhang J. Mesoporous Metal-Organic Frameworks: Synthetic Strategies and Emerging Applications. Small 2018, 14, 1801454.10.1002/smll.201801454. PubMed DOI
Skoulidas A. I.; Sholl D. S. Self-Diffusion and Transport Diffusion of Light Gases in Metal-Organic Framework Materials Assessed Using Molecular Dynamics. J. Phys. Chem. B 2005, 109, 15760–15768. 10.1021/jp051771y. PubMed DOI
Keskin S.; Liu J.; Rankin R. B.; Johnson J. K.; Sholl D. S. Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metal-Organic Framework Materials. Ind. Eng. Chem. Res. 2009, 48, 2355–2371. 10.1021/ie800666s. DOI
Walton K. S.; Millward A. R.; Dubbeldam D.; Frost H.; Low J. J.; Yaghi O. M.; Snurr R. Q. Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks. J. Am. Chem. Soc. 2008, 130, 406–407. 10.1021/ja076595g. PubMed DOI
Li J.; Wu Q.; Wang X.; Chai Z.; Shi W.; Hou J.; Hayat T.; Alsaedi A.; Wang X. Heteroaggregation behavior of graphene oxide on Zr-based metal-organic frameworks in aqueous solutions: a combined experimental and theoretical study. J. Mater. Chem. A 2017, 5, 20398–20406. 10.1039/C7TA06462D. DOI
Jayaramulu K.; Horn M.; Schneemann A.; Saini H.; Bakandritsos A.; Ranc V.; Petr M.; Stavila V.; Narayana C.; Scheibe B.; Kment S.; Otyepka M.; Motta N.; Dubal D.; Zboril R.; Fischer R. A. Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors. Adv. Mater. 2021, 33, 2004560.10.1002/adma.202004560. PubMed DOI
Jayaramulu K.; Esclance Dmello M.; Kesavan K.; Schneemann A.; Otyepka M.; Kment S.; Narayana C.; Kalidindi S. B.; Varma R. S.; Zboril R.; Fischer R. A. A multifunctional covalently linked graphene-MOF hybrid as an effective chemiresistive gas sensor. J. Mater. Chem. A 2021, 9, 17434–17441. 10.1039/D1TA03246A. DOI
Bakandritsos A.; Pykal M.; Błoński P.; Jakubec P.; Chronopoulos D. D.; Poláková K.; Georgakilas V.; Čépe K.; Tomanec O.; Ranc V.; Bourlinos A. B.; Zbořil R.; Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11, 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC
Lundberg H.; Tinnis F.; Adolfsson H. Zirconium catalyzed amide formation without water scavenging. Appl. Organomet. Chem. 2019, 33, e506210.1002/aoc.5062. DOI
Charville H.; Jackson D. A.; Hodges G.; Whiting A.; Wilson M. R. The Uncatalyzed Direct Amide Formation Reaction - Mechanism Studies and the Key Role of Carboxylic Acid H-Bonding. E. J. Org. Chem. 2011, 2011, 5981–5990. 10.1002/ejoc.201100714. DOI
Du Y.; Barber T.; Lim S. E.; Rzepa H. S.; Baxendale I. R.; Whiting A. A solid-supported arylboronic acid catalyst for direct amidation. Chem. Commun. 2019, 55, 2916–2919. 10.1039/C8CC09913H. PubMed DOI
Sawant D. N.; Bagal D. B.; Ogawa S.; Selvam K.; Saito S. Diboron-Catalyzed Dehydrative Amidation of Aromatic Carboxylic Acids with Amines. Org. Lett. 2018, 20, 4397–4400. 10.1021/acs.orglett.8b01480. PubMed DOI
Sabatini M. T.; Boulton L. T.; Sheppard T. D. Borate esters: Simple catalysts for the sustainable synthesis of complex amides. Sci. Adv. 2017, 3, e170102810.1126/sciadv.1701028. PubMed DOI PMC
Noda H.; Furutachi M.; Asada Y.; Shibasaki M.; Kumagai N. Unique physicochemical and catalytic properties dictated by the B3NO2 ring system. Nat. Chem. 2017, 9, 571–577. 10.1038/nchem.2708. PubMed DOI
Mohy El Dine T.; Erb W.; Berhault Y.; Rouden J.; Blanchet J. Catalytic Chemical Amide Synthesis at Room Temperature: One More Step Toward Peptide Synthesis. J. Org. Chem. 2015, 80, 4532–4544. 10.1021/acs.joc.5b00378. PubMed DOI
Lanigan R. M.; Starkov P.; Sheppard T. D. Direct Synthesis of Amides from Carboxylic Acids and Amines Using B(OCH2CF3)3. J. Org. Chem. 2013, 78, 4512–4523. 10.1021/jo400509n. PubMed DOI PMC
Gernigon N.; Al-Zoubi R. M.; Hall D. G. Direct Amidation of Carboxylic Acids Catalyzed by ortho-Iodo Arylboronic Acids: Catalyst Optimization, Scope, and Preliminary Mechanistic Study Supporting a Peculiar Halogen Acceleration Effect. J. Org. Chem. 2012, 77, 8386–8400. 10.1021/jo3013258. PubMed DOI
Arnold K.; Davies B.; Hérault D.; Whiting A. Asymmetric Direct Amide Synthesis by Kinetic Amine Resolution: A Chiral Bifunctional Aminoboronic Acid Catalyzed Reaction between a Racemic Amine and an Achiral Carboxylic Acid. Angew. Chem., Int. Ed. 2008, 47, 2673–2676. 10.1002/anie.200705643. PubMed DOI
Arnold K.; Davies B.; Giles R. L.; Grosjean C.; Smith G. E.; Whiting A. To Catalyze or not to Catalyze? Insight into Direct Amide Bond Formation from Amines and Carboxylic Acids under Thermal and Catalyzed Conditions. Adv. Synth. Catal. 2006, 348, 813–820. 10.1002/adsc.200606018. DOI
Ishihara K.; Ohara S.; Yamamoto H. 3,4,5-Trifluorobenzeneboronic Acid as an Extremely Active Amidation Catalyst. J. Org. Chem. 1996, 61, 4196–4197. 10.1021/jo9606564. PubMed DOI
Lundberg H.; Adolfsson H. Hafnium-Catalyzed Direct Amide Formation at Room Temperature. ACS Catal. 2015, 5, 3271–3277. 10.1021/acscatal.5b00385. DOI
Tinnis F.; Lundberg H.; Adolfsson H. Direct Catalytic Formation of Primary and Tertiary Amides from Non-Activated Carboxylic Acids, Employing Carbamates as Amine Source. Adv. Synth. Catal. 2012, 354, 2531–2536. 10.1002/adsc.201200436. DOI
Lundberg H.; Tinnis F.; Adolfsson H. Titanium(IV) Isopropoxide as an Efficient Catalyst for Direct Amidation of Nonactivated Carboxylic Acids. Synlett 2012, 23, 2201–2204. 10.1055/s-0032-1316993. DOI
Lundberg H.; Tinnis F.; Adolfsson H. Direct Amide Coupling of Non-activated Carboxylic Acids and Amines Catalysed by Zirconium(IV) Chloride. Chem.—Eur. J. 2012, 18, 3822–3826. 10.1002/chem.201104055. PubMed DOI
Allen C. L.; Chhatwal A. R.; Williams J. M. J. Direct amide formation from unactivated carboxylic acids and amines. Chem. Commun. 2012, 48, 666–668. 10.1039/C1CC15210F. PubMed DOI
Lundberg H.; Tinnis F.; Zhang J.; Algarra A. G.; Himo F.; Adolfsson H. Mechanistic Elucidation of Zirconium-Catalyzed Direct Amidation. J. Am. Chem. Soc. 2017, 139, 2286–2295. 10.1021/jacs.6b10973. PubMed DOI
Leitch D. C.; Payne P. R.; Dunbar C. R.; Schafer L. L. Broadening the Scope of Group 4 Hydroamination Catalysis Using a Tethered Ureate Ligand. J. Am. Chem. Soc. 2009, 131, 18246–18247. 10.1021/ja906955b. PubMed DOI