Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36318747
PubMed Central
PMC9801388
DOI
10.1021/acs.chemrev.2c00270
Knihovny.cz E-zdroje
- MeSH
- elektrická vodivost MeSH
- elektronika MeSH
- grafit * MeSH
- katalýza MeSH
- porézní koordinační polymery * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- grafit * MeSH
- porézní koordinační polymery * MeSH
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Zobrazit více v PubMed
Rowsell J. L. C.; Yaghi O. M. Metal-Organic Frameworks: a New Class Of Porous Materials. Microporous Mesoporous Mater. 2004, 73, 3–14. 10.1016/j.micromeso.2004.03.034. DOI
Allendorf M. D.; Bauer C. A.; Bhakta R. K.; Houk R. J. T. Luminescent Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. 10.1039/b802352m. PubMed DOI
Kurmoo M. Magnetic Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379. 10.1039/b804757j. PubMed DOI
Lee J. Y.; Farha O. K.; Roberts J.; Scheidt K. A.; Nguyen S. B. T.; Hupp J. T. Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. 10.1039/b807080f. PubMed DOI
Murray L. J.; Dinca M.; Long J. R. Hydrogen Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314. 10.1039/b802256a. PubMed DOI
Horcajada P.; Gref R.; Baati T.; Allan P. K.; Maurin G.; Couvreur P.; Ferey G.; Morris R. E.; Serre C. Metal-Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232–1268. 10.1021/cr200256v. PubMed DOI
Yoon M.; Srirambalaji R.; Kim K. Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev. 2012, 112, 1196–1231. 10.1021/cr2003147. PubMed DOI
Furukawa H.; Cordova K. E.; O’Keeffe M.; Yaghi O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444.10.1126/science.1230444. PubMed DOI
Hu Z.; Deibert B. J.; Li J. Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection. Chem. Soc. Rev. 2014, 43, 5815–5840. 10.1039/C4CS00010B. PubMed DOI
Farha O. K.; Hupp J. T. Rational Design, Synthesis, Purification, and Activation of Metal-Organic Framework Materials. Acc. Chem. Res. 2010, 43, 1166–1175. 10.1021/ar1000617. PubMed DOI
Li J.-R.; Ma Y.-G.; McCarthy M. C.; Sculley J.; Yu J.-M.; Jeong H.-K.; Balbuena P. B.; Zhou H.-C. Carbon Dioxide Capture-Related Gas Adsorption and Separation in Metal-Organic Frameworks. Coord. Chem. Rev. 2011, 255, 1791–1823. 10.1016/j.ccr.2011.02.012. DOI
Wei Y.-S.; Zhang M.; Zou R.; Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem. Rev. 2020, 120, 12089–12174. 10.1021/acs.chemrev.9b00757. PubMed DOI
Alhumaimess M. S. Metal-Organic Frameworks and their Catalytic Applications. J. Saudi Chem. Soc. 2020, 24, 461–473. 10.1016/j.jscs.2020.04.002. DOI
Pascanu V.; González Miera G.; Inge A. K.; Martín-Matute B. Metal-Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234. 10.1021/jacs.9b00733. PubMed DOI
Li D.; Xu H.-Q.; Jiao L.; Jiang H.-L. Metal-Organic Frameworks for Catalysis: State of the Art, Challenges, and Opportunities. EnergyChem. 2019, 1, 100005.10.1016/j.enchem.2019.100005. DOI
Xu W.; Yaghi O. M. Metal-Organic Frameworks for Water Harvesting from Air, Anywhere, Anytime. ACS Cent. Sci. 2020, 6, 1348–1354. 10.1021/acscentsci.0c00678. PubMed DOI PMC
Hanikel N.; Prévot M. S.; Yaghi O. M. MOF Water Harvesters. Nature Nanotechnl. 2020, 15, 348–355. 10.1038/s41565-020-0673-x. PubMed DOI
Nemiwal M.; Kumar D. Metal Organic Frameworks as Water Harvester From Air: Hydrolytic Stability And Adsorption Isotherms. Inorg. Chem. Commun. 2020, 122, 108279.10.1016/j.inoche.2020.108279. DOI
Kalmutzki M. J.; Diercks C. S.; Yaghi O. M. Metal-Organic Frameworks for Water Harvesting from Air. Adv. Mater. 2018, 30, 1704304.10.1002/adma.201704304. PubMed DOI
Li H.-Y.; Zhao S.-N.; Zang S.-Q.; Li J. Functional Metal-Organic Frameworks as Effective Sensors of Gases and Volatile Compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. 10.1039/C9CS00778D. PubMed DOI
Koo W.-T.; Jang J.-S.; Kim I.-D. Metal-Organic Frameworks for Chemiresistive Sensors. Chem. 2019, 5, 1938–1963. 10.1016/j.chempr.2019.04.013. DOI
Fang X.; Zong B.; Mao S. Metal-Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Lett. 2018, 10, 64.10.1007/s40820-018-0218-0. PubMed DOI PMC
Devaraj M.; Sasikumar Y.; Rajendran S.; Ponce L. C. Metal Organic Framework Based Nanomaterials for Electrochemical Sensing of Toxic Heavy Metal Ions: Progress and Their Prospects. J. Electrochem. Soc. 2021, 168, 037513.10.1149/1945-7111/abec97. DOI
Zhang L.-T.; Zhou Y.; Han S.-T. The Role of Metal-Organic Frameworks in Electronic Sensors. Angew. Chem., Int. Ed. 2021, 60, 15192–15212. 10.1002/anie.202006402. PubMed DOI
Zhu C.; Gerald R. E.; Huang J. Metal-Organic Framework Materials Coupled to Optical Fibers for Chemical Sensing: A Review. IEEE Sens. J. 2021, 21, 19647–19661. 10.1109/JSEN.2021.3094092. PubMed DOI PMC
Jayaramulu K.; Geyer F.; Schneemann A.; Kment Š; Otyepka M.; Zboril R.; Vollmer D.; Fischer R. A. Hydrophobic Metal-Organic Frameworks. Adv. Mater. 2019, 31, 1900820.10.1002/adma.201900820. PubMed DOI
Xu B.; Zhang H.; Mei H.; Sun D. Recent Progress in Metal-Organic Framework-Based Supercapacitor Electrode Materials. Coord. Chem. Rev. 2020, 420, 213438.10.1016/j.ccr.2020.213438. DOI
Gao H.; Shen H.; Wu H.; Jing H.; Sun Y.; Liu B.; Chen Z.; Song J.; Lu L.; Wu Z.; Hao Q. Review of Pristine Metal-Organic Frameworks for Supercapacitors: Recent Progress and Perspectives. Energy Fuels 2021, 35, 12884–12901. 10.1021/acs.energyfuels.1c01722. DOI
Baumann A. E.; Burns D. A.; Liu B.; Thoi V. S. Metal-Organic Framework Functionalization and Design Strategies for Advanced Electrochemical Energy Storage Devices. Commun. Chem. 2019, 2, 86.10.1038/s42004-019-0184-6. DOI
Cherusseri J.; Pandey D.; Sambath Kumar K.; Thomas J.; Zhai L. Flexible Supercapacitor Electrodes Using Metal-Organic Frameworks. Nanoscale 2020, 12, 17649–17662. 10.1039/D0NR03549A. PubMed DOI
Mohanty A.; Jaihindh D.; Fu Y.-P.; Senanayak S. P.; Mende L. S.; Ramadoss A. An Extensive Review on Three Dimension Architectural Metal-Organic Frameworks Towards Supercapacitor Application. J. Power Sources 2021, 488, 229444.10.1016/j.jpowsour.2020.229444. DOI
Mehek R.; Iqbal N.; Noor T.; Amjad M. Z. B.; Ali G.; Vignarooban K.; Khan M. A. Metal-Organic Framework Based Electrode Materials for Lithium-Ion Batteries: A Review. RSC Adv. 2021, 11, 29247–29266. 10.1039/D1RA05073G. PubMed DOI PMC
Ye Z.; Jiang Y.; Li L.; Wu F.; Chen R. Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries. Nano-Micro Lett. 2021, 13, 203.10.1007/s40820-021-00726-z. PubMed DOI PMC
Wang Z.; Tao H.; Yue Y. Metal-Organic-Framework-Based Cathodes for Enhancing the Electrochemical Performances of Batteries: A Review. ChemElectroChem. 2019, 6, 5358–5374. 10.1002/celc.201900843. DOI
Li Y.; Zhang J.; Chen M. MOF-Derived Carbon and Composites as Advanced Anode Materials For Potassium Ion Batteries: A Review. Sustainable Mater. Technol. 2020, 26, e0021710.1016/j.susmat.2020.e00217. DOI
Liang Z.; Qu C.; Guo W.; Zou R.; Xu Q. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion. Adv. Mater. 2018, 30, 1702891.10.1002/adma.201702891. PubMed DOI
Li C.; Liu L.; Kang J.; Xiao Y.; Feng Y.; Cao F.-F.; Zhang H. Pristine MOF and COF Materials for Advanced Batteries. Energy Storage Mater. 2020, 31, 115–134. 10.1016/j.ensm.2020.06.005. DOI
Hu A.; Pang Q.; Tang C.; Bao J.; Liu H.; Ba K.; Xie S.; Chen J.; Chen J.; Yue Y.; Tang Y.; Li Q.; Sun Z. Epitaxial Growth and Integration of Insulating Metal-Organic Frameworks in Electrochemistry. J. Am. Chem. Soc. 2019, 141, 11322–11327. 10.1021/jacs.9b05869. PubMed DOI
Sun L.; Campbell M. G.; Dincǎ M. Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chem., Int. Ed. 2016, 55, 3566–3579. 10.1002/anie.201506219. PubMed DOI
Wang Y.; Zhang W.; Wu X.; Luo C.; Wang Q.; Li J.; Hu L. Conducting Polymer Coated Metal-Organic Framework Nanoparticles: Facile Synthesis and Enhanced Electromagnetic Absorption Properties. Synth. Met. 2017, 228, 18–24. 10.1016/j.synthmet.2017.04.009. DOI
Dhara B.; Nagarkar S. S.; Kumar J.; Kumar V.; Jha P. K.; Ghosh S. K.; Nair S.; Ballav N. Increase in Electrical Conductivity of MOF to Billion-Fold upon Filling the Nanochannels with Conducting Polymer. J. Phys. Chem. Lett. 2016, 7, 2945–2950. 10.1021/acs.jpclett.6b01236. PubMed DOI
Wang T.; Farajollahi M.; Henke S.; Zhu T.; Bajpe S. R.; Sun S.; Barnard J. S.; Lee J. S.; Madden J. D. W.; Cheetham A. K.; Smoukov S. K. Functional Conductive Nanomaterials via Polymerisation in Nano-Channels: PEDOT In A MOF. Mater. Horiz. 2017, 4, 64–71. 10.1039/C6MH00230G. PubMed DOI PMC
Yue T.; Xia C.; Liu X.; Wang Z.; Qi K.; Xia B. Y. Design and Synthesis of Conductive Metal-Organic Frameworks and Their Composites for Supercapacitors. ChemElectroChem. 2021, 8, 1021–1034. 10.1002/celc.202001418. DOI
Chen Y.-C.; Chiang W.-H.; Kurniawan D.; Yeh P.-C.; Otake K.-i.; Kung C.-W. Impregnation of Graphene Quantum Dots into a Metal-Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Appl. Mater. Interfaces 2019, 11, 35319–35326. 10.1021/acsami.9b11447. PubMed DOI
Zheng S. Q.; Lim S. S.; Foo C. Y.; Haw C. Y.; Chiu W. S.; Chia C. H.; Khiew P. S. Recent Progress on the Applications of Carbonaceous and Metal-Organic Framework Nanomaterials for Supercapacitors. Front. Mater. 2021, 8, 500.10.3389/fmats.2021.777149. DOI
Liu X.-W.; Sun T.-J.; Hu J.-L.; Wang S.-D. Composites of Metal-Organic Frameworks and Carbon-Based Materials: Preparations, Functionalities and Applications. J. Mater. Chem. A 2016, 4, 3584–3616. 10.1039/C5TA09924B. DOI
Fleker O.; Borenstein A.; Lavi R.; Benisvy L.; Ruthstein S.; Aurbach D. Preparation and Properties of Metal Organic Framework/Activated Carbon Composite Materials. Langmuir 2016, 32, 4935–4944. 10.1021/acs.langmuir.6b00528. PubMed DOI
Gogotsi Y.; Anasori B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. 10.1021/acsnano.9b06394. PubMed DOI
Strachan J.; Masters A. F.; Maschmeyer T. 3R-MoS2 in Review: History, Status, and Outlook. ACS Appl. Energy Mater. 2021, 4, 7405–7418. 10.1021/acsaem.1c00638. DOI
Roy S.; Zhang X.; Puthirath A. B.; Meiyazhagan A.; Bhattacharyya S.; Rahman M. M.; Babu G.; Susarla S.; Saju S. K.; Tran M. K.; Sassi L. M.; Saadi M. A. S. R.; Lai J.; Sahin O.; Sajadi S. M.; Dharmarajan B.; Salpekar D.; Chakingal N.; Baburaj A.; Shuai X.; Adumbumkulath A.; Miller K. A.; Gayle J. M.; Ajnsztajn A.; Prasankumar T.; Harikrishnan V. V. J.; Ojha V.; Kannan H.; Khater A. Z.; Zhu Z.; Iyengar S. A.; Autreto P. A. d. S.; Oliveira E. F.; Gao G.; Birdwell A. G.; Neupane M. R.; Ivanov T. G.; Taha-Tijerina J.; Yadav R. M.; Arepalli S.; Vajtai R.; Ajayan P. M. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. Adv. Mater. 2021, 33, 2101589.10.1002/adma.202101589. PubMed DOI
Kroto H. W. C60: Buckminsterfullerene, The Celestial Sphere that Fell to Earth. Angew. Chem., Int. Ed. 1992, 31, 111–129. 10.1002/anie.199201113. DOI
Rao R.; Pint C. L.; Islam A. E.; Weatherup R. S.; Hofmann S.; Meshot E. R.; Wu F.; Zhou C.; Dee N.; Amama P. B.; Carpena-Nuñez J.; Shi W.; Plata D. L.; Penev E. S.; Yakobson B. I.; Balbuena P. B.; Bichara C.; Futaba D. N.; Noda S.; Shin H.; Kim K. S.; Simard B.; Mirri F.; Pasquali M.; Fornasiero F.; Kauppinen E. I.; Arnold M.; Cola B. A.; Nikolaev P.; Arepalli S.; Cheng H.-M.; Zakharov D. N.; Stach E. A.; Zhang J.; Wei F.; Terrones M.; Geohegan D. B.; Maruyama B.; Maruyama S.; Li Y.; Adams W. W.; Hart A. J. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano 2018, 12, 11756–11784. 10.1021/acsnano.8b06511. PubMed DOI
Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. 10.1126/science.1102896. PubMed DOI
Allen M. J.; Tung V. C.; Kaner R. B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. 10.1021/cr900070d. PubMed DOI
Rahat Rahman M.; Rashid M. M.; Islam M. M.; Akanda M. M. Electrical and Chemical Properties of Graphene over Composite Materials: A Technical Review. Mater. Sci. Res. India 2019, 16, 142–163. 10.13005/msri/160208. DOI
Farjadian F.; Abbaspour S.; Sadatlu M. A. A.; Mirkiani S.; Ghasemi A.; Hoseini-Ghahfarokhi M.; Mozaffari N.; Karimi M.; Hamblin M. R. Recent Developments in Graphene and Graphene Oxide: Properties, Synthesis, and Modifications: A Review. ChemistrySelect 2020, 5, 10200–10219. 10.1002/slct.202002501. DOI
Sattar T. Current Review on Synthesis, Composites and Multifunctional Properties of Graphene. Top. Curr. Chem. 2019, 377, 10.10.1007/s41061-019-0235-6. PubMed DOI
Geim A. K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. 10.1126/science.1158877. PubMed DOI
Homaeigohar S.; Elbahri M. Graphene Membranes for Water Desalination. NPG Asia Mater. 2017, 9, e427–e427. 10.1038/am.2017.135. DOI
Sun M.; Li J. Graphene Oxide Membranes: Functional Structures, Preparation and Environmental Applications. Nano Today 2018, 20, 121–137. 10.1016/j.nantod.2018.04.007. DOI
Jiang Y.; Biswas P.; Fortner J. D. A Review of Recent Developments in Graphene-Enabled Membranes for Water Treatment. Environ. Sci. Water Res. Technol. 2016, 2, 915–922. 10.1039/C6EW00187D. DOI
Hu M.; Mi B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes. Environ. Sci. Technol. 2013, 47, 3715–3723. 10.1021/es400571g. PubMed DOI
DeCoste J. B.; Peterson G. W. Metal-Organic Frameworks for Air Purification of Toxic Chemicals. Chem. Rev. 2014, 114, 5695–5757. 10.1021/cr4006473. PubMed DOI
Dhaka S.; Kumar R.; Deep A.; Kurade M. B.; Ji S.-W.; Jeon B.-H. Metal-Organic Frameworks (Mofs) for the Removal of Emerging Contaminants from Aquatic Environments. Coord. Chem. Rev. 2019, 380, 330–352. 10.1016/j.ccr.2018.10.003. DOI
Russo V.; Hmoudah M.; Broccoli F.; Iesce M. R.; Jung O.-S.; Di Serio M. Applications of Metal Organic Frameworks in Wastewater Treatment: A Review on Adsorption and Photodegradation. Front. Chem. Eng. 2020, 2, 581487.10.3389/fceng.2020.581487. DOI
Ahmed I.; Mondol M. M. H.; Lee H. J.; Jhung S. H. Application of Metal-Organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air. Chem. Asian J. 2021, 16, 185–196. 10.1002/asia.202001365. PubMed DOI
Ding M.; Cai X.; Jiang H.-L. Improving MOF Stability: Approaches and Applications. Chem. Sci. 2019, 10, 10209–10230. 10.1039/C9SC03916C. PubMed DOI PMC
Bosch M.; Zhang M.; Zhou H.-C. Increasing the Stability of Metal-Organic Frameworks. Adv. Chem. 2014, 2014, 182327.10.1155/2014/182327. DOI
Mankins J. C. Technology Readiness Assessments: A Retrospective. Acta Astronaut. 2009, 65, 1216–1223. 10.1016/j.actaastro.2009.03.058. DOI
Chen Z.; Wasson M. C.; Drout R. J.; Robison L.; Idrees K. B.; Knapp J. G.; Son F. A.; Zhang X.; Hierse W.; Kühn C.; Marx S.; Hernandez B.; Farha O. K. The State of the Field: From Inception to Commercialization of Metal-Organic Frameworks. Faraday Discuss. 2021, 225, 9–69. 10.1039/D0FD00103A. PubMed DOI
Zhao Y.; Seredych M.; Jagiello J.; Zhong Q.; Bandosz T. J. Insight into the Mechanism of CO2 Adsorption on Cu-BTC and its Composites with Graphite Oxide or Aminated Graphite Oxide. Chem. Eng. J. 2014, 239, 399.10.1016/j.cej.2013.11.037. DOI
Policicchio A.; Zhao Y.; Zhong Q.; Agostino R. G.; Bandosz T. J. Cu-BTC/Aminated Graphite Oxide Composites As High-Efficiency CO2 Capture Media. ACS Appl. Mater. Interfaces 2014, 6, 101–108. 10.1021/am404952z. PubMed DOI
Lu Y.; Zhang Q.; Li L.; Niu Z.; Chen J. Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries. Chem. 2018, 4, 2786–2813. 10.1016/j.chempr.2018.09.005. DOI
Miller E. E.; Hua Y.; Tezel F. H. Materials for Energy Storage: Review of Electrode Materials and Methods Of Increasing Capacitance For Supercapacitors. J. Energy Storage 2018, 20, 30–40. 10.1016/j.est.2018.08.009. DOI
Jayaramulu K.; Esclance Dmello M.; Kesavan K.; Schneemann A.; Otyepka M.; Kment S.; Narayana C.; Kalidindi S. B.; Varma R. S.; Zboril R.; Fischer R. A. A Multifunctional Covalently Linked Graphene-MOF Hybrid as an Effective Chemiresistive Gas Sensor. J. Mater. Chem. A 2021, 9, 17434–17441. 10.1039/D1TA03246A. DOI
Jayaramulu K.; Horn M.; Schneemann A.; Saini H.; Bakandritsos A.; Ranc V.; Petr M.; Stavila V.; Narayana C.; Scheibe B.; Kment Š; Otyepka M.; Motta N.; Dubal D.; Zbořil R.; Fischer R. A. Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors. Adv. Mater. 2021, 33, 2004560.10.1002/adma.202004560. PubMed DOI
Jahan M.; Bao Q.; Yang J.-X.; Loh K. P. Structure-Directing Role of Graphene in the Synthesis of Metal-Organic Framework Nanowire. J. Am. Chem. Soc. 2010, 132, 14487–14495. 10.1021/ja105089w. PubMed DOI
Deping W.; Wenming H.; Wufeng F.; Xiaohong X.; Junqiang L.; Hongbo L. Shape-Assisted Spherical Mofs/Amine Functionalized Graphene Hybrids for High-Performance Lithium-Ion Batteries. Microporous Mesoporous Mater. 2021, 323, 111240.10.1016/j.micromeso.2021.111240. DOI
Vermisoglou E. C.; Jakubec P.; Malina O.; Kupka V.; Schneemann A.; Fischer R. A.; Zbořil R.; Jayaramulu K.; Otyepka M. Hierarchical Porous Graphene-Iron Carbide Hybrid Derived From Functionalized Graphene-Based Metal-Organic Gel as Efficient Electrochemical Dopamine Sensor. Front. Chem. 2020, 8, 544.10.3389/fchem.2020.00544. PubMed DOI PMC
Tekalgne M. A.; Do H. H.; Hasani A.; Van Le Q.; Jang H. W.; Ahn S. H.; Kim S. Y. Two-Dimensional Materials and Metal-Organic Frameworks for the CO2 Reduction Reaction. Mater. Today Adv. 2020, 5, 100038.10.1016/j.mtadv.2019.100038. DOI
Saini H.; Srinivasan N.; Šedajová V.; Majumder M.; Dubal D. P.; Otyepka M.; Zbořil R.; Kurra N.; Fischer R. A.; Jayaramulu K. Emerging MXene@Metal-Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano 2021, 15, 18742–18776. 10.1021/acsnano.1c06402. PubMed DOI
Ghazi Z. A.; Zhu L.; Wang H.; Naeem A.; Khattak A. M.; Liang B.; Khan N. A.; Wei Z.; Li L.; Tang Z. Efficient Polysulfide Chemisorption in Covalent Organic Frameworks for High-Performance Lithium-Sulfur Batteries. Adv. Energy Mater. 2016, 6, 1601250.10.1002/aenm.201601250. DOI
Xiang W.; Zhang Y.; Lin H.; Liu C.-J. Nanoparticle/Metal-Organic Framework Composites for Catalytic Applications: Current Status and Perspective. Molecules 2017, 22, 2103.10.3390/molecules22122103. PubMed DOI PMC
Yu J.; Mu C.; Yan B.; Qin X.; Shen C.; Xue H.; Pang H. Nanoparticle/MOF Composites: Preparations and Applications. Mater. Horiz. 2017, 4, 557–569. 10.1039/C6MH00586A. DOI
Zhao G.; Qin N.; Pan A.; Wu X.; Peng C.; Ke F.; Iqbal M.; Ramachandraiah K.; Zhu J. Magnetic Nanoparticles@Metal-Organic Framework Composites as Sustainable Environment Adsorbents. J. Nanomater. 2019, 2019, 1454358.10.1155/2019/1454358. DOI
Wang B.; Liu W.; Zhang W.; Liu J. Nanoparticles@Nanoscale Metal-Organic Framework Composites as Highly Efficient Heterogeneous Catalysts for Size- and Shape-Selective Reactions. Nano Res. 2017, 10, 3826–3835. 10.1007/s12274-017-1595-2. DOI
Wang K.; Hui K. N.; San Hui K.; Peng S.; Xu Y. Recent Progress in Metal-Organic Framework/Graphene-Derived Materials for Energy Storage and Conversion: Design, Preparation, and Application. Chem. Sci. 2021, 12, 5737–5766. 10.1039/D1SC00095K. PubMed DOI PMC
Qu H.-j.; Huang L.-j.; Han Z.-y.; Wang Y.-x.; Zhang Z.-j.; Wang Y.; Chang Q.-r.; Wei N.; Kipper M. J.; Tang J.-g. A Review of Graphene-Oxide/Metal-Organic Framework Composites Materials: Characteristics, Preparation and Applications. J. Porous Mater. 2021, 28, 1837–1865. 10.1007/s10934-021-01125-w. DOI
Zhang X.; Zhang S.; Tang Y.; Huang X.; Pang H. Recent Advances and Challenges of Metal-Organic Framework/Graphene-Based Composites. Compos. B. Eng. 2022, 230, 109532.10.1016/j.compositesb.2021.109532. DOI
Zheng Y.; Zheng S.; Xue H.; Pang H. Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications. Adv. Funct. Mater. 2018, 28, 1804950.10.1002/adfm.201804950. DOI
Wang Z.; Huang J.; Mao J.; Guo Q.; Chen Z.; Lai Y. Metal-Organic Frameworks and their Derivatives with Graphene Composites: Preparation and Applications in Electrocatalysis and Photocatalysis. J. Mater. Chem. A 2020, 8, 2934–2961. 10.1039/C9TA12776C. DOI
Novoselov K. S.; Fal’ko V. I.; Colombo L.; Gellert P. R.; Schwab M. G.; Kim K. A Roadmap for Graphene. Nature 2012, 490, 192–200. 10.1038/nature11458. PubMed DOI
Shahil K. M. F.; Balandin A. A. Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials. Solid State Commun. 2012, 152, 1331–1340. 10.1016/j.ssc.2012.04.034. DOI
Gong X.; Liu G.; Li Y.; Yu D. Y. W.; Teoh W. Y. Functionalized-Graphene Composites: Fabrication and Applications in Sustainable Energy and Environment. Chem. Mater. 2016, 28, 8082–8118. 10.1021/acs.chemmater.6b01447. DOI
Sharma G.; Thakur B.; Naushad M.; Kumar A.; Stadler F. J.; Alfadul S. M.; Mola G. T. Applications of Nanocomposite Hydrogels for Biomedical Engineering and Environmental Protection. Environ. Chem. Lett. 2018, 16, 113–146. 10.1007/s10311-017-0671-x. DOI
Petit C.; Bandosz T. J. MOF-Graphite Oxide Composites: Combining the Uniqueness of Graphene Layers and Metal-Organic Frameworks. Adv. Mater. 2009, 21, 4753–4757. 10.1002/adma.200901581. DOI
Zhang M.; Shan Y.; Kong Q.; Pang H. Application of Metal-Organic Framework-Graphene Composite Materials in electrochemical Energy Storage. FlatChem. 2022, 32, 100332.10.1016/j.flatc.2021.100332. DOI
Georgakilas V.; Perman J. A.; Tucek J.; Zboril R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. 10.1021/cr500304f. PubMed DOI
Li X.; Cai W.; An J.; Kim S.; Nah J.; Yang D.; Piner R.; Velamakanni A.; Jung I.; Tutuc E.; Banerjee S. K.; Colombo L.; Ruoff R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. 10.1126/science.1171245. PubMed DOI
Bae S.; Kim H.; Lee Y.; Xu X.; Park J.-S.; Zheng Y.; Balakrishnan J.; Lei T.; Ri Kim H.; Song Y. I.; Kim Y.-J.; Kim K. S.; Özyilmaz B.; Ahn J.-H.; Hong B. H.; Iijima S. Roll-To-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574–578. 10.1038/nnano.2010.132. PubMed DOI
Hernandez Y.; Nicolosi V.; Lotya M.; Blighe F. M.; Sun Z.; De S.; McGovern I. T.; Holland B.; Byrne M.; Gun’Ko Y. K.; Boland J. J.; Niraj P.; Duesberg G.; Krishnamurthy S.; Goodhue R.; Hutchison J.; Scardaci V.; Ferrari A. C.; Coleman J. N. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563–568. 10.1038/nnano.2008.215. PubMed DOI
Dreyer D. R.; Park S.; Bielawski C. W.; Ruoff R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240. 10.1039/B917103G. PubMed DOI
Park S.; Ruoff R. S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. 2009, 4, 217–224. 10.1038/nnano.2009.58. PubMed DOI
Nair R. R.; Blake P.; Grigorenko A. N.; Novoselov K. S.; Booth T. J.; Stauber T.; Peres N. M. R.; Geim A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308–1308. 10.1126/science.1156965. PubMed DOI
Castro Neto A. H.; Guinea F.; Peres N. M. R.; Novoselov K. S.; Geim A. K. The Electronic Properties of Graphene. Rev. Modern Phys. 2009, 81, 109–162. 10.1103/RevModPhys.81.109. DOI
Singh C.; Mishra A. K.; Paul A. Highly Conducting Reduced Graphene Synthesis via Low Temperature Chemically Assisted Exfoliation and Energy Storage Application. J. Mater. Chem. A 2015, 3, 18557–18563. 10.1039/C5TA04655F. DOI
Balandin A. A.; Ghosh S.; Bao W.; Calizo I.; Teweldebrhan D.; Miao F.; Lau C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. 10.1021/nl0731872. PubMed DOI
Schedin F.; Geim A. K.; Morozov S. V.; Hill E. W.; Blake P.; Katsnelson M. I.; Novoselov K. S. Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater. 2007, 6, 652–655. 10.1038/nmat1967. PubMed DOI
Georgakilas V.; Otyepka M.; Bourlinos A. B.; Chandra V.; Kim N.; Kemp K. C.; Hobza P.; Zboril R.; Kim K. S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. 10.1021/cr3000412. PubMed DOI
Lazar P.; Karlický F.; Jurečka P.; Kocman M.; Otyepková E.; Šafářová K.; Otyepka M. Adsorption of Small Organic Molecules on Graphene. J. Am. Chem. Soc. 2013, 135, 6372–6377. 10.1021/ja403162r. PubMed DOI
Georgakilas V.; Tiwari J. N.; Kemp K. C.; Perman J. A.; Bourlinos A. B.; Kim K. S.; Zboril R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016, 116, 5464–5519. 10.1021/acs.chemrev.5b00620. PubMed DOI
Elias D. C.; Nair R. R.; Mohiuddin T. M. G.; Morozov S. V.; Blake P.; Halsall M. P.; Ferrari A. C.; Boukhvalov D. W.; Katsnelson M. I.; Geim A. K.; Novoselov K. S. Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science 2009, 323, 610–613. 10.1126/science.1167130. PubMed DOI
Leconte N.; Moser J.; Ordejón P.; Tao H.; Lherbier A.; Bachtold A.; Alsina F.; Sotomayor Torres C. M.; Charlier J.-C.; Roche S. Damaging Graphene with Ozone Treatment: A Chemically Tunable Metal-Insulator Transition. ACS Nano 2010, 4, 4033–4038. 10.1021/nn100537z. PubMed DOI
Kosynkin D. V.; Higginbotham A. L.; Sinitskii A.; Lomeda J. R.; Dimiev A.; Price B. K.; Tour J. M. Longitudinal Unzipping of Carbon Nanotubes to form Graphene Nanoribbons. Nature 2009, 458, 872–876. 10.1038/nature07872. PubMed DOI
Inagaki M.; Kang F. Graphene Derivatives: Graphane, Fluorographene, Graphene Oxide, Graphyne and Graphdiyne. J. Mater. Chem. A 2014, 2, 13193–13206. 10.1039/C4TA01183J. DOI
Karlický F.; Kumara Ramanatha Datta K.; Otyepka M.; Zbořil R. Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives. ACS Nano 2013, 7, 6434–6464. 10.1021/nn4024027. PubMed DOI
Eng A. Y. S.; Chua C. K.; Pumera M. Refinements to the Structure of Graphite Oxide: Absolute Quantification of Functional Groups via Selective Labelling. Nanoscale 2015, 7, 20256–20266. 10.1039/C5NR05891K. PubMed DOI
Stankovich S.; Dikin D. A.; Piner R. D.; Kohlhaas K. A.; Kleinhammes A.; Jia Y.; Wu Y.; Nguyen S. T.; Ruoff R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. 10.1016/j.carbon.2007.02.034. DOI
Eda G.; Fanchini G.; Chhowalla M. Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material. Nat. Nanotechnol. 2008, 3, 270–274. 10.1038/nnano.2008.83. PubMed DOI
Nair R. R.; Ren W.; Jalil R.; Riaz I.; Kravets V. G.; Britnell L.; Blake P.; Schedin F.; Mayorov A. S.; Yuan S.; Katsnelson M. I.; Cheng H.-M.; Strupinski W.; Bulusheva L. G.; Okotrub A. V.; Grigorieva I. V.; Grigorenko A. N.; Novoselov K. S.; Geim A. K. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6, 2877–2884. 10.1002/smll.201001555. PubMed DOI
Zbořil R.; Karlický F.; Bourlinos A. B.; Steriotis T. A.; Stubos A. K.; Georgakilas V.; Šafářová K.; Jančík D.; Trapalis C.; Otyepka M. Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small 2010, 6, 2885–2891. 10.1002/smll.201001401. PubMed DOI PMC
Chronopoulos D. D.; Bakandritsos A.; Pykal M.; Zbořil R.; Otyepka M. Chemistry, Properties, and Applications of Fluorographene. Appl. Mater. Today 2017, 9, 60–70. 10.1016/j.apmt.2017.05.004. PubMed DOI PMC
Bakandritsos A.; Pykal M.; Błoński P.; Jakubec P.; Chronopoulos D. D.; Poláková K.; Georgakilas V.; Čépe K.; Tomanec O.; Ranc V.; Bourlinos A. B.; Zbořil R.; Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11, 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC
Seelajaroen H.; Bakandritsos A.; Otyepka M.; Zbořil R.; Sariciftci N. S. Immobilized Enzymes on Graphene as Nanobiocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 250–259. 10.1021/acsami.9b17777. PubMed DOI PMC
Blanco M.; Mosconi D.; Tubaro C.; Biffis A.; Badocco D.; Pastore P.; Otyepka M.; Bakandritsos A.; Liu Z.; Ren W.; Agnoli S.; Granozzi G. Palladium Nanoparticles Supported on Graphene Acid: A Stable and Eco-Friendly Bifunctional C-C Homo- and Cross-Coupling Catalyst. Green Chem. 2019, 21, 5238–5247. 10.1039/C9GC01436E. DOI
Heng Cheong Y.; Nasir M. Z. M.; Bakandritsos A.; Pykal M.; Jakubec P.; Zbořil R.; Otyepka M.; Pumera M. Cyanographene and Graphene Acid: The Functional Group of Graphene Derivative Determines the Application in Electrochemical Sensing and Capacitors. ChemElectroChem. 2019, 6, 229–234. 10.1002/celc.201800675. DOI
Šedajová V.; Jakubec P.; Bakandritsos A.; Ranc V.; Otyepka M. New Limits for Stability of Supercapacitor Electrode Material Based on Graphene Derivative. Nanomater. 2020, 10, 1731.10.3390/nano10091731. PubMed DOI PMC
Jayaramulu K.; Datta K. K. R.; Rösler C.; Petr M.; Otyepka M.; Zboril R.; Fischer R. A. Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil-Water Separation. Angew. Chem., Int. Ed. 2016, 55, 1178–1182. 10.1002/anie.201507692. PubMed DOI
Wang X.; Sun G.; Routh P.; Kim D.-H.; Huang W.; Chen P. Heteroatom-Doped Graphene Materials: Syntheses, Properties and Applications. Chem. Soc. Rev. 2014, 43, 7067–7098. 10.1039/C4CS00141A. PubMed DOI
Wang A.; Li J.; Zhang T. Heterogeneous Single-Atom Catalysis. Nature Rev. Chem. 2018, 2, 65–81. 10.1038/s41570-018-0010-1. DOI
Zaoralová D.; Hrubý V.; Šedajová V.; Mach R.; Kupka V.; Ugolotti J.; Bakandritsos A.; Medved’ M.; Otyepka M. Tunable Synthesis of Nitrogen Doped Graphene from Fluorographene under Mild Conditions. ACS Sustain. Chem. Eng. 2020, 8, 4764–4772. 10.1021/acssuschemeng.9b07161. DOI
Zhou H.-C.; Long J. R.; Yaghi O. M. Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112, 673–674. 10.1021/cr300014x. PubMed DOI
Safaei M.; Foroughi M. M.; Ebrahimpoor N.; Jahani S.; Omidi A.; Khatami M. A Review on Metal-Organic Frameworks: Synthesis and Applications. TrAC, Trends Anal. Chem. 2019, 118, 401–425. 10.1016/j.trac.2019.06.007. DOI
Farha O. K.; Eryazici I.; Jeong N. C.; Hauser B. G.; Wilmer C. E.; Sarjeant A. A.; Snurr R. Q.; Nguyen S. T.; Yazaydın A. Ö.; Hupp J. T. Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?. J. Am. Chem. Soc. 2012, 134, 15016–15021. 10.1021/ja3055639. PubMed DOI
Li H.; Li L.; Lin R.-B.; Zhou W.; Zhang Z.; Xiang S.; Chen B. Porous Metal-Organic Frameworks for Gas Storage and Separation: Status and Challenges. EnergyChem. 2019, 1, 100006.10.1016/j.enchem.2019.100006. PubMed DOI PMC
Chen Z.; Li P.; Anderson R.; Wang X.; Zhang X.; Robison L.; Redfern L. R.; Moribe S.; Islamoglu T.; Gomez-Gualdron D. A.; Yildirim T.; Stoddart J. F.; Farha O. K. Balancing Volumetric and Gravimetric Uptake in Highly Porous Materials for Clean Energy. Science 2020, 368, 297–303. 10.1126/science.aaz8881. PubMed DOI
Hönicke I. M.; Senkovska I.; Bon V.; Baburin I. A.; Bönisch N.; Raschke S.; Evans J. D.; Kaskel S. Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angew. Chem., Int. Ed. 2018, 57, 13780–13783. 10.1002/anie.201808240. PubMed DOI
Chen Z.; Kirlikovali K. O.; Li P.; Farha O. K. Reticular Chemistry for Highly Porous Metal-Organic Frameworks: The Chemistry and Applications. Acc. Chem. Res. 2022, 55, 579–591. 10.1021/acs.accounts.1c00707. PubMed DOI
Butova V. V.; Soldatov M. A.; Guda A. A.; Lomachenko K. A.; Lamberti C. Metal-Organic Frameworks: Structure, Properties, Methods of Synthesis and Characterization. Russ. Chem. Rev. 2016, 85, 280–307. 10.1070/RCR4554. DOI
Liu X.; Zhang L.; Wang J. Design Strategies for MOF-Derived Porous Functional Materials: Preserving Surfaces and Nurturing Pores. J. Materiomics 2021, 7, 440–459. 10.1016/j.jmat.2020.10.008. DOI
Lin R.-B.; Xiang S.; Zhou W.; Chen B. Microporous Metal-Organic Framework Materials for Gas Separation. Chem. 2020, 6, 337–363. 10.1016/j.chempr.2019.10.012. DOI
Li B.; Wen H.-M.; Zhou W.; Chen B. Porous Metal-Organic Frameworks for Gas Storage and Separation: What, How, and Why?. J. Phys. Chem. Lett. 2014, 5, 3468–3479. 10.1021/jz501586e. PubMed DOI
Chen B.; Xiang S.; Qian G. Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules. Acc. Chem. Res. 2010, 43, 1115–1124. 10.1021/ar100023y. PubMed DOI
Hu M.-L.; Razavi S. A. A.; Piroozzadeh M.; Morsali A. Sensing Organic Analytes by Metal-Organic Frameworks: A New Way of Considering The Topic. Inorg. Chem. Front. 2020, 7, 1598–1632. 10.1039/C9QI01617A. DOI
Qiu T.; Liang Z.; Guo W.; Tabassum H.; Gao S.; Zou R. Metal-Organic Framework-Based Materials for Energy Conversion and Storage. ACS Energy Lett. 2020, 5, 520–532. 10.1021/acsenergylett.9b02625. DOI
Zhang X.; Chen A.; Zhong M.; Zhang Z.; Zhang X.; Zhou Z.; Bu X.-H. Metal-Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion. Electrochem. Energy Rev. 2019, 2, 29–104. 10.1007/s41918-018-0024-x. DOI
Bavykina A.; Kolobov N.; Khan I. S.; Bau J. A.; Ramirez A.; Gascon J. Metal-Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120, 8468–8535. 10.1021/acs.chemrev.9b00685. PubMed DOI
Shen Y.; Pan T.; Wang L.; Ren Z.; Zhang W.; Huo F. Programmable Logic in Metal-Organic Frameworks for Catalysis. Adv. Mater. 2021, 33, 2007442.10.1002/adma.202007442. PubMed DOI
Lawson H. D.; Walton S. P.; Chan C. Metal-Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020. 10.1021/acsami.1c01089. PubMed DOI
Sun Y.; Zheng L.; Yang Y.; Qian X.; Fu T.; Li X.; Yang Z.; Yan H.; Cui C.; Tan W. Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Lett. 2020, 12, 103.10.1007/s40820-020-00423-3. PubMed DOI PMC
Ettlinger R.; Lächelt U.; Gref R.; Horcajada P.; Lammers T.; Serre C.; Couvreur P.; Morris R. E.; Wuttke S. Toxicity of Metal-Organic Framework Nanoparticles: From Essential Analyses to Potential Applications. Chem. Soc. Rev. 2022, 51, 464–484. 10.1039/D1CS00918D. PubMed DOI
Furukawa H.; Cordova K. E.; O’Keeffe M.; Yaghi O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444.10.1126/science.1230444. PubMed DOI
Freund R.; Canossa S.; Cohen S. M.; Yan W.; Deng H.; Guillerm V.; Eddaoudi M.; Madden D. G.; Fairen-Jimenez D.; Lyu H.; Macreadie L. K.; Ji Z.; Zhang Y.; Wang B.; Haase F.; Wöll C.; Zaremba O.; Andreo J.; Wuttke S.; Diercks C. S. 25 Years of Reticular Chemistry. Angew. Chem., Int. Ed. 2021, 60, 23946–23974. 10.1002/anie.202101644. PubMed DOI
Ongari D.; Talirz L.; Smit B. Too Many Materials and Too Many Applications: An Experimental Problem Waiting for a Computational Solution. ACS Cent. Sci. 2020, 6, 1890–1900. 10.1021/acscentsci.0c00988. PubMed DOI PMC
Roh D. K.; Jae H.; Mun H.; Jo J. H.; Chi W. S. Precise Tuning of Morphology and Pore Size of Amine-Functionalized MIL Metal-Organic Frameworks Using a Directing Agent. Mater. Sci. Eng., B 2021, 263, 114833.10.1016/j.mseb.2020.114833. DOI
Tan Y.-X.; He Y.-P.; Zhang J. Tuning MOF Stability and Porosity via Adding Rigid Pillars. Inorg. Chem. 2012, 51, 9649–9654. 10.1021/ic300778m. PubMed DOI
Howarth A. J.; Liu Y.; Li P.; Li Z.; Wang T. C.; Hupp J. T.; Farha O. K. Chemical, Thermal and Mechanical Stabilities of Metal-Organic Frameworks. Nat. Rev. Mater. 2016, 1, 15018.10.1038/natrevmats.2015.18. DOI
Nguyen J. G.; Cohen S. M. Moisture-Resistant and Superhydrophobic Metal-Organic Frameworks Obtained via Postsynthetic Modification. J. Am. Chem. Soc. 2010, 132, 4560–4561. 10.1021/ja100900c. PubMed DOI PMC
Sosa J. D.; Bennett T. F.; Nelms K. J.; Liu B. M.; Tovar R. C.; Liu Y. Metal-Organic Framework Hybrid Materials and Their Applications. Crystals 2018, 8, 325.10.3390/cryst8080325. DOI
Petit C.; Burress J.; Bandosz T. J. The Synthesis and Characterization of Copper-Based Metal-Organic Framework/Graphite Oxide Composites. Carbon 2011, 49, 563–572. 10.1016/j.carbon.2010.09.059. DOI
Petit C.; Bandosz T. J. Synthesis, Characterization, and Ammonia Adsorption Properties of Mesoporous Metal-Organic Framework (MIL(Fe))-Graphite Oxide Composites: Exploring the Limits of Materials Fabrication. Adv. Funct. Mater. 2011, 21, 2108–2117. 10.1002/adfm.201002517. DOI
Jahan M.; Bao Q.; Loh K. P. Electrocatalytically Active Graphene-Porphyrin MOF Composite for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713. 10.1021/ja211433h. PubMed DOI
Jahan M.; Liu Z.; Loh K. P. A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372. 10.1002/adfm.201300510. DOI
Choi K. M.; Jeong H. M.; Park J. H.; Zhang Y.-B.; Kang J. K.; Yaghi O. M. Supercapacitors of Nanocrystalline Metal-Organic Frameworks. ACS Nano 2014, 8, 7451–7457. 10.1021/nn5027092. PubMed DOI
Petit C.; Mendoza B.; Bandosz T. J. Reactive Adsorption of Ammonia on Cu-Based MOF/Graphene Composites. Langmuir 2010, 26, 15302–15309. 10.1021/la1021092. PubMed DOI
Qin X.; Dong Y.; Wang M.; Zhu Z.; Li M.; Yang D.; Shao Y. In Situ Growing Triethanolamine-Functionalized Metal-Organic Frameworks on Two-Dimensional Carbon Nanosheets for Electrochemiluminescent Immunoassay. ACS Sens. 2019, 4, 2351–2357. 10.1021/acssensors.9b00914. PubMed DOI
Huang A.; Liu Q.; Wang N.; Zhu Y.; Caro J. Bicontinuous Zeolitic Imidazolate Framework ZIF-8@GO Membrane with Enhanced Hydrogen Selectivity. J. Am. Chem. Soc. 2014, 136, 14686–14689. 10.1021/ja5083602. PubMed DOI
Kong L.; Zhang X.; Liu H.; Wang T.; Qiu J. Preparation of ZIF-8 Membranes Supported on Macroporous Carbon Tubes via a Dipcoating-Rubbing Method. J. Phys. Chem. Solids 2015, 77, 23–29. 10.1016/j.jpcs.2014.09.011. DOI
Karthik P.; Vinoth R.; Zhang P.; Choi W.; Balaraman E.; Neppolian B. π-π Interaction Between Metal-Organic Framework and Reduced Graphene Oxide for Visible-Light Photocatalytic H2 Production. ACS Appl. Energy Mater. 2018, 1, 1913–1923. 10.1021/acsaem.7b00245. DOI
Lu M.; Li L.; Shen S.; Chen D.; Han W. Highly Efficient Removal of Pb2+ By a Sandwich Structure of Metal-Organic Framework/GO Composite with Enhanced Stability. New J. Chem. 2019, 43, 1032–1037. 10.1039/C8NJ05091K. DOI
Su H.; Du Y.; Zhang J.; Peng P.; Li S.; Chen P.; Gozin M.; Pang S. Stabilizing Metastable Polymorphs of Metal-Organic Frameworks via Encapsulation of Graphene Oxide and Mechanistic Studies. ACS Appl. Mater. Interfaces 2018, 10, 32828–32837. 10.1021/acsami.8b09284. PubMed DOI
Kumar R.; Jayaramulu K.; Maji T. K.; Rao C. N. R. Hybrid Nanocomposites of ZIF-8 with Graphene Oxide Exhibiting Tunable Morphology, Significant CO2 Uptake and Other Novel Properties. Chem. Commun. 2013, 49, 4947–4949. 10.1039/c3cc00136a. PubMed DOI
Yang L.; Shao Z. Tunable and Convenient Synthesis of Highly Dispersed Fe-Nx Catalysts From Graphene-Supported Zn-Fe-ZIF for Efficient Oxygen Reduction in Acidic Media. RSC Adv. 2019, 9, 42236–42244. 10.1039/C9RA08867A. PubMed DOI PMC
Yang K.; Chen B.; Zhu X.; Xing B. Aggregation, Adsorption, and Morphological Transformation of Graphene Oxide in Aqueous Solutions Containing Different Metal Cations. Environ. Sci. Technol. 2016, 50, 11066–11075. 10.1021/acs.est.6b04235. PubMed DOI
Kumar R.; Raut D.; Ramamurty U.; Rao C. N. R. Remarkable Improvement in the Mechanical Properties and CO2 Uptake of MOFs Brought About by Covalent Linking to Graphene. Angew. Chem., Int. Ed. 2016, 55, 7857–7861. 10.1002/anie.201603320. PubMed DOI
Han Y.; Liu Z.; Zheng F.; Bai Y.; Zhang Z.; Li X.; Xiong W.; Zhang J.; Yuan A. Two-Dimensional Flower-Like Cobalt-Porphyrin MOF/rGO Composite Anodes for High-Performance Li-Ion Batteries. J. Alloys. Compd. 2021, 881, 160531.10.1016/j.jallcom.2021.160531. DOI
Nabi S.; Sofi F. A.; Rashid N.; Ingole P. P.; Bhat M. A. Metal-Organic Framework Functionalized Sulphur Doped Graphene: A Promising Platform for Selective and Sensitive Electrochemical Sensing of Acetaminophen, Dopamine and H2O2. New J. Chem. 2022, 46, 1588–1600. 10.1039/D1NJ04041C. DOI
Jayaramulu K.; Geyer F.; Petr M.; Zboril R.; Vollmer D.; Fischer R. A. Shape Controlled Hierarchical Porous Hydrophobic/Oleophilic Metal-Organic Nanofibrous Gel Composites for Oil Adsorption. Adv. Mater. 2017, 29, 1605307.10.1002/adma.201605307. PubMed DOI
Szczȩśniak B.; Choma J.; Jaroniec M. Ultrahigh Benzene Adsorption Capacity of Graphene-MOF Composite Fabricated via MOF Crystallization in 3D Mesoporous Graphene. Microporous Mesoporous Mater. 2019, 279, 387–394. 10.1016/j.micromeso.2019.01.022. DOI
Liu S.; Sun L.; Xu F.; Zhang J.; Jiao C.; Li F.; Li Z.; Wang S.; Wang Z.; Jiang X.; Zhou H.; Yang L.; Schick C. Nanosized Cu-Mofs Induced by Graphene Oxide and Enhanced Gas Storage Capacity. Energy Environ. Sci. 2013, 6, 818–823. 10.1039/c3ee23421e. DOI
Wu M.; Ai Y.; Zeng B.; Zhao F. In Situ Solvothermal Growth of Metal-Organic Framework-Ionic Liquid Functionalized Graphene Nanocomposite for Highly Efficient Enrichment of Chloramphenicol and Thiamphenicol. J. Chromatogr. A 2016, 1427, 1–7. 10.1016/j.chroma.2015.11.080. PubMed DOI
Zhuang S.; Singh H.; Nunna B. B.; Mandal D.; Boscoboinik J. A.; Lee E. S. Nitrogen-Doped Graphene-Based Catalyst with Metal-Reduced Organic Framework: Chemical Analysis and Structure Control. Carbon 2018, 139, 933–944. 10.1016/j.carbon.2018.07.068. DOI
Tung T. T.; Tran M. T.; Feller J.-F.; Castro M.; Van Ngo T.; Hassan K.; Nine M. J.; Losic D. Graphene And Metal Organic Frameworks (Mofs) Hybridization for Tunable Chemoresistive Sensors for Detection of Volatile Organic Compounds (VOCs) Biomarkers. Carbon 2020, 159, 333–344. 10.1016/j.carbon.2019.12.010. DOI
Van Ngo T.; Moussa M.; Tung T. T.; Coghlan C.; Losic D. Hybridization of Mofs and Graphene: A New Strategy for the Synthesis of Porous 3D Carbon Composites for High Performing Supercapacitors. Electrochim. Acta 2020, 329, 135104.10.1016/j.electacta.2019.135104. DOI
Kumar R.; Jayaramulu K.; Maji T. K.; Rao C. N. R. Growth of 2D Sheets of a MOF on Graphene Surfaces to Yield Composites with Novel Gas Adsorption Characteristics. Dalton Trans. 2014, 43, 7383–7386. 10.1039/c3dt53133c. PubMed DOI
Urbanová V.; Jayaramulu K.; Schneemann A.; Kment Š; Fischer R. A.; Zbořil R. Hierarchical Porous Fluorinated Graphene Oxide@Metal-Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin. ACS Appl. Mater. Interfaces 2018, 10, 41089–41097. 10.1021/acsami.8b14344. PubMed DOI
Shen L.; Huang L.; Liang S.; Liang R.; Qin N.; Wu L. Electrostatically Derived Self-Assembly of NH2-Mediated Zirconium Mofs with Graphene for Photocatalytic Reduction of Cr(VI). RSC Adv. 2014, 4, 2546–2549. 10.1039/C3RA45848B. DOI
Andrew Lin K.-Y.; Hsu F.-K.; Lee W.-D. Magnetic Cobalt-Graphene Nanocomposite Derived from Self-Assembly of Mofs with Graphene Oxide as an Activator for Peroxymonosulfate. J. Mater. Chem. A 2015, 3, 9480–9490. 10.1039/C4TA06516F. DOI
Yang F.; Wu M.; Wang Y.; Ashtiani S.; Jiang H. A GO-Induced Assembly Strategy To Repair MOF Nanosheet-Based Membrane for Efficient H2/CO2 Separation. ACS Appl. Mater. Interfaces 2019, 11, 990–997. 10.1021/acsami.8b19480. PubMed DOI
Zhang T.; Zou B.; Shao M.; Chen X.; Zhang S.; Li L.; Du Q.; Li H.; Hu Y.; Weng J.; Xiong W.; Zheng B.; Zhang W.; Huo F. Metal-Organic Framework Wears a Protective Cover for Improved Stability. Chem. Eur. J. 2017, 23, 7663–7666. 10.1002/chem.201701314. PubMed DOI
Jayaramulu K.; Dubal D. P.; Schneemann A.; Ranc V.; Perez-Reyes C.; Stráská J.; Kment Š; Otyepka M.; Fischer R. A.; Zbořil R. Shape-Assisted 2D MOF/Graphene Derived Hybrids as Exceptional Lithium-Ion Battery Electrodes. Adv. Funct. Mater. 2019, 29, 1902539.10.1002/adfm.201902539. DOI
Zhang C.; Han M.; Yu L.; Qu L.; Li Z. Fabrication an Electrochemical Sensor Based on Composite of Cu-TCPP Nanosheets and PSS Functionalized Graphene for Simultaneous and Sensitive Determination of Dihydroxybenzene Isomers. J. Electroanal. Chem. 2021, 890, 115232.10.1016/j.jelechem.2021.115232. DOI
Mao J.; Ge M.; Huang J.; Lai Y.; Lin C.; Zhang K.; Meng K.; Tang Y. Constructing Multifunctional MOF@rGO Hydro-/Aerogels by the Self-Assembly Process for Customized Water Remediation. J. Mater. Chem. A 2017, 5, 11873–11881. 10.1039/C7TA01343D. DOI
Cheng J.; Liang J.; Dong L.; Chai J.; Zhao N.; Ullah S.; Wang H.; Zhang D.; Imtiaz S.; Shan G.; Zheng G. Self-Assembly of 2D-Metal-Organic Framework/Graphene Oxide Membranes as Highly Efficient Adsorbents for the Removal of Cs+ from Aqueous Solutions. RSC Adv. 2018, 8, 40813–40822. 10.1039/C8RA08410F. PubMed DOI PMC
Yu D.; Ge L.; Wei X.; Wu B.; Ran J.; Wang H.; Xu T. A General Route to the Synthesis of Layer-By-Layer Structured Metal Organic Framework/Graphene Oxide Hybrid Films For High-Performance Supercapacitor Electrodes. J. Mater. Chem. A 2017, 5, 16865–2561. 10.1039/C7TA04074A. DOI
Wang H.; Yuan L.; Liang G.; Gu A. Tough and Thermally Resistant Cyanate Ester Resin with Significantly Reduced Curing Temperature and Low Dielectric Loss Based on Developing an Efficient Graphene Oxide/Mn Ion Metal-Organic Framework Hybrid. RSC Adv. 2016, 6, 3290–3300. 10.1039/C5RA21765B. DOI
Qiu X.; Wang X.; Li Y. Controlled Growth of Dense and Ordered Metal-Organic Framework Nanoparticles on Graphene Oxide. Chem. Commun. 2015, 51, 3874–3877. 10.1039/C4CC09933H. PubMed DOI
Zeng J.-Y.; Wang X.-S.; Zhang M.-K.; Li Z.-H.; Gong D.; Pan P.; Huang L.; Cheng S.-X.; Cheng H.; Zhang X.-Z. Universal Porphyrinic Metal-Organic Framework Coating to Various Nanostructures for Functional Integration. ACS Appl. Mater. Interfaces 2017, 9, 43143–43153. 10.1021/acsami.7b14881. PubMed DOI
Pan Y.-T.; Wan J.; Zhao X.; Li C.; Wang D.-Y. Interfacial Growth of MOF-Derived Layered Double Hydroxide Nanosheets on Graphene Slab Towards Fabrication of Multifunctional Epoxy Nanocomposites. Chem. Eng. J. 2017, 330, 1222–1231. 10.1016/j.cej.2017.08.059. DOI
Tanhaei M.; Mahjoub A. R.; Safarifard V. Ultrasonic-Assisted Synthesis and Characterization of Nanocomposites from Azine-Decorated Metal-Organic Framework and Graphene Oxide Layers. Mater. Lett. 2018, 227, 318–321. 10.1016/j.matlet.2018.04.130. DOI
Yao J.; Dong D.; Li D.; He L.; Xu G.; Wang H. Contra-Diffusion Synthesis of ZIF-8 Films on a Polymer Substrate. Chem. Commun. 2011, 47, 2559–2561. 10.1039/c0cc04734a. PubMed DOI
Kim D.; Coskun A. Graphene Oxide-Templated Preferential Growth of Continuous MOF Thin Films. CrystEngComm 2016, 18, 4013–4017. 10.1039/C5CE02188J. DOI
Pendem S.; Singuru R.; Sarkar C.; Joseph B.; Lee J.-F.; Shinde D. B.; Lai Z.; Mondal J. Zeolitic Imidazolate Framework-Mediated Synthesis of Co3O4 Nanoparticles Encapsulated in N-Doped Graphitic Carbon as an Efficient Catalyst for Selective Oxidation of Hydrocarbons. ACS Appl. Nano Mater. 2018, 1, 4836–4851. 10.1021/acsanm.8b01027. DOI
Cai S.; Wang R.; Yourey W. M.; Li J.; Zhang H.; Tang H. An Efficient Bifunctional Electrocatalyst Derived from Layer-By-Layer Self-Assembly of a Three-Dimensional Porous Co-N-C@Graphene. Sci. Bull. 2019, 64, 968–975. 10.1016/j.scib.2019.05.020. PubMed DOI
Zvyagina A. I.; Shiryaev A. A.; Baranchikov A. E.; Chernyshev V. V.; Enakieva Y. Y.; Raitman O. A.; Ezhov A. A.; Meshkov I. N.; Grishanov D. A.; Ivanova O. S.; Gorbunova Y. G.; Arslanov V. V.; Kalinina M. A. Layer-By-Layer Assembly of Porphyrin-Based Metal-Organic Frameworks on Solids Decorated with Graphene Oxide. New J. Chem. 2017, 41, 948–957. 10.1039/C6NJ03202H. DOI
Wu J.; Ma G.-H. Recent Studies of Pickering Emulsions: Particles Make the Difference. Small 2016, 12, 4633–4648. 10.1002/smll.201600877. PubMed DOI
Bian Z.; Zhang S.; Zhu X.; Li Y.; Liu H.; Hu J. In Situ Interfacial Growth of Zeolitic Imidazolate Framework (ZIF-8) Nanoparticles Induced by a Graphene Oxide Pickering Emulsion. RSC Adv. 2015, 5, 31502–31505. 10.1039/C5RA02779A. DOI
Bian Z.; Xu J.; Zhang S.; Zhu X.; Liu H.; Hu J. Interfacial Growth of Metal Organic Framework/Graphite Oxide Composites through Pickering Emulsion and Their CO2 Capture Performance in the Presence of Humidity. Langmuir 2015, 31, 7410–7417. 10.1021/acs.langmuir.5b01171. PubMed DOI
Zhang F.; Liu L.; Tan X.; Sang X.; Zhang J.; Liu C.; Zhang B.; Han B.; Yang G. Pickering Emulsions Stabilized by a Metal-Organic Framework (MOF) and Graphene Oxide (GO) for Producing MOF/GO Composites. Soft Matter 2017, 13, 7365–7370. 10.1039/C7SM01567D. PubMed DOI
Nugmanova A. G.; Safonova E. A.; Baranchikov A. E.; Tameev A. R.; Shkolin A. V.; Mitrofanov A. A.; Eliseev A. A.; Meshkov I. N.; Kalinina M. A. Interfacial Self-Assembly of Porphyrin-Based Surmof/Graphene Oxide Hybrids with Tunable Pore Size: An Approach Toward Size-Selective Ambivalent Heterogeneous Photocatalysts. Appl. Surf. Sci. 2022, 579, 152080.10.1016/j.apsusc.2021.152080. DOI
He L.; Liu J.; Yang L.; Song Y.; Wang M.; Peng D.; Zhang Z.; Fang S. Copper Metal-Organic Framework-Derived CuOx-Coated Three-Dimensional Reduced Graphene Oxide and Polyaniline Composite: Excellent Candidate Free-Standing Electrodes for High-Performance Supercapacitors. Electrochim. Acta 2018, 275, 133–144. 10.1016/j.electacta.2018.04.089. DOI
Fan X.; Yang F.; Huang J.; Yang Y.; Nie C.; Zhao W.; Ma L.; Cheng C.; Zhao C.; Haag R. Metal-Organic-Framework-Derived 2D Carbon Nanosheets for Localized Multiple Bacterial Eradication and Augmented Anti-infective Therapy. Nano Lett. 2019, 19, 5885–5896. 10.1021/acs.nanolett.9b01400. PubMed DOI
Zhang D.; Wu Z.; Zong X. Metal-Organic Frameworks-Derived Zinc Oxide Nanopolyhedra/S, N: Graphene Quantum Dots/Polyaniline Ternary Nanohybrid for High-Performance Acetone Sensing. Sens. Actuators B. Chem. 2019, 288, 232–242. 10.1016/j.snb.2019.02.093. DOI
Nan J.; Dong X.; Wang W.; Jin W.; Xu N. Step-by-Step Seeding Procedure for Preparing HKUST-1 Membrane on Porous α-Alumina Support. Langmuir 2011, 27, 4309–4312. 10.1021/la200103w. PubMed DOI
Yoo Y.; Lai Z.; Jeong H.-K. Fabrication of MOF-5 Membranes Using Microwave-Induced Rapid Seeding and Solvothermal Secondary Growth. Microporous Mesoporous Mater. 2009, 123, 100–106. 10.1016/j.micromeso.2009.03.036. DOI
Balakrishnan S.; Downard A. J.; Telfer S. G. HKUST-1 Growth on Glassy Carbon. J. Mater. Chem. 2011, 21, 19207–19209. 10.1039/c1jm13912f. DOI
Hu Y.; Dong X.; Nan J.; Jin W.; Ren X.; Xu N.; Lee Y. M. Metal-Organic Framework Membranes Fabricated via Reactive Seeding. Chem. Commun. 2011, 47, 737–739. 10.1039/C0CC03927F. PubMed DOI
Guerrero V. V.; Yoo Y.; McCarthy M. C.; Jeong H.-K. HKUST-1 Membranes on Porous Supports Using Secondary Growth. J. Mater. Chem. 2010, 20, 3938–3943. 10.1039/b924536g. DOI
Hu Y.; Wei J.; Liang Y.; Zhang H.; Zhang X.; Shen W.; Wang H. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. Angew. Chem., Int. Ed. 2016, 55, 2048–2052. 10.1002/anie.201509213. PubMed DOI
Lee C. S.; Song E.; Park J. T.; Kim J. H. Ultrathin, Highly Permeable Graphene Oxide/Zeolitic Imidazole Framework Polymeric Mixed-Matrix Composite Membranes: Engineering the CO2-Philic Pathway. ACS Sustain. Chem. Eng. 2021, 9, 11903–11915. 10.1021/acssuschemeng.1c03917. DOI
Firouzjaei M. D.; Shamsabadi A. A.; Aktij S. A.; Seyedpour S. F.; Sharifian Gh. M.; Rahimpour A.; Esfahani M. R.; Ulbricht M.; Soroush M. Exploiting Synergetic Effects of Graphene Oxide and a Silver-Based Metal-Organic Framework To Enhance Antifouling and Anti-Biofouling Properties of Thin-Film Nanocomposite Membranes. ACS Appl. Mater. Interfaces 2018, 10, 42967–42978. 10.1021/acsami.8b12714. PubMed DOI
Golpour M.; Pakizeh M. Preparation and Characterization of New PA-MOF/PPSU-GO Membrane for the Separation of KHI from Water. Chem. Eng. J. 2018, 345, 221–232. 10.1016/j.cej.2018.03.154. DOI
Mu Q.; Zhu W.; Li X.; Zhang C.; Su Y.; Lian Y.; Qi P.; Deng Z.; Zhang D.; Wang S.; Zhu X.; Peng Y. Electrostatic Charge Transfer for Boosting the Photocatalytic CO2 Reduction on Metal Centers of 2D MOF/rGO Heterostructure. Appl. Catal., B 2020, 262, 118144.10.1016/j.apcatb.2019.118144. DOI
Kaur R.; Kim K.-H.; Deep A. A Convenient Electrolytic Assembly of Graphene-MOF Composite Thin Film and its Photoanodic Application. Appl. Surf. Sci. 2017, 396, 1303–1309. 10.1016/j.apsusc.2016.11.150. DOI
Kung C.-W.; Li Y.-S.; Lee M.-H.; Wang S.-Y.; Chiang W.-H.; Ho K.-C. In Situ Growth of Porphyrinic Metal-Organic Framework Nanocrystals on Graphene Nanoribbons for the Electrocatalytic Oxidation of Nitrite. J. Mater. Chem. A 2016, 4, 10673–10682. 10.1039/C6TA02563C. DOI
Wang Y.; Cao W.; Wang L.; Zhuang Q.; Ni Y. Electrochemical Determination of 2,4,6-Trinitrophenol Using a Hybrid Film Composed of a Copper-Based Metal Organic Framework and Electroreduced Graphene Oxide. Microchim. Acta 2018, 185, 315.10.1007/s00604-018-2857-8. PubMed DOI
Rezvani Jalal N.; Madrakian T.; Afkhami A.; Ghoorchian A. In Situ Growth of Metal-Organic Framework HKUST-1 on Graphene Oxide Nanoribbons with High Electrochemical Sensing Performance in Imatinib Determination. ACS Appl. Mater. Interfaces 2020, 12, 4859–4869. 10.1021/acsami.9b18097. PubMed DOI
Wang B.; Kang K.; Ji X.; Liu Y.; Li X.; Wang L.; Ren J. Multifunctional Encapsulating Gold Nanoparticles into Cu-Hemin/Metal-Organic Frameworks for Catechol Electrochemical Detection on Graphene-Based Electrode. Nano 2020, 15, 2050155.10.1142/S1793292020501556. DOI
Hatamluyi B.; Rezayi M.; Beheshti H. R.; Boroushaki M. T. Ultra-Sensitive Molecularly Imprinted Electrochemical Sensor for Patulin Detection Based on a Novel Assembling Strategy Using Au@Cu-MOF/N-Gqds. Sens. Actuators B. Chem. 2020, 318, 128219.10.1016/j.snb.2020.128219. DOI
Cao X.; Zheng B.; Rui X.; Shi W.; Yan Q.; Zhang H. Metal Oxide-Coated Three-Dimensional Graphene Prepared by the Use of Metal-Organic Frameworks as Precursors. Angew. Chem., Int. Ed. 2014, 53, 1404–1433. 10.1002/anie.201308013. PubMed DOI
Martín-Jimeno F. J.; Suárez-García F.; Paredes J. I.; Enterría M.; Pereira M. F. R.; Martins J. I.; Figueiredo J. L.; Martínez-Alonso A.; Tascón J. M. D. A “Nanopore Lithography” Strategy for Synthesizing Hierarchically Micro/Mesoporous Carbons from ZIF-8/Graphene Oxide Hybrids for Electrochemical Energy Storage. ACS Appl. Mater. Interfaces 2017, 9, 44740–44755. 10.1021/acsami.7b16567. PubMed DOI
Xu X.; Shi W.; Li P.; Ye S.; Ye C.; Ye H.; Lu T.; Zheng A.; Zhu J.; Xu L.; Zhong M.; Cao X. Facile Fabrication of Three-Dimensional Graphene and Metal-Organic Framework Composites and Their Derivatives for Flexible All-Solid-State Supercapacitors. Chem. Mater. 2017, 29, 6058–6065. 10.1021/acs.chemmater.7b01947. DOI
Shahrokhian S.; Ezzati M.; Hosseini H. Fabrication of a Sensitive and Fast Response Electrochemical Glucose Sensing Platform Based on Co-Based Metal-Organic Frameworks Obtained from Rapid In Situ Conversion of Electrodeposited Cobalt Hydroxide Intermediates. Talanta 2020, 210, 120696.10.1016/j.talanta.2019.120696. PubMed DOI
Barakzehi M.; Montazer M.; Sharif F.; Norby T.; Chatzitakis A. MOF-Modified Polyester Fabric Coated with Reduced Graphene Oxide/Polypyrrole as Electrode for Flexible Supercapacitors. Electrochim. Acta 2020, 336, 135743.10.1016/j.electacta.2020.135743. DOI
Lu X. F.; Fang Y.; Luan D.; Lou X. W. D. Metal-Organic Frameworks Derived Functional Materials for Electrochemical Energy Storage and Conversion: A Mini Review. Nano Lett. 2021, 21, 1555–1565. 10.1021/acs.nanolett.0c04898. PubMed DOI
Tan X.; Wu Y.; Lin X.; Zeb A.; Xu X.; Luo Y.; Liu J. Application of MOF-Derived Transition Metal Oxides and Composites as Anodes for Lithium-Ion Batteries. Inorg. Chem. Front. 2020, 7, 4939–4955. 10.1039/D0QI00929F. DOI
Yang W.; Li X.; Li Y.; Zhu R.; Pang H. Applications of Metal-Organic-Framework-Derived Carbon Materials. Adv. Mater. 2019, 31, 1804740.10.1002/adma.201804740. PubMed DOI
Jayaramulu K.; Masa J.; Tomanec O.; Peeters D.; Ranc V.; Schneemann A.; Zboril R.; Schuhmann W.; Fischer R. A. Nanoporous Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metal-Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Adv. Funct. Mater. 2017, 27, 1700451.10.1002/adfm.201700451. DOI
Rabiee Faradonbeh M.; Dadkhah A. A.; Rashidi A.; Tasharofi S.; Mansourkhani F. Newly MOF-Graphene Hybrid Nanoadsorbent for Removal of Ni(II) from Aqueous Phase. J. Inorg. Organomet. Polym. Mater. 2018, 28, 829–836. 10.1007/s10904-017-0737-z. DOI
Yang K.; Yan Y.; Wang H.; Sun Z.; Chen W.; Kang H.; Han Y.; Zahng W.; Sun X.; Li Z. Monodisperse Cu/Cu2O@C Core-Shell Nanocomposite Supported on rGO Layers as an Efficient Catalyst Derived from a Cu-Based MOF/GO Structure. Nanoscale 2018, 10, 17647–17655. 10.1039/C8NR04475A. PubMed DOI
Yogapriya R.; Kasibhatta K. R. D. Hydrophobic-Superoleophilic Fluorinated Graphene Nanosheet Composites with Metal-Organic Framework HKUST-1 for Oil-Water Separation. ACS Appl. Nano Mater. 2020, 3, 5816–5825. 10.1021/acsanm.0c00980. DOI
Matloob A. M.; El-Hafiz D. R. A.; Saad L.; Mikhail S.; Guirguis D. Metal Organic Framework-Graphene Nano-Composites for High Adsorption Removal of DBT as Hazard Material in Liquid Fuel. J. Hazard. Mater. 2019, 373, 447–458. 10.1016/j.jhazmat.2019.03.098. PubMed DOI
Khan U. A.; Iqbal N.; Noor T.; Ahmad R.; Ahmad A.; Gao J.; Amjad Z.; Wahab A. Cerium Based Metal Organic Framework Derived Composite with Reduced Graphene Oxide as Efficient Supercapacitor Electrode. J. Energy Storage 2021, 41, 102999.10.1016/j.est.2021.102999. DOI
Beka L. G.; Bu X.; Li X.; Wang X.; Han C.; Liu W. A 2D Metal-Organic Framework/Reduced Graphene Oxide Heterostructure for Supercapacitor Application. RSC Adv. 2019, 9, 36123–36135. 10.1039/C9RA07061C. PubMed DOI PMC
Muschi M.; Serre C. Progress and Challenges of Graphene Oxide/Metal-Organic Composites. Coord. Chem. Rev. 2019, 387, 262–272. 10.1016/j.ccr.2019.02.017. DOI
Claramunt S.; Varea A.; López-Díaz D.; Velázquez M. M.; Cornet A.; Cirera A. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. J. Phys. Chem. C 2015, 119, 10123–10129. 10.1021/acs.jpcc.5b01590. DOI
Yaghi O. M.; O’Keeffe M.; Ockwig N. W.; Chae H. K.; Eddaoudi M.; Kim J. Reticular Synthesis and the Design of New Materials. Nature 2003, 423, 705–714. 10.1038/nature01650. PubMed DOI
Pepinsky R. Crystal Engineering-New Concept in Crystallography. Phys. Rev. 1955, 100, 971.
Kitagawa S. Porous Materials and the Age of Gas. Angew. Chem., Int. Ed. 2015, 54, 10686–10687. 10.1002/anie.201503835. PubMed DOI
Moghadam P. Z.; Li A.; Liu X.-W.; Bueno-Perez R.; Wang S.-D.; Wiggin S. B.; Wood P. A.; Fairen-Jimenez D. Targeted Classification of Metal-Organic Frameworks in the Cambridge Structural Database (CSD). Chem. Sci. 2020, 11, 8373–8387. 10.1039/D0SC01297A. PubMed DOI PMC
Zhu L.; Meng L.; Shi J.; Li J.; Zhang X.; Feng M. Metal-Organic Frameworks/Carbon-Based Materials for Environmental Remediation: A State-of-the-Art Mini-Review. J. Environ. Manage. 2019, 232, 964–977. 10.1016/j.jenvman.2018.12.004. PubMed DOI
Oschatz M.; Antonietti M. A Search for Selectivity to Enable CO2 Capture with Porous Adsorbents. Energy Environ. Sci. 2018, 11, 57–70. 10.1039/C7EE02110K. DOI
Sholl D. S.; Lively R. P. Nature 2016, 532, 435–437. 10.1038/532435a. PubMed DOI
Mukherjee S.; Desai A. V.; Ghosh S. K. Potential of Metal-Organic Frameworks for Adsorptive Separation of Industrially and Environmentally Relevant Liquid Mixtures. Coord. Chem. Rev. 2018, 367, 82–126. 10.1016/j.ccr.2018.04.001. DOI
Barea E.; Montoro C.; Navarro J. A. R. Toxic Gas Removal - Metal-Organic Frameworks for the Capture and Degradation of Toxic Gases and Vapours. Chem. Soc. Rev. 2014, 43, 5419–5430. 10.1039/C3CS60475F. PubMed DOI
Rojas S.; Horcajada P. Metal-Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem. Rev. 2020, 120, 8378–8415. 10.1021/acs.chemrev.9b00797. PubMed DOI
Mon M.; Bruno R.; Ferrando-Soria J.; Armentano D.; Pardo E. Metal-Organic Framework Technologies for Water Remediation: Towards a Sustainable Ecosystem. J. Mater. Chem. A 2018, 6, 4912–4947. 10.1039/C8TA00264A. DOI
Chui S. S.-Y.; Lo S. M.-F.; Charmant J. P. H.; Orpen A. G.; Williams I. D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150. 10.1126/science.283.5405.1148. PubMed DOI
Dong L.; Chen M.; Li J.; Shi D.; Dong W.; Li X.; Bai Y. Metal-Organic Framework-Graphene Oxide Composites: A Facile Method to Highly Improve the CO2 Separation Performance of Mixed Matrix Membranes. J. Membr. Sci. 2016, 520, 801–811. 10.1016/j.memsci.2016.08.043. DOI
Sarfraz M.; Ba-Shammakh M. Synergistic Effect of Adding Graphene Oxide and ZIF-301 to Polysulfone to Develop High Performance Mixed Matrix Membranes For Selective Carbon Dioxide Separation From Post Combustion Flue Gas. J. Membr. Sci. 2016, 514, 35–43. 10.1016/j.memsci.2016.04.029. DOI
Lee H.; Park S. C.; Roh J. S.; Moon G. H.; Shin J. E.; Kang Y. S.; Park H. B. Metal-Organic Frameworks Grown on a Porous Planar Template with an Exceptionally High Surface Area: Promising Nanofiller Platforms for CO2 Separation. J. Mater. Chem. A 2017, 5, 22500–22505. 10.1039/C7TA06049A. DOI
Anastasiou S.; Bhoria N.; Pokhrel J.; Kumar Reddy K. S.; Srinivasakannan C.; Wang K.; Karanikolos G. N. Metal-Organic Framework/Graphene Oxide Composite Fillers in Mixed-Matrix Membranes for CO2 Separation. Mater. Chem. Phys. 2018, 212, 513–522. 10.1016/j.matchemphys.2018.03.064. DOI
Feijani E. A.; Mahdavi H.; Tavassoli A. Synthesis and Gas Permselectivity of Cubtc-GO-PVDF Mixed Matrix Membranes. New J. Chem. 2018, 42, 12013–12023. 10.1039/C8NJ00796A. DOI
Su L.; Hu J.; Wang K.; Wang Y.; Zhang W.; Cao Y.; Zhao N. Facile Synthesis and Enhanced Adsorption Ability of Pt-GO/MOF Nanomaterials. Mater. Manuf. Process. 2016, 31, 141–145. 10.1080/10426914.2014.984226. DOI
Xiang S.; He Y.; Zhang Z.; Wu H.; Zhou W.; Krishna R.; Chen B. Microporous Metal-Organic Framework with Potential for Carbon Dioxide Capture at Ambient Conditions. Nat. Commun. 2012, 3, 954.10.1038/ncomms1956. PubMed DOI
Shen Y.; Li Z.; Wang L.; Ye Y.; Liu Q.; Ma X.; Chen Q.; Zhang Z.; Xiang S. Cobalt-Citrate Framework Armored with Graphene Oxide Exhibiting Improved Thermal Stability and Selectivity for Biogas Decarburization. J. Mater. Chem. A 2015, 3, 593–599. 10.1039/C4TA04770B. DOI
Rosi N. L.; Kim J.; Eddaoudi M.; Chen B.; O’Keeffe M.; Yaghi O. M. Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. J. Am. Chem. Soc. 2005, 127, 1504–1518. 10.1021/ja045123o. PubMed DOI
Asgharnejad L.; Abbasi A.; Shakeri A. Ni-Based Metal-Organic Framework/GO Nanocomposites as Selective Adsorbent for CO2 Over N2. Microporous Mesoporous Mater. 2018, 262, 227–234. 10.1016/j.micromeso.2017.11.038. DOI
Zhou X.; Huang W.; Liu J.; Wang H.; Li Z. Quenched Breathing Effect, Enhanced CO2 Uptake and Improved CO2/CH4 Selectivity of MIL-53(Cr)/Graphene Oxide Composites. Chem. Eng. Sci. 2017, 167, 98–104. 10.1016/j.ces.2017.03.050. DOI
Pokhrel J.; Bhoria N.; Anastasiou S.; Tsoufis T.; Gournis D.; Romanos G.; Karanikolos G. N. CO2 Adsorption Behavior of Amine-Functionalized ZIF-8, Graphene Oxide, and ZIF-8/Graphene Oxide Composites Under Dry and Wet Conditions. Microporous Mesoporous Mater. 2018, 267, 53–67. 10.1016/j.micromeso.2018.03.012. DOI
Zhou X.; Huang W.; Miao J.; Xia Q.; Zhang Z.; Wang H.; Li Z. Enhanced Separation Performance of a Novel Composite Material Gro@MIL-101 for CO2/CH4 Binary Mixture. Chem. Eng. J. 2015, 266, 339–344. 10.1016/j.cej.2014.12.021. DOI
Pourebrahimi S.; Kazemeini M.; Ganji Babakhani E.; Taheri A. Removal of the CO2 from Flue Gas Utilizing Hybrid Composite Adsorbent MIL-53(Al)/GNP Metal-Organic Framework. Microporous Mesoporous Mater. 2015, 218, 144–152. 10.1016/j.micromeso.2015.07.013. DOI
Cao Y.; Zhang H.; Song F.; Huang T.; Ji J.; Zhong Q.; Chu W.; Xu Q. UiO-66-NH2/GO Composite: Synthesis, Characterization and CO2 Adsorption Performance. Materials 2018, 11, 589.10.3390/ma11040589. PubMed DOI PMC
Ullah S.; Bustam M. A.; Al-Sehemi A. G.; Assiri M. A.; Abdul Kareem F. A.; Mukhtar A.; Ayoub M.; Gonfa G. Influence of Post-Synthetic Graphene Oxide (GO) Functionalization on the Selective CO2/CH4 Adsorption Behavior of MOF-200 At Different Temperatures; An Experimental and Adsorption Isotherms Study. Microporous Mesoporous Mater. 2020, 296, 110002.10.1016/j.micromeso.2020.110002. DOI
Chen Y.; Lv D.; Wu J.; Xiao J.; Xi H.; Xia Q.; Li Z. A New MOF-505@GO Composite with High Selectivity for CO2/CH4 and CO2/N2 Separation. Chem. Eng. J. 2017, 308, 1065–1072. 10.1016/j.cej.2016.09.138. DOI
Li W.; Chuah C. Y.; Yang Y.; Bae T.-H. Nanocomposites Formed by In Situ Growth of NiDOBDC Nanoparticles on Graphene Oxide Sheets for Enhanced CO2 and H2 Storage. Microporous Mesoporous Mater. 2018, 265, 35–42. 10.1016/j.micromeso.2018.01.036. DOI
Cao Y.; Zhao Y.; Lv Z.; Song F.; Zhong Q. Preparation and Enhanced CO2 Adsorption Capacity Of Uio-66/Graphene Oxide Composites. J. Ind. Eng. Chem. 2015, 27, 102–107. 10.1016/j.jiec.2014.12.021. DOI
Szczȩśniak B.; Choma J. Graphene-Containing Microporous Composites for Selective CO2 Adsorption. Microporous Mesoporous Mater. 2020, 292, 109761.10.1016/j.micromeso.2019.109761. DOI
Ning H.; Yang Z.; Yin Z.; Wang D.; Meng Z.; Wang C.; Zhang Y.; Chen Z. A Novel Strategy to Enhance the Performance of CO2 Adsorption Separation: Grafting Hyper-cross-linked Polyimide onto Composites of UiO-66-NH2 and GO. ACS Appl. Mater. Interfaces 2021, 13, 17781–17790. 10.1021/acsami.1c00917. PubMed DOI
Kang Z.; Xue M.; Zhang D.; Fan L.; Pan Y.; Qiu S. Hybrid Metal-Organic Framework Nanomaterials with Enhanced Carbon Dioxide and Methane Adsorption Enthalpy by Incorporation Of Carbon Nanotubes. Inorg. Chem. Commun. 2015, 58, 79–83. 10.1016/j.inoche.2015.06.007. DOI
Kang Z.; Wang S.; Wang R.; Guo H.; Xu B.; Feng S.; Fan L.; Zhu L.; Kang W.; Pang J.; Sun H.; Du X.; Zhang M.; Sun D. Sandwich Membranes Through a Two-Dimensional Confinement Strategy for Gas Separation. Mater. Chem. Front. 2018, 2, 1911–1919. 10.1039/C8QM00351C. DOI
Li W.; Zhang Y.; Su P.; Xu Z.; Zhang G.; Shen C.; Meng Q. Metal-Organic Framework Channelled Graphene Composite Membranes for H2/CO2 Separation. J. Mater. Chem. A 2016, 4, 18747–18752. 10.1039/C6TA09362K. DOI
Li W.; Shi J.; Li Z.; Wu W.; Xia Y.; Yu Y.; Zhang G. Hydrothermally Reduced Graphene Oxide Interfaces for Synthesizing High-Performance Metal-Organic Framework Hollow Fiber Membranes. Adv. Mater. Interfaces 2018, 5, 1800032.10.1002/admi.201800032. DOI
Taheri A.; Babakhani E. G.; Towfighi Darian J. A MIL-101(Cr) and Graphene Oxide Composite for Methane-Rich Stream Treatment. Energy Fuels 2017, 31, 8792–8802. 10.1021/acs.energyfuels.7b00917. DOI
Myers A. L.; Prausnitz J. M. Thermodynamics of Mixed-Gas Adsorption. AIChE J. 1965, 11, 121–127. 10.1002/aic.690110125. DOI
Yang S. J.; Choi J. Y.; Chae H. K.; Cho J. H.; Nahm K. S.; Park C. R. Preparation and Enhanced Hydrostability and Hydrogen Storage Capacity of CNT@MOF-5 Hybrid Composite. Chem. Mater. 2009, 21, 1893–1897. 10.1021/cm803502y. DOI
Lin R.; Ge L.; Liu S.; Rudolph V.; Zhu Z. Mixed-Matrix Membranes with Metal-Organic Framework-Decorated CNT Fillers for Efficient CO2 Separation. ACS Appl. Mater. Interfaces 2015, 7, 14750–14757. 10.1021/acsami.5b02680. PubMed DOI
Xiang Z.; Peng X.; Cheng X.; Li X.; Cao D. CNT@Cu3(BTC)2 and Metal-Organic Frameworks for Separation of CO2/CH4Mixture. J. Phys. Chem. C 2011, 115, 19864–19871. 10.1021/jp206959k. DOI
Anbia M.; Hoseini V. Development of MWCNT@MIL-101 Hybrid Composite with Enhanced Adsorption Capacity for Carbon Dioxide. Chem. Eng. J. 2012, 191, 326–330. 10.1016/j.cej.2012.03.025. DOI
Thierfelder C.; Witte M.; Blankenburg S.; Rauls E.; Schmidt W. G. Methane Adsorption on Graphene from First Principles Including Dispersion Interaction. Surf. Sci. 2011, 605, 746–749. 10.1016/j.susc.2011.01.012. DOI
Chouhan R. K.; Ulman K.; Narasimhan S. Graphene Oxide as an Optimal Candidate Material for Methane Storage. J. Chem. Phys. 2015, 143, 044704.10.1063/1.4927141. PubMed DOI
Al-Naddaf Q.; Al-Mansour M.; Thakkar H.; Rezaei F. MOF-GO Hybrid Nanocomposite Adsorbents for Methane Storage. Ind. Eng. Chem. Res. 2018, 57, 17470–17479. 10.1021/acs.iecr.8b03638. DOI
Peng Y.; Krungleviciute V.; Eryazici I.; Hupp J. T.; Farha O. K.; Yildirim T. Methane Storage in Metal-Organic Frameworks: Current Records, Surprise Findings, and Challenges. J. Am. Chem. Soc. 2013, 135, 11887–11894. 10.1021/ja4045289. PubMed DOI
Szczȩśniak B.; Choma J.; Jaroniec M. Gas Adsorption Properties of Hybrid Graphene-MOF Materials. J. Colloid Interface Sci. 2018, 514, 801–813. 10.1016/j.jcis.2017.11.049. PubMed DOI
Domán A.; Madarász J.; Sáfrán G.; Wang Y.; László K. Copper Benzene-1,3,5-Tricarboxylate (HKUST-1) - Graphene Oxide Pellets for Methane Adsorption. Microporous Mesoporous Mater. 2021, 316, 110948.10.1016/j.micromeso.2021.110948. DOI
Gallagher J. Towards Methane Targets. Nature Energy 2018, 3, 86.10.1038/s41560-018-0100-9. DOI
Petit C.; Bandosz T. J. Enhanced Adsorption of Ammonia on Metal-Organic Framework/Graphite Oxide Composites: Analysis of Surface Interactions. Adv. Funct. Mater. 2010, 20, 111–118. 10.1002/adfm.200900880. DOI
Petit C.; Bandosz T. J. MOF-Graphite Oxide Nanocomposites: Surface Characterization and Evaluation as Adsorbents of Ammonia. J. Mater. Chem. 2009, 19, 6521–6528. 10.1039/b908862h. DOI
Levasseur B.; Petit C.; Bandosz T. J. Reactive Adsorption of NO2 on Copper-Based Metal-Organic Framework and Graphite Oxide/Metal-Organic Framework Composites. ACS Appl. Mater. Interfaces 2010, 2, 3606–3613. 10.1021/am100790v. PubMed DOI
Travlou N. A.; Singh K.; Rodríguez-Castellón E.; Bandosz T. J. Cu-BTC MOF-Graphene-Based Hybrid Materials as Low Concentration Ammonia Sensors. J. Mater. Chem. A 2015, 3, 11417–11429. 10.1039/C5TA01738F. DOI
Yin Y.; Zhang H.; Huang P.; Xiang C.; Zou Y.; Xu F.; Sun L. Inducement of Nanoscale Cu-BTC on Nanocomposite of Ppy-rGO and its Performance in Ammonia Sensing. Mater. Res. Bull. 2018, 99, 152–160. 10.1016/j.materresbull.2017.11.012. DOI
Semrau A. L.; Zhou Z.; Mukherjee S.; Tu M.; Li W.; Fischer R. A. Surface-Mounted Metal-Organic Frameworks: Past, Present, and Future Perspectives. Langmuir 2021, 37, 6847–6863. 10.1021/acs.langmuir.1c00245. PubMed DOI
Wang X.; Chi C.; Tao J.; Peng Y.; Ying S.; Qian Y.; Dong J.; Hu Z.; Gu Y.; Zhao D. Improving the Hydrogen Selectivity of Graphene Oxide Membranes by Reducing Non-Selective Pores with Intergrown ZIF-8 Crystals. Chem. Commun. 2016, 52, 8087–8090. 10.1039/C6CC02013E. PubMed DOI
Hu Y.; Wu Y.; Devendran C.; Wei J.; Liang Y.; Matsukata M.; Shen W.; Neild A.; Huang H.; Wang H. Preparation of Nanoporous Graphene Oxide by Nanocrystal-Masked Etching: Toward a Nacre-Mimetic Metal-Organic Framework Molecular Sieving Membrane. J. Mater. Chem. A 2017, 5, 16255–16262. 10.1039/C7TA00927E. DOI
Liu D.; Pang G.; Tang Z.; Feng S. Interfacial Engineering of Metal-Organic Frameworks/Graphene Oxide Composite Membrane by Polyethyleneimine for Efficient H2/CH4 Gas Separation. Inorg. Chem. Front. 2019, 6, 2043–2049. 10.1039/C9QI00455F. DOI
Li N.; Yuan H.; Xu L.; Tao J.; Ng D. K. T.; Lee L. Y. T.; Cheam D. D.; Zeng Y.; Qiang B.; Wang Q.; Cai H.; Singh N.; Zhao D. Radiation Enhancement by Graphene Oxide on Microelectromechanical System Emitters for Highly Selective Gas Sensing. ACS Sens. 2019, 4, 2746–2753. 10.1021/acssensors.9b01275. PubMed DOI
Petit C.; Mendoza B.; Bandosz T. J. Hydrogen Sulfide Adsorption on MOFs and MOF/Graphite Oxide Composites. ChemPhysChem 2010, 11, 3678–3684. 10.1002/cphc.201000689. PubMed DOI
Li H.; Eddaoudi M.; O’Keeffe M.; Yaghi O. M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402, 276–279. 10.1038/46248. DOI
Huang Z.-H.; Liu G.; Kang F. Glucose-Promoted Zn-Based Metal-Organic Framework/Graphene Oxide Composites for Hydrogen Sulfide Removal. ACS Appl. Mater. Interfaces 2012, 4, 4942–4947. 10.1021/am3013104. PubMed DOI
Bhoria N.; Basina G.; Pokhrel J.; Kumar Reddy K. S.; Anastasiou S.; Balasubramanian V. V.; AlWahedi Y. F.; Karanikolos G. N. Functionalization Effects on HKUST-1 and HKUST-1/Graphene Oxide Hybrid Adsorbents for Hydrogen Sulfide Removal. J. Hazard. Mater. 2020, 394, 122565.10.1016/j.jhazmat.2020.122565. PubMed DOI
Zhang C.; Zhang S.; Yang Y.; Yu H.; Dong X. Highly Sensitive H2S Sensors Based on Metal-Organic Framework Driven Γ-Fe2O3 on Reduced Graphene Oxide Composites at Room Temperature. Sens. Actuators B. Chem. 2020, 325, 128804.10.1016/j.snb.2020.128804. DOI
Pham M.-H.; Vuong G.-T.; Vu A.-T.; Do T.-O. Novel Route to Size-Controlled Fe-MIL-88B-NH2Metal-Organic Framework Nanocrystals. Langmuir 2011, 27, 15261–15267. 10.1021/la203570h. PubMed DOI
McDonald T. M.; Lee W. R.; Mason J. A.; Wiers B. M.; Hong C. S.; Long J. R. Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 2012, 134, 7056–7065. 10.1021/ja300034j. PubMed DOI
Gu J.; Fan H.; Li C.; Caro J.; Meng H. Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@rGO Composites for Efficient Oil-Water Separation. Angew. Chem., Int. Ed. 2019, 58, 5297–5301. 10.1002/anie.201814487. PubMed DOI
Eom S.; Kang D. W.; Kang M.; Choe J. H.; Kim H.; Kim D. W.; Hong C. S. Fine-Tuning of Wettability In a Single Metal-Organic Framework via Postcoordination Modification and its Reduced Graphene Oxide Aerogel for Oil-Water Separation. Chem. Sci. 2019, 10, 2663–2669. 10.1039/C8SC04581J. PubMed DOI PMC
Zhan Y.; He S.; Hu J.; Zhao S.; Zeng G.; Zhou M.; Zhang G.; Sengupta A. Robust Super-Hydrophobic/Super-Oleophilic Sandwich-Like UIO-66-F4@rGO Composites for Efficient and Multitasking Oil/Water Separation Applications. J. Hazard. Mater. 2020, 388, 121752.10.1016/j.jhazmat.2019.121752. PubMed DOI
Ma W.; Li Y.; Zhang M.; Gao S.; Cui J.; Huang C.; Fu G. Biomimetic Durable Multifunctional Self-Cleaning Nanofibrous Membrane with Outstanding Oil/Water Separation, Photodegradation of Organic Contaminants, and Antibacterial Performances. ACS Appl. Mater. Interfaces 2020, 12, 34999–35010. 10.1021/acsami.0c09059. PubMed DOI
Li H.; Yin Y.; Zhu L.; Xiong Y.; Li X.; Guo T.; Xing W.; Xue Q. A Hierarchical Structured Steel Mesh Decorated with Metal Organic Framework/Graphene Oxide for High-Efficient Oil/Water Separation. J. Hazard. Mater. 2019, 373, 725–732. 10.1016/j.jhazmat.2019.04.009. PubMed DOI
Zhu M.; Liu Y.; Chen M.; Gan D.; Wang M.; Zeng H.; Liao M.; Chen J.; Tu W.; Niu W. Ultrahigh Flux of Graphene Oxide Membrane Modified with Orientated Growth of MOFs for Rejection of Dyes and Oil-Water Separation. Chin. Chem. Lett. 2020, 31, 2683–2688. 10.1016/j.cclet.2020.04.011. DOI
Zhang R.; Cao J.; Liu Y.-n.; Guan J.; He M.; Jiang Z. Metal-Organic Framework-Intercalated Graphene Oxide Membranes for Highly Efficient Oil/Water Separation. Ind. Eng. Chem. Res. 2020, 59, 16762–16771. 10.1021/acs.iecr.0c02721. DOI
Otyepková E.; Lazar P.; Čépe K.; Tomanec O.; Otyepka M. Organic Adsorbates Have Higher Affinities to Fluorographene than to Graphene. Appl. Mater. Today 2016, 5, 142–149. 10.1016/j.apmt.2016.09.016. DOI
Sun L.; Tang J. Welding Partially Reduced Graphene Oxides by MOFs into Micro-Mesoporous Hybrids for High-Performance Oil Absorption. RSC Adv. 2021, 11, 30980–30989. 10.1039/D1RA05644A. PubMed DOI PMC
Hu Z.; Peng Y.; Kang Z.; Qian Y.; Zhao D. A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorg. Chem. 2015, 54, 4862–4868. 10.1021/acs.inorgchem.5b00435. PubMed DOI
Mekonnen M. M.; Hoekstra A. Y. Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, e150032310.1126/sciadv.1500323. PubMed DOI PMC
Rao Z.; Feng K.; Tang B.; Wu P. Surface Decoration of Amino-Functionalized Metal-Organic Framework/Graphene Oxide Composite onto Polydopamine-Coated Membrane Substrate for Highly Efficient Heavy Metal Removal. ACS Appl. Mater. Interfaces 2017, 9, 2594–26065. 10.1021/acsami.6b15873. PubMed DOI
Yang P.; Liu Q.; Liu J.; Zhang H.; Li Z.; Li R.; Liu L.; Wang J. Interfacial Growth of a Metal-Organic Framework (UiO-66) on Functionalized Graphene Oxide (GO) as a Suitable Seawater Adsorbent for Extraction of Uranium(Vi). J. Mater. Chem. A 2017, 5, 17933–17942. 10.1039/C6TA10022H. DOI
Rahimi E.; Mohaghegh N. New Hybrid Nanocomposite of Copper Terephthalate MOF-Graphene Oxide: Synthesis, Characterization and Application as Adsorbents for Toxic Metal Ion Removal from Sungun Acid Mine Drainage. Environ. Sci. Pollut. Res. 2017, 24, 22353–22360. 10.1007/s11356-017-9823-6. PubMed DOI
Samuel M. S.; Subramaniyan V.; Bhattacharya J.; Parthiban C.; Chand S.; Singh N. D. P. A GO-CS@MOF [Zn(BDC)(DMF)] Material for the Adsorption of Chromium(VI) Ions from Aqueous Solution. Compos. B. Eng. 2018, 152, 116–125. 10.1016/j.compositesb.2018.06.034. DOI
Chowdhury T.; Zhang L.; Zhang J.; Aggarwal S. Removal of Arsenic(III) from Aqueous Solution Using Metal Organic Framework-Graphene Oxide Nanocomposite. Nanomater. 2018, 8, 1062.10.3390/nano8121062. PubMed DOI PMC
Samantaray P. K.; Madras G.; Bose S. Water Remediation Aided by a Graphene-Oxide-Anchored Metal Organic Framework through Pore- and Charge-Based Sieving of Ions. ACS Sustain. Chem. Eng. 2019, 7, 1580–1590. 10.1021/acssuschemeng.8b05354. DOI
Samantaray P. K.; Baloda S.; Madras G.; Bose S. Nanodelivery in Scrolls-Based Nanocarriers: Efficient Constructs for Sustainable Scavenging of Heavy Metal Ions and Inactivate Bacteria. ACS Sustain. Chem. Eng. 2019, 7, 18775–18784. 10.1021/acssuschemeng.9b02916. DOI
Zuo K.; Huang X.; Liu X.; Gil Garcia E. M.; Kim J.; Jain A.; Chen L.; Liang P.; Zepeda A.; Verduzco R.; Lou J.; Li Q. A Hybrid Metal-Organic Framework-Reduced Graphene Oxide Nanomaterial for Selective Removal of Chromate from Water in an Electrochemical Process. Environ. Sci. Technol. 2020, 54, 13322–13332. 10.1021/acs.est.0c04703. PubMed DOI
Wei N.; Zheng X.; Li Q.; Gong C.; Ou H.; Li Z. Construction of Lanthanum Modified MOFs Graphene Oxide Composite Membrane for High Selective Phosphorus Recovery and Water Purification. J. Colloid Interface Sci. 2020, 565, 337–344. 10.1016/j.jcis.2020.01.031. PubMed DOI
Wang Z.; Zhao D.; Wu C.; Chen S.; Wang Y.; Chen C. Magnetic Metal Organic Frameworks/Graphene Oxide Adsorbent For The Removal Of U(VI) From Aqueous Solution. Appl. Radiat. Isot. 2020, 162, 109160.10.1016/j.apradiso.2020.109160. PubMed DOI
Jabbari V.; Veleta J. M.; Zarei-Chaleshtori M.; Gardea-Torresdey J.; Villagrán D. Green Synthesis of Magnetic MOF@GO and MOF@CNT Hybrid Nanocomposites with High Adsorption Capacity Towards Organic Pollutants. Chem. Eng. J. 2016, 304, 774–783. 10.1016/j.cej.2016.06.034. DOI
Vu T. A.; Le G. H.; Vu H. T.; Nguyen K. T.; Quan T. T. T.; Nguyen Q. K.; Tran H. T. K.; Dang P. T.; Vu L. D.; Lee G. D. Highly Photocatalytic Activity of Novel Fe-MIL-88B/GO Nanocomposite in the Degradation of Reactive Dye from Aqueous Solution. Mater. Res. Express 2017, 4, 035038.10.1088/2053-1591/aa6079. DOI
Wu Z.; Yuan X.; Zhong H.; Wang H.; Jiang L.; Zeng G.; Wang H.; Liu Z.; Li Y. Highly Efficient Adsorption of Congo Red in Single and Binary Water with Cationic Dyes by Reduced Graphene Oxide Decorated NH2-MIL-68(Al). J. Mol. Liq. 2017, 247, 215–229. 10.1016/j.molliq.2017.09.112. DOI
Ma J.; Guo X.; Ying Y.; Liu D.; Zhong C. Composite Ultrafiltration Membrane Tailored by MOF@GO with Highly Improved Water Purification Performance. Chem. Eng. J. 2017, 313, 890–898. 10.1016/j.cej.2016.10.127. DOI
Abdi J.; Vossoughi M.; Mahmoodi N. M.; Alemzadeh I. Synthesis of Metal-Organic Framework Hybrid Nanocomposites Based on GO and CNT with High Adsorption Capacity for Dye Removal. Chem. Eng. J. 2017, 326, 1145–1158. 10.1016/j.cej.2017.06.054. DOI
Zhao S.; Chen D.; Wei F.; Chen N.; Liang Z.; Luo Y. Removal of Congo Red Dye from Aqueous Solution with Nickel-Based Metal-Organic Framework/Graphene Oxide Composites Prepared by Ultrasonic Wave-Assisted Ball Milling. Ultrason. Sonochemistry 2017, 39, 845–852. 10.1016/j.ultsonch.2017.06.013. PubMed DOI
Tanhaei M.; Mahjoub A. R.; Safarifard V. Sonochemical Synthesis of Amide-Functionalized Metal-Organic Framework/Graphene Oxide Nanocomposite for the Adsorption of Methylene Blue from Aqueous Solution. Ultrason. Sonochemistry 2018, 41, 189–195. 10.1016/j.ultsonch.2017.09.030. PubMed DOI
Zhao S.; Chen D.; Wei F.; Chen N.; Liang Z.; Luo Y. Synthesis of Graphene Oxide/Metal-Organic Frameworks Hybrid Materials for Enhanced Removal of Methylene Blue in Acidic and Alkaline Solutions. J. Chem. Technol. Biotechnol. 2018, 93, 698–709. 10.1002/jctb.5419. DOI
Li L.; Shi Z.; Zhu H.; Hong W.; Xie F.; Sun K. Adsorption of Azo Dyes from Aqueous Solution by the Hybrid MOFs/GO. Water Sci. Technol. 2016, 73, 1728–1737. 10.2166/wst.2016.009. PubMed DOI
Wan Y.; Wang J.; Huang F.; Xue Y.; Cai N.; Liu J.; Chen W.; Yu F. Synergistic Effect of Adsorption Coupled with Catalysis Based on Graphene-Supported MOF Hybrid Aerogel for Promoted Removal of Dyes. RSC Adv. 2018, 8, 34552–34559. 10.1039/C8RA05873C. PubMed DOI PMC
Liu Y.; Zhu M.; Chen M.; Ma L.; Yang B.; Li L.; Tu W. A Polydopamine-Modified Reduced Graphene Oxide (RGO)/MOFs Nanocomposite with Fast Rejection Capacity for Organic Dye. Chem. Eng. J. 2019, 359, 47–57. 10.1016/j.cej.2018.11.105. DOI
Mahmoodi N. M.; Oveisi M.; Asadi E. Synthesis of NENU Metal-Organic Framework-Graphene Oxide Nanocomposites and their Pollutant Removal Ability from Water Using Ultrasound. J. Clean. Prod. 2019, 211, 198–212. 10.1016/j.jclepro.2018.11.136. DOI
Dong R.; Chen D.; Li N.; Xu Q.; Li H.; He J.; Lu J. Enhancement of Organic Pollutants Bio-Decontamination from Aqueous Solution Using Newly-Designed Pseudomonas Putida-GA/MIL-100(Fe) Bio-Nanocomposites. Environ. Res. 2019, 173, 237–245. 10.1016/j.envres.2019.03.052. PubMed DOI
Luo S.; Wang J. MOF/Graphene Oxide Composite as an Efficient Adsorbent for the Removal of Organic Dyes from Aqueous Solution. Environ. Sci. Pollut. Res. 2018, 25, 5521–5528. 10.1007/s11356-017-0932-z. PubMed DOI
Chang R.; Ma S.; Guo X.; Xu J.; Zhong C.; Huang R.; Ma J. Hierarchically Assembled Graphene Oxide Composite Membrane with Self-Healing and High-Efficiency Water Purification Performance. ACS Appl. Mater. Interfaces 2019, 11, 46251–46260. 10.1021/acsami.9b18018. PubMed DOI
Chen Y.; Zhai B.; Liang Y. Enhanced Degradation Performance of Organic Dyes Removal by Semiconductor/MOF/Graphene Oxide Composites Under Visible Light Irradiation. Diam. Relat. Mater. 2019, 98, 107508.10.1016/j.diamond.2019.107508. DOI
Azhdari R.; Mousavi S. M.; Hashemi S. A.; Bahrani S.; Ramakrishna S. Decorated Graphene with Aluminum Fumarate Metal Organic Framework as a Superior Non-Toxic Agent for Efficient Removal of Congo Red Dye from Wastewater. J. Environ. Chem. Eng. 2019, 7, 103437.10.1016/j.jece.2019.103437. DOI
Ahsan M. A.; Jabbari V.; Imam M. A.; Castro E.; Kim H.; Curry M. L.; Valles-Rosales D. J.; Noveron J. C. Nanoscale Nickel Metal Organic Framework Decorated Over Graphene Oxide and Carbon Nanotubes for Water Remediation. Sci. Total Environ. 2020, 698, 134214.10.1016/j.scitotenv.2019.134214. PubMed DOI
Wei F.-h.; Ren Q.-h.; Liang Z.; Chen D. Synthesis of Graphene Oxide/Metal-Organic Frameworks Composite Materials for Removal of Congo Red from Wastewater. ChemistrySelect 2019, 4, 5755–5762. 10.1002/slct.201900363. DOI
Ventura K.; Arrieta R. A.; Marcos-Hernández M.; Jabbari V.; Powell C. D.; Turley R.; Lounsbury A. W.; Zimmerman J. B.; Gardea-Torresdey J.; Wong M. S.; Villagrán D. Superparamagnetic MOF@GO Ni and Co Based Hybrid Nanocomposites as Efficient Water Pollutant Adsorbents. Sci. Total Environ. 2020, 738, 139213.10.1016/j.scitotenv.2020.139213. PubMed DOI
Bai Y.; Zhang S.; Feng S.; Zhu M.; Ma S. The First Ternary Nd-MOF/GO/Fe3O4 Nanocomposite Exhibiting an Excellent Photocatalytic Performance for Dye Degradation. Dalton Trans. 2020, 49, 10745–10754. 10.1039/D0DT01648A. PubMed DOI
Yang G.; Zhang D.; Zhu G.; Zhou T.; Song M.; Qu L.; Xiong K.; Li H. A Sm-MOF/GO Nanocomposite Membrane for Efficient Organic Dye Removal From Wastewater. RSC Adv. 2020, 10, 8540–8547. 10.1039/D0RA01110J. PubMed DOI PMC
Eltaweil A. S.; Abd El-Monaem E. M.; El-Subruiti G. M.; Abd El-Latif M. M.; Omer A. M. Fabrication of UiO-66/MIL-101(Fe) Binary MOF/Carboxylated-GO Composite for Adsorptive Removal of Methylene Blue Dye from Aqueous Solutions. RSC Adv. 2020, 10, 19008–19019. 10.1039/D0RA02424D. PubMed DOI PMC
Sun Y.; Chen M.; Liu H.; Zhu Y.; Wang D.; Yan M. Adsorptive Removal of Dye and Antibiotic from Water with Functionalized Zirconium-Based Metal Organic Framework and Graphene Oxide Composite Nanomaterial UiO-66-(OH)2/GO. Appl. Surf. Sci. 2020, 525, 146614.10.1016/j.apsusc.2020.146614. DOI
Kumar G.; Masram D. T. Sustainable Synthesis of MOF-5@GO Nanocomposites for Efficient Removal of Rhodamine B from Water. ACS Omega 2021, 6, 9587–9599. 10.1021/acsomega.1c00143. PubMed DOI PMC
Vo T. K.; Trinh T. P.; Nguyen V. C.; Kim J. Facile Synthesis of Graphite Oxide/MIL-101(Cr) Hybrid Composites for Enhanced Adsorption Performance Towards Industrial Toxic Dyes. J. Ind. Eng. Chem. 2021, 95, 224–234. 10.1016/j.jiec.2020.12.023. DOI
Wu Z.; Yuan X.; Zhong H.; Wang H.; Zeng G.; Chen X.; Wang H.; zhang L.; Shao J. Enhanced Adsorptive Removal of P-Nitrophenol from Water by Aluminum Metal-Organic Framework/Reduced Graphene Oxide Composite. Sci. Rep. 2016, 6, 25638.10.1038/srep25638. PubMed DOI PMC
Yang Q.; Wang J.; Zhang W.; Liu F.; Yue X.; Liu Y.; Yang M.; Li Z.; Wang J. Interface Engineering of Metal Organic Framework on Graphene Oxide with Enhanced Adsorption Capacity for Organophosphorus Pesticide. Chem. Eng. J. 2017, 313, 19–26. 10.1016/j.cej.2016.12.041. DOI
Liu G.; Li L.; Xu D.; Huang X.; Xu X.; Zheng S.; Zhang Y.; Lin H. Metal-Organic Framework Preparation Using Magnetic Graphene Oxide-Β-Cyclodextrin for Neonicotinoid Pesticide Adsorption and Removal. Carbohydr. Polym. 2017, 175, 584–591. 10.1016/j.carbpol.2017.06.074. PubMed DOI
Bayazit Ş. S.; Yildiz M.; Aşçi Y. S.; Şahin M.; Bener M.; Eǧlence S.; Abdel Salam M. Rapid Adsorptive Removal of Naphthalene from Water Using Graphene Nanoplatelet/MIL-101 (Cr) Nanocomposite. J. Alloys. Compd. 2017, 701, 740–749. 10.1016/j.jallcom.2017.01.111. DOI
Zheng Y.; Chu F.; Zhang B.; Yan J.; Chen Y. Ultrahigh Adsorption Capacities of Carbon Tetrachloride on MIL-101 and MIL-101/Graphene Oxide Composites. Microporous Mesoporous Mater. 2018, 263, 71–76. 10.1016/j.micromeso.2017.12.007. DOI
Karimian N.; Fakhri H.; Amidi S.; Hajian A.; Arduini F.; Bagheri H. A Novel Sensing Layer Based on Metal-Organic Framework UiO-66 Modified with TiO2-Graphene Oxide: Application to Rapid, Sensitive and Simultaneous Determination of Paraoxon and Chlorpyrifos. New J. Chem. 2019, 43, 2600–2609. 10.1039/C8NJ06208K. DOI
Abdelhameed R. M.; el-deib H. R.; El-Dars F. M. S. E.; Ahmed H. B.; Emam H. E. Applicable Strategy for Removing Liquid Fuel Nitrogenated Contaminants Using MIL-53-NH2@Natural Fabric Composites. Ind. Eng. Chem. Res. 2018, 57, 15054–15065. 10.1021/acs.iecr.8b03936. DOI
Sarker M.; Song J. Y.; Jhung S. H. Adsorptive Removal of Anti-Inflammatory Drugs from Water Using Graphene Oxide/Metal-Organic Framework Composites. Chem. Eng. J. 2018, 335, 74–81. 10.1016/j.cej.2017.10.138. DOI
Ma X.; Zhou X.; Yu A.; Zhao W.; Zhang W.; Zhang S.; Wei L.; Cook D. J.; Roy A. Functionalized Metal-Organic Framework Nanocomposites for Dispersive Solid Phase Extraction and Enantioselective Capture of Chiral Drug Intermediates. J. Chromatogr. A 2018, 1537, 1–9. 10.1016/j.chroma.2017.12.067. PubMed DOI
Wang X.; Ma X.; Huang P.; Wang J.; Du T.; Du X.; Lu X. Magnetic Cu-MOFs Embedded Within Graphene Oxide Nanocomposites for Enhanced Preconcentration of Benzenoid-Containing Insecticides. Talanta 2018, 181, 112–117. 10.1016/j.talanta.2018.01.004. PubMed DOI
Dai Y.; Li M.; Liu F.; Xue M.; Wang Y.; Zhao C. Graphene Oxide Wrapped Copper-Benzene-1,3,5-Tricarboxylate Metal Organic Framework as Efficient Absorbent for Gaseous Toluene Under Ambient Conditions. Environ. Sci. Pollut. Res. 2019, 26, 2477–2491. 10.1007/s11356-018-3657-8. PubMed DOI
Jia X.; Li S.; Wang Y.; Wang T.; Hou X. Adsorption Behavior and Mechanism of Sulfonamide Antibiotics in Aqueous Solution on a Novel MIL-101(Cr)@GO Composite. J. Chem. Eng. Data 2019, 64, 1265–1274. 10.1021/acs.jced.8b01152. DOI
Şahin S.; Abdelillah Ali Elhussein E.; Abdel Salam M.; Bayazit Ş. S. Recovery of Polyphenols from Water Using Zr-Based Metal-Organic Frameworks and their Nanocomposites With Graphene Nanoplatelets. J. Ind. Eng. Chem. 2019, 78, 164–171. 10.1016/j.jiec.2019.06.020. DOI
Ahsan M. A.; Jabbari V.; Islam M. T.; Turley R. S.; Dominguez N.; Kim H.; Castro E.; Hernandez-Viezcas J. A.; Curry M. L.; Lopez J.; Gardea-Torresdey J. L.; Noveron J. C. Sustainable Synthesis and Remarkable Adsorption Capacity of MOF/Graphene Oxide and MOF/CNT Based Hybrid Nanocomposites for the Removal of Bisphenol a from Water. Sci. Total Environ. 2019, 673, 306–317. 10.1016/j.scitotenv.2019.03.219. PubMed DOI
Şahin S.; Bayazit Ş. S. Recovery of β-Carotene on Graphene Nanoplatelets UiO-66 Nanocomposites. J. Chem. Eng. Data 2020, 65, 821–827. 10.1021/acs.jced.9b01027. DOI
Wang K.; Wu J.; Zhu M.; Zheng Y.-Z.; Tao X. Highly Effective Ph-Universal Removal of Tetracycline Hydrochloride Antibiotics by Uio-66-(COOH)2/GO Metal-Organic Framework Composites. J. Solid State Chem. 2020, 284, 121200.10.1016/j.jssc.2020.121200. DOI
Khan N. A.; Najam T.; Shah S. S. A.; Hussain E.; Ali H.; Hussain S.; Shaheen A.; Ahmad K.; Ashfaq M. Development of Mn-PBA on GO Sheets for Adsorptive Removal of Ciprofloxacin from Water: Kinetics, Isothermal, Thermodynamic and Mechanistic Studies. Mater. Chem. Phys. 2020, 245, 122737.10.1016/j.matchemphys.2020.122737. DOI
Jang S.; Ka D.; Jung H.; Kim M.-K.; Jung H.; Jin Y. Zr(OH)4/GO Nanocomposite for the Degradation of Nerve Agent Soman (GD) in High-Humidity Environments. Materials 2020, 13, 2954.10.3390/ma13132954. PubMed DOI PMC
Nguyen M. B.; Hong Nhung V. T.; Thu V. T.; Ngoc Nga D. T.; Pham Truong T. N.; Giang H. T.; Hai Yen P. T.; Phong P. H.; Vu T. A.; Thu Ha V. T. An Electrochemical Sensor Based on Copper-Based Metal-Organic Framework-Reduced Graphene Oxide Composites for Determination of 2,4-Dichlorophenol in Water. RSC Adv. 2020, 10, 42212–42220. 10.1039/D0RA06700H. PubMed DOI PMC
Wang Q.; Gu C.; Fu Y.; Liu L.; Xie Y. Ultrasensitive Electrochemical Sensor for Luteolin Based on Zirconium Metal-Organic Framework UiO-66/Reduced Graphene Oxide Composite Modified Glass Carbon Electrode. Molecules 2020, 25, 4557.10.3390/molecules25194557. PubMed DOI PMC
Hagen J.Economic Importance of Catalysts. Industrial Catalysis: A Practical Approach; Wiley-VCH Verlag GmbH & Co. KGaA, 2015; pp 459–462.
Fadhel A. Z.; Pollet P.; Liotta C. L.; Eckert C. A. Combining the Benefits of Homogeneous and Heterogeneous Catalysis with Tunable Solvents and Nearcritical Water. Molecules 2010, 15, 8400–8424. 10.3390/molecules15118400. PubMed DOI PMC
Yang X.; Wu S.; Hu J.; Fu X.; Peng L.; Kan Q.; Huo Q.; Guan J. Highly Efficient N-Doped Magnetic Cobalt-Graphene Composite for Selective Oxidation of Benzyl Alcohol. Catal. Commun. 2016, 87, 90–93. 10.1016/j.catcom.2016.09.015. DOI
Liu X.; Zhao X.; Zhou M.; Cao Y.; Wu H.; Zhu J. Highly Stable and Active Palladium Nanoparticles Supported on a Mesoporous UiO66@reduced Graphene Oxide Complex for Practical Catalytic Applications. Eur. J. Inorg. Chem. 2016, 2016, 3338–3343. 10.1002/ejic.201600367. DOI
Ibrahim A. A.; Lin A.; Zhang F.; AbouZeid K. M.; El-Shall M. S. Palladium Nanoparticles Supported on a Metal-Organic Framework-Partially Reduced Graphene Oxide Hybrid for the Catalytic Hydrodeoxygenation of Vanillin as a Model for Biofuel Upgrade Reactions. ChemCatChem. 2017, 9, 469–480. 10.1002/cctc.201600956. DOI
Liu C.; Liu L.; Tian X.; Wang Y.; Li R.; Zhang Y.; Song Z.; Xu B.; Chu W.; Qi F.; Ikhlaq A. Coupling Metal-Organic Frameworks and G-C3N4 to Derive Fe@N-Doped Graphene-Like Carbon for Peroxymonosulfate Activation: Upgrading Framework Stability and Performance. Appl. Catal., B 2019, 255, 117763.10.1016/j.apcatb.2019.117763. DOI
Ye J.; Dai J.; Yang D.; Li C.; Yan Y.; Wang Y. 2D/2D Confinement Graphene-Supported Bimetallic Sulfides/G-C3N4 Composites with Abundant Sulfur Vacancies as Highly Active Catalytic Self-Cleaning Membranes for Organic Contaminants Degradation. Chem. Eng. J. 2021, 418, 129383.10.1016/j.cej.2021.129383. DOI
Xu Y.; Wang Y.; Wan J.; Ma Y. Reduced Graphene Oxide-Supported Metal Organic Framework as a Synergistic Catalyst for Enhanced Performance on Persulfate Induced Degradation of Trichlorophenol. Chemosphere 2020, 240, 124849.10.1016/j.chemosphere.2019.124849. PubMed DOI
Zhu C.; Liu F.; Ling C.; Jiang H.; Wu H.; Li A. Growth of Graphene-Supported Hollow Cobalt Sulfide Nanocrystals via MOF-Templated Ligand Exchange as Surface-Bound Radical Sinks for Highly Efficient Bisphenol A Degradation. Appl. Catal., B 2019, 242, 238–248. 10.1016/j.apcatb.2018.09.088. DOI
Tang J.; Wang J. Fe-Based Metal Organic Framework/Graphene Oxide Composite as an Efficient Catalyst for Fenton-Like Degradation of Methyl Orange. RSC Adv. 2017, 7, 50829–50837. 10.1039/C7RA10145G. DOI
Shao W.; He C.; Zhou M.; Yang C.; Gao Y.; Li S.; Ma L.; Qiu L.; Cheng C.; Zhao C. Core-Shell-Structured MOF-Derived 2D Hierarchical Nanocatalysts with Enhanced Fenton-Like Activities. J. Mater. Chem. A 2020, 8, 3168–3179. 10.1039/C9TA12099H. DOI
Bao C.; Zhou L.; Shao Y.; Wu Q.; Zhu H.; Li K. A Novel Au-Loaded Magnetic Metal Organic Framework/Graphene Multifunctional Composite: Green Synthesis and Catalytic Application. J. Ind. Eng. Chem. 2016, 38, 132–140. 10.1016/j.jiec.2016.04.014. DOI
Chen X.; Qian P.; Zhang T.; Xu Z.; Fang C.; Xu X.; Chen W.; Wu P.; Shen Y.; Li S.; Wu J.; Zheng B.; Zhang W.; Huo F. Catalyst Surfaces with Tunable Hydrophilicity and Hydrophobicity: Metal-Organic Frameworks Toward Controllable Catalytic Selectivity. Chem. Commun. 2018, 54, 3936–3939. 10.1039/C8CC00318A. PubMed DOI
Song F.-Z.; Zhu Q.-L.; Yang X.; Zhan W.-W.; Pachfule P.; Tsumori N.; Xu Q. Metal-Organic Framework Templated Porous Carbon-Metal Oxide/Reduced Graphene Oxide as Superior Support of Bimetallic Nanoparticles for Efficient Hydrogen Generation from Formic Acid. Adv. Energy Mater. 2018, 8, 1701416.10.1002/aenm.201701416. DOI
Yan J.-M.; Wang Z.-L.; Gu L.; Li S.-J.; Wang H.-L.; Zheng W.-T.; Jiang Q. AuPd-MnOx/MOF-Graphene: An Efficient Catalyst for Hydrogen Production from Formic Acid at Room Temperature. Adv. Energy Mater. 2015, 5, 1500107.10.1002/aenm.201500107. DOI
Song F.-Z.; Yang X.; Xu Q. Ultrafine Bimetallic Pt-Ni Nanoparticles Achieved by Metal-Organic Framework Templated Zirconia/Porous Carbon/Reduced Graphene Oxide: Remarkable Catalytic Activity in Dehydrogenation of Hydrous Hydrazine. Small Methods 2020, 4, 1900707.10.1002/smtd.201900707. DOI
Liang P.; Zhang C.; Duan X.; Sun H.; Liu S.; Tade M. O.; Wang S. N-Doped Graphene from Metal-Organic Frameworks for Catalytic Oxidation of p-Hydroxylbenzoic Acid: N-Functionality and Mechanism. ACS Sustain. Chem. Eng. 2017, 5, 2693–2701. 10.1021/acssuschemeng.6b03035. DOI
Qu J.; Chen D.; Li N.; Xu Q.; Li H.; He J.; Lu J. Engineering 3D Ru/Graphene Aerogel Using Metal-Organic Frameworks: Capture and Highly Efficient Catalytic CO Oxidation at Room Temperature. Small 2018, 14, 1800343.10.1002/smll.201800343. PubMed DOI
Liu Y.; Miao W.; Feng Y.; Fang X.; Li Q.; Du N.; Wang D.; Mao S. Enhanced Peroxydisulfate Oxidation via Cu(III) Species with a Cu-MOF-Derived Cu Nanoparticle and 3D Graphene Network. J. Hazard. Mater. 2021, 403, 123691.10.1016/j.jhazmat.2020.123691. PubMed DOI
Tan H.; Chen D.; Li N.; Xu Q.; Li H.; He J.; Lu J. Platinum-Supported Zirconia Nanotube Arrays Supported on Graphene Aerogels Modified with Metal-Organic Frameworks: Adsorption and Oxidation of Formaldehyde at Room Temperature. Chem. Eur. J. 2019, 25, 16718–16724. 10.1002/chem.201904426. PubMed DOI
Huang K.; Xu Y. Enhancing the Catalytic Behaviour of HKUST-1 by Graphene Oxide for Phenol Oxidation. Environ. Technol. 2021, 42, 694–704. 10.1080/09593330.2019.1643410. PubMed DOI
Ruan X.; Liu D.; Niu X.; Wang Y.; Simpson C. D.; Cheng N.; Du D.; Lin Y. 2D Graphene Oxide/Fe-MOF Nanozyme Nest with Superior Peroxidase-Like Activity and Its Application for Detection of Woodsmoke Exposure Biomarker. Anal. Chem. 2019, 91, 13847–13854. 10.1021/acs.analchem.9b03321. PubMed DOI
Insyani R.; Verma D.; Kim S. M.; Kim J. Direct One-Pot Conversion of Monosaccharides into High-Yield 2,5-Dimethylfuran Over a Multifunctional Pd/Zr-Based Metal-Organic Framework@Sulfonated Graphene Oxide Catalyst. Green Chem. 2017, 19, 2482–2490. 10.1039/C7GC00269F. DOI
Sun W.; Gao L.; Sun X.; Zheng G. A Novel Route with a Cu(Ii)-MOF-Derived Structure to Synthesize Cu/Cu2O Nps@Graphene: The Electron Transfer Leads to the Synergistic Effect of the Cu(0)-Cu(I) Phase for an Effective Catalysis of the Sonogashira Cross-Coupling Reactions. Dalton Trans. 2018, 47, 5538–5541. 10.1039/C8DT00465J. PubMed DOI
Wei Y.; Hao Z.; Zhang F.; Li H. A Functionalized Graphene Oxide and Nano-Zeolitic Imidazolate Framework Composite as a Highly Active and Reusable Catalyst for [3 + 3] Formal Cycloaddition Reactions. J. Mater. Chem. A 2015, 3, 14779–14785. 10.1039/C5TA03008K. DOI
Sun W.; Gao L.; Zheng G. A Radical Capture Mechanism for Immediate Csp2-H Bond Hydroxylation via a Heterogeneous Cu-Graphene Catalyst. Chem. Commun. 2019, 55, 8915–8918. 10.1039/C9CC02906K. PubMed DOI
Zhu Q.; Zhuang W.; Chen Y.; Wang Z.; Villacorta Hernandez B.; Wu J.; Yang P.; Liu D.; Zhu C.; Ying H.; Zhu Z. Nano-Biocatalysts of Cyt c@ZIF-8/GO Composites with High Recyclability via a de Novo Approach. ACS Appl. Mater. Interfaces 2018, 10, 16066–16076. 10.1021/acsami.8b00072. PubMed DOI
Farmakes J.; Schuster I.; Overby A.; Alhalhooly L.; Lenertz M.; Li Q.; Ugrinov A.; Choi Y.; Pan Y.; Yang Z. Enzyme Immobilization on Graphite Oxide (GO) Surface via One-Pot Synthesis of GO/Metal-Organic Framework Composites for Large-Substrate Biocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 23119–23126. 10.1021/acsami.0c04101. PubMed DOI
Wang S.; Ye B.; An C.; Wang J.; Li Q.; Guo H.; Zhang J. Exploring the Coordination Effect of GO@MOF-5 as Catalyst on Thermal Decomposition of Ammonium Perchlorate. Nanoscale Res. Lett. 2019, 14, 345.10.1186/s11671-019-3163-z. PubMed DOI PMC
Insyani R.; Verma D.; Cahyadi H. S.; Kim S. M.; Kim S. K.; Karanwal N.; Kim J. One-Pot Di- and Polysaccharides Conversion to Highly Selective 2,5-Dimethylfuran Over Cu-Pd/Amino-Functionalized Zr-Based Metal-Organic Framework (UiO-66(NH2))@SGO Tandem Catalyst. Appl. Catal., B 2019, 243, 337–354. 10.1016/j.apcatb.2018.10.036. DOI
Tang H.; Zhou M.-L.; Li X.; Zhang Y.-Y.; Han Z.-B. A Catalyst of Pd@MIL-101@SGO Catalyzes Epoxidation and Hydroxymethoxylation Tandem Reactions of Styrene. ChemistrySelect 2020, 5, 3724–3729. 10.1002/slct.202000111. DOI
Wu Y.; Wang H.; Guo S.; Zeng Y.; Ding M. Mofs-Induced High-Amphiphilicity in Hierarchical 3D Reduced Graphene Oxide-Based Hydrogel. Appl. Surf. Sci. 2021, 540, 148303.10.1016/j.apsusc.2020.148303. DOI
Masa J.; Andronescu C.; Schuhmann W. Electrocatalysis as the Nexus for Sustainable Renewable Energy: The Gordian Knot of Activity, Stability, and Selectivity. Angew. Chem., Int. Ed. 2020, 59, 15298–15312. 10.1002/anie.202007672. PubMed DOI PMC
Aiyappa H. B.; Masa J.; Andronescu C.; Muhler M.; Fischer R. A.; Schuhmann W. MOFs for Electrocatalysis: From Serendipity to Design Strategies. Small Methods 2019, 3, 1800415.10.1002/smtd.201800415. DOI
Duan J.; Chen S.; Zhao C. Ultrathin Metal-Organic Framework Array for Efficient Electrocatalytic Water Splitting. Nat. Commun. 2017, 8, 15341.10.1038/ncomms15341. PubMed DOI PMC
Zhu D.; Qiao M.; Liu J.; Tao T.; Guo C. Engineering Pristine 2D Metal-Organic Framework Nanosheets for Electrocatalysis. J. Mater. Chem. A 2020, 8, 8143–8170. 10.1039/D0TA03138K. DOI
Jayaramulu K.; Masa J.; Morales D. M.; Tomanec O.; Ranc V.; Petr M.; Wilde P.; Chen Y.-T.; Zboril R.; Schuhmann W.; Fischer R. A. Ultrathin 2D Cobalt Zeolite-Imidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution. Adv. Sci. 2018, 5, 1801029.10.1002/advs.201801029. PubMed DOI PMC
Pang W.; Shao B.; Tan X.-Q.; Tang C.; Zhang Z.; Huang J. Exfoliation of Metal-Organic Frameworks into Efficient Single-Layer Metal-Organic Nanosheet Electrocatalysts by the Synergistic Action of Host-Guest Interactions and Sonication. Nanoscale 2020, 12, 3623–3629. 10.1039/C9NR09742B. PubMed DOI
Hod I.; Deria P.; Bury W.; Mondloch J. E.; Kung C.-W.; So M.; Sampson M. D.; Peters A. W.; Kubiak C. P.; Farha O. K.; Hupp J. T. A Porous Proton-Relaying Metal-Organic Framework Material that Accelerates Electrochemical Hydrogen Evolution. Nature Commun. 2015, 6, 8304.10.1038/ncomms9304. PubMed DOI PMC
Yang Z.; Yao Z.; Li G.; Fang G.; Nie H.; Liu Z.; Zhou X.; Chen X. a.; Huang S. Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction. ACS Nano 2012, 6, 205–211. 10.1021/nn203393d. PubMed DOI
Li Z.; Ge X.; Li C.; Dong S.; Tang R.; Wang C.; Zhang Z.; Yin L. Rational Microstructure Design on Metal-Organic Framework Composites for Better Electrochemical Performances: Design Principle, Synthetic Strategy, and Promotion Mechanism. Small Methods 2020, 4, 1900756.10.1002/smtd.201900756. DOI
Acar C.; Dincer I. Comparative Assessment of Hydrogen Production Methods from Renewable and Non-Renewable Sources. Int. J. Hydrog. Energy 2014, 39, 1–12. 10.1016/j.ijhydene.2013.10.060. DOI
Mazloomi K.; Gomes C. Hydrogen as an Energy Carrier: Prospects and Challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033. 10.1016/j.rser.2012.02.028. DOI
Bičáková O.; Straka P. Production of Hydrogen from Renewable Resources and its Effectiveness. Int. J. Hydrog. Energy 2012, 37, 11563–11578. 10.1016/j.ijhydene.2012.05.047. DOI
Fan L.; Liu P. F.; Yan X.; Gu L.; Yang Z. Z.; Yang H. G.; Qiu S.; Yao X. Atomically Isolated Nickel Species Anchored on Graphitized Carbon for Efficient Hydrogen Evolution Electrocatalysis. Nat. Commun. 2016, 7, 10667.10.1038/ncomms10667. PubMed DOI PMC
Zeradjanin A. R.; Grote J.-P.; Polymeros G.; Mayrhofer K. J. J. A Critical Review on Hydrogen Evolution Electrocatalysis: Re-Exploring the Volcano-Relationship. Electroanalysis 2016, 28, 2256–2269. 10.1002/elan.201600270. DOI
Liu J.; Hou S.; Li W.; Bandarenka A. S.; Fischer R. A. Recent Approaches to Design Electrocatalysts Based on Metal-Organic Frameworks and Their Derivatives. Chem. Asian J. 2019, 14, 3474–3501. 10.1002/asia.201900748. PubMed DOI
Makhafola M. D.; Hato M. J.; Ramohlola K. E.; Ramaripa P. S.; Maponya T. C.; Monama G. R.; Molapo K. M.; Iwuoha E. I.; Katata-Seru L. M.; Makgopa K.. Carbon Related Materials; Springer, 2021; pp 23–54.
Rui K.; Zhao G.; Lao M.; Cui P.; Zheng X.; Zheng X.; Zhu J.; Huang W.; Dou S. X.; Sun W. Direct Hybridization of Noble Metal Nanostructures on 2D Metal-Organic Framework Nanosheets To Catalyze Hydrogen Evolution. Nano Lett. 2019, 19, 8447–8453. 10.1021/acs.nanolett.9b02729. PubMed DOI
Xu S.; Yang F.; Han S.; Zhang S.; Wang Q.; Jiang C. MOF-Derived Pdnico Alloys Encapsulated in Nitrogen-Doped Graphene for Robust Hydrogen Evolution Reactions. CrystEngComm 2020, 22, 6063–6070. 10.1039/D0CE01030H. DOI
Monama G. R.; Mdluli S. B.; Mashao G.; Makhafola M. D.; Ramohlola K. E.; Molapo K. M.; Hato M. J.; Makgopa K.; Iwuoha E. I.; Modibane K. D. Palladium Deposition on Copper(II) Phthalocyanine/Metal Organic Framework Composite and Electrocatalytic Activity of the Modified Electrode Towards the Hydrogen Evolution Reaction. Renew. Energy 2018, 119, 62–72. 10.1016/j.renene.2017.11.084. DOI
Xu S.; Li Z.; Chu K.; Yao G.; Xu Y.; Niu P.; Zheng F. Niru Nanoparticles Encapsulated in a Nitrogen-Doped Carbon Matrix as a Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Dalton Trans. 2020, 49, 13647–13654. 10.1039/D0DT02961K. PubMed DOI
Makhafola M. D.; Ramohlola K. E.; Maponya T. C.; Somo T. R.; Iwuoha E. I.; Makgopa K.; Hato M. J.; Molapo K. M.; Modibane K. D. Electrocatalytic Activity of Graphene Oxide/Metal Organic Framework Hybrid Composite on Hydrogen Evolution Reaction Properties. Int. J. Electrochem. Sci. 2020, 15, 4884–4899. 10.20964/2020.06.10. DOI
Xu X.; Liu X.; Zhong W.; Zhang L.; Liu G.; Du Y. Nanostructured Nico2s4@NiCo2O4-Reduced Graphene Oxide as an Efficient Hydrogen Evolution Electrocatalyst in Alkaline Electrolyte. J. Colloid Interface Sci. 2021, 601, 570–580. 10.1016/j.jcis.2021.05.148. PubMed DOI
Schlichte K.; Kratzke T.; Kaskel S. Improved Synthesis, Thermal Stability and Catalytic Properties of the Metal-Organic Framework Compound Cu3(BTC)2. Microporous Mesoporous Mater. 2004, 73, 81–88. 10.1016/j.micromeso.2003.12.027. DOI
Zhu C.; Wang K.; Lei T.; Xiao T.; Liu L. Facile Synthesis of MoS2/rGO-MOF Hybrid Material as Highly Efficient Catalyst for Hydrogen Evolution. Mater. Lett. 2018, 216, 243–247. 10.1016/j.matlet.2018.01.123. DOI
Li J.-S.; Li J.-Y.; Wang X.-R.; Zhang S.; Sha J.-Q.; Liu G.-D. Reduced Graphene Oxide-Supported MoP@P-Doped Porous Carbon Nano-Octahedrons as High-Performance Electrocatalysts for Hydrogen Evolution. ACS Sustain. Chem. Eng. 2018, 6, 10252–10259. 10.1021/acssuschemeng.8b01575. DOI
Hughes J. P.; Clipsham J.; Chavushoglu H.; Rowley-Neale S. J.; Banks C. E. Polymer Electrolyte Electrolysis: A Review of the Activity and Stability of Non-Precious Metal Hydrogen Evolution Reaction and Oxygen Evolution Reaction Catalysts. Renew. Sustain. Energy Rev. 2021, 139, 110709.10.1016/j.rser.2021.110709. DOI
Song X. Z.; Zhang N.; Wang X. F.; Tan Z. Recent Advances of Metal-Organic Frameworks and their Composites Toward Oxygen Evolution Electrocatalysis. Mater. Today Energy 2021, 19, 100597.10.1016/j.mtener.2020.100597. DOI
Xie A.; Du J.; Tao F.; Tao Y.; Xiong Z.; Luo S.; Li X.; Yao C. Three-Dimensional Graphene Surface-Mounted Nickel-Based Metal Organic Framework for Oxygen Evolution Reaction. Electrochim. Acta 2019, 305, 338–348. 10.1016/j.electacta.2019.03.073. DOI
Yaqoob L.; Noor T.; Iqbal N.; Nasir H.; Sohail M.; Zaman N.; Usman M. Nanocomposites of Cobalt Benzene Tricarboxylic Acid MOF With rGO: An Efficient and Robust Electrocatalyst for Oxygen Evolution Reaction (OER). Renew. Energy 2020, 156, 1040–1054. 10.1016/j.renene.2020.04.131. DOI
Huang M.; Liu W.; Wang L.; Liu J.; Chen G.; You W.; Zhang J.; Yuan L.; Zhang X.; Che R. Self-Transforming Ultrathin Α-Co(OH)2 Nanosheet Arrays from Metal-Organic Framework Modified Graphene Oxide with Sandwichlike Structure for Efficient Electrocatalytic Oxygen Evolution. Nano Res. 2020, 13, 810–817. 10.1007/s12274-020-2701-4. DOI
Fang X.; Jiao L.; Zhang R.; Jiang H.-L. Porphyrinic Metal-Organic Framework-Templated Fe-Ni-P/Reduced Graphene Oxide for Efficient Electrocatalytic Oxygen Evolution. ACS Appl. Mater. Interfaces 2017, 9, 23852–23858. 10.1021/acsami.7b07142. PubMed DOI
Zhao J.; Zhang J.-J.; Li Z.-Y.; Bu X.-H. Recent Progress on NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction. Small 2020, 16, 2003916.10.1002/smll.202003916. PubMed DOI
Mohammed-Ibrahim J. A Review on Nife-Based Electrocatalysts for Efficient Alkaline Oxygen Evolution Reaction. J. Power Sources 2020, 448, 227375.10.1016/j.jpowsour.2019.227375. DOI
Bu F.; Chen W.; Gu J.; Agboola P. O.; Al-Khalli N. F.; Shakir I.; Xu Y. Microwave-Assisted CVD-Like Synthesis of Dispersed Monolayer/Few-Layer N-Doped Graphene Encapsulated Metal Nanocrystals for Efficient Electrocatalytic Oxygen Evolution. Chem. Sci. 2018, 9, 7009–7016. 10.1039/C8SC02444H. PubMed DOI PMC
Chen C.; Wang J.; Li P.; Tian Q.; Xiao Z.; Li S.; Cai N.; Xue Y.; Chen W.; Yu F. Bimetal-organic Framework Encapsulated in Graphene Aerogel-grafted Ni Foam: An Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemCatChem. 2021, 13, 346–352. 10.1002/cctc.202001326. DOI
Khiarak B. N.; Hasanzadeh M.; Mojaddami M.; Shahriyar Far H.; Simchi A. In Situ Synthesis of Quasi-Needle-Like Bimetallic Organic Frameworks on Highly Porous Graphene Scaffolds for Efficient Electrocatalytic Water Oxidation. Chem. Commun. 2020, 56, 3135–3138. 10.1039/C9CC09908E. PubMed DOI
Liu Y.; Wang C.; Ju S.; Li M.; Yuan A.; Zhu G. Feco-Based Hybrid MOF Derived Active Species for Effective Oxygen Evolution. Prog. Nat. Sci. 2020, 30, 185–191. 10.1016/j.pnsc.2020.02.006. DOI
Meng J.; Zhou Y.; Chi H.; Li K.; Wan J.; Hu Z. Bimetallic Porphyrin MOF Anchored onto rGO Nanosheets as a Highly Efficient 2D Electrocatalyst for Oxygen Evolution Reaction in Alkaline Conditions. ChemistrySelect 2019, 4, 8661–8670. 10.1002/slct.201901713. DOI
Chen Y.; Huang N.; Liang Y. Preparation of CeO2/Cu-MOF/GO Composite for Efficient Electrocatalytic Oxygen Evolution Reaction. Ionics 2021, 27, 4347–4360. 10.1007/s11581-021-04173-z. DOI
Wang C.-P.; Feng Y.; Sun H.; Wang Y.; Yin J.; Yao Z.; Bu X.-H.; Zhu J. Self-Optimized Metal-Organic Framework Electrocatalysts with Structural Stability and High Current Tolerance for Water Oxidation. ACS Catal. 2021, 11, 7132–7143. 10.1021/acscatal.1c01447. DOI
Cheng F.; Chen J. Metal-Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192. 10.1039/c1cs15228a. PubMed DOI
Hu C.; Liu D.; Xiao Y.; Dai L. Functionalization of Graphene Materials by Heteroatom-Doping for Energy Conversion and Storage. Prog. Nat. Sci. 2018, 28, 121–132. 10.1016/j.pnsc.2018.02.001. DOI
Lu X. F.; Xia B. Y.; Zang S.-Q.; Lou X. W. Metal-Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2020, 59, 4634–4650. 10.1002/anie.201910309. PubMed DOI
Kazakova M. A.; Koul A.; Golubtsov G. V.; Selyutin A. G.; Ishchenko A. V.; Kvon R. I.; Kolesov B. A.; Schuhmann W.; Morales D. M. Nitrogen and Oxygen Functionalization of Multi-Walled Carbon Nanotubes for Tuning the Bifunctional Oxygen Reduction/Oxygen Evolution Performance of Supported FeCo Oxide Nanoparticles. ChemElectroChem. 2021, 8, 2803–2816. 10.1002/celc.202100556. DOI
Bezerra C. W. B.; Zhang L.; Lee K.; Liu H.; Marques A. L. B.; Marques E. P.; Wang H.; Zhang J. A Review of Fe-N/C and Co-N/C Catalysts for the Oxygen Reduction Reaction. Electrochim. Acta 2008, 53, 4937–4951. 10.1016/j.electacta.2008.02.012. DOI
Zhou R.; Jaroniec M.; Qiao S.-Z. Nitrogen-Doped Carbon Electrocatalysts Decorated with Transition Metals for the Oxygen Reduction Reaction. ChemCatChem. 2015, 7, 3808–3817. 10.1002/cctc.201500411. DOI
Lv X.; Xue X.; Gan X.; Lv C.; Sun X.; Wang Y.; Li L.; Wang H. Bottom-Up Fabrication of a Sandwich-Like Carbon/Graphene Heterostructure with Built-In FeNC Dopants as Non-Noble Electrocatalyst for Oxygen Reduction Reaction. Chem. Asian J. 2020, 15, 432–439. 10.1002/asia.201901616. PubMed DOI
Sohrabi S.; Dehghanpour S.; Ghalkhani M. Three-Dimensional Metal-Organic Framework Graphene Nanocomposite as a Highly Efficient and Stable Electrocatalyst for the Oxygen Reduction Reaction in Acidic Media. ChemCatChem. 2016, 8, 2356–2366. 10.1002/cctc.201600298. DOI
Zhang Y.; Wang P.; Yang J.; Li K.; Long X.; Li M.; Zhang K.; Qiu J. Fabrication of Core-Shell Nanohybrid Derived from Iron-Based Metal-Organic Framework Grappled on Nitrogen-Doped Graphene for Oxygen Reduction Reaction. Chem. Eng. J. 2020, 401, 126001.10.1016/j.cej.2020.126001. DOI
Wei J.; Hu Y.; Liang Y.; Kong B.; Zheng Z.; Zhang J.; Jiang S. P.; Zhao Y.; Wang H. Graphene Oxide/Core-Shell Structured Metal-Organic Framework Nano-Sandwiches and their Derived Cobalt/N-Doped Carbon Nanosheets for Oxygen Reduction Reactions. J. Mater. Chem. A 2017, 5, 10182–10189. 10.1039/C7TA00276A. DOI
Wu G.; Nie Y.; Zhang D.; Zhang C.; Guo J.; Zhang D.; Qi G.; Jiao W.; Yuan Z. The MOF/GO-Based Derivatives with Co@Coo Core-Shell Structure Supported on the N-Doped Graphene as Electrocatalyst for Oxygen Reduction Reaction. J. Chin. Chem. Soc. 2020, 67, 1189–1194. 10.1002/jccs.201900429. DOI
Zhao K.; Liu S.; Ye G.; Wei X.; Su Y.; Zhu W.; Zhou Z.; He Z. Ultrasmall 2 D CoxZn2-x(Benzimidazole)4 Metal-Organic Framework Nanosheets and their Derived Co Nanodots@Co,N-Codoped Graphene for Efficient Oxygen Reduction Reaction. ChemSusChem 2020, 13, 1556–1567. 10.1002/cssc.201902776. PubMed DOI
Tang B.; Wang S.; Li R.; Gou X.; Long J. Urea Treated Metal Organic Frameworks-Graphene Oxide Composites Derived N-Doped Co-Based Materials as Efficient Catalyst for Enhanced Oxygen Reduction. J. Power Sources 2019, 425, 76–86. 10.1016/j.jpowsour.2019.04.007. DOI
An L.; Jiang N.; Li B.; Hua S.; Fu Y.; Liu J.; Hao W.; Xia D.; Sun Z. A Highly Active and Durable Iron/Cobalt Alloy Catalyst Encapsulated in N-Doped Graphitic Carbon Nanotubes for Oxygen Reduction Reaction by a Nanofibrous Dicyandiamide Template. J. Mater. Chem. A 2018, 6, 5962–5970. 10.1039/C8TA01247D. DOI
Guo D.; Han S.; Ma R.; Zhou Y.; Liu Q.; Wang J.; Zhu Y. In Situ Formation of Iron-Cobalt Sulfides Embedded in N,S-Doped Mesoporous Carbon as Efficient Electrocatalysts for Oxygen Reduction Reaction. Microporous Mesoporous Mater. 2018, 270, 1–9. 10.1016/j.micromeso.2018.04.044. DOI
Elumeeva K.; Kazakova M. A.; Morales D. M.; Medina D.; Selyutin A.; Golubtsov G.; Ivanov Y.; Kuznetzov V.; Chuvilin A.; Antoni H.; Muhler M.; Schuhmann W.; Masa J. Bifunctional Oxygen Reduction/Oxygen Evolution Activity of Mixed Fe/Co Oxide Nanoparticles with Variable Fe/Co Ratios Supported on Multiwalled Carbon Nanotubes. ChemSusChem 2018, 11, 1204–1214. 10.1002/cssc.201702381. PubMed DOI
Li Q.; Xu P.; Gao W.; Ma S.; Zhang G.; Cao R.; Cho J.; Wang H.-L.; Wu G. Graphene/Graphene-Tube Nanocomposites Templated from Cage-Containing Metal-Organic Frameworks for Oxygen Reduction in Li-O2 Batteries. Adv. Mater. 2014, 26, 1378–1386. 10.1002/adma.201304218. PubMed DOI
Mousavi S. A.; Mehrpooya M. Fabrication of Copper Centered Metal Organic Framework and Nitrogen, Sulfur Dual Doped Graphene Oxide Composite as a Novel Electrocatalyst for Oxygen Reduction Reaction. Energy 2021, 214, 119053.10.1016/j.energy.2020.119053. DOI
Zhuang S.; Nunna B. B.; Lee E. S. Metal Organic Framework-Modified Nitrogen-Doped Graphene Oxygen Reduction Reaction Catalyst Synthesized by Nanoscale High-Energy Wet Ball-Milling Structural and Electrochemical Characterization. MRS Commun. 2018, 8, 40–48. 10.1557/mrc.2017.130. DOI
Singh H.; Zhuang S.; Nunna B. B.; Lee E. S. Thermal Stability and Potential Cycling Durability of Nitrogen-Doped Graphene Modified by Metal-Organic Framework for Oxygen Reduction Reactions. Catalysts 2018, 8, 607.10.3390/catal8120607. DOI
Xia W.; Tang J.; Li J.; Zhang S.; Wu K. C. W.; He J.; Yamauchi Y. Defect-Rich Graphene Nanomesh Produced by Thermal Exfoliation of Metal-Organic Frameworks for the Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2019, 58, 13354–13359. 10.1002/anie.201906870. PubMed DOI
Ania C. O.; Seredych M.; Rodriguez-Castellon E.; Bandosz T. J. New Copper/GO Based Material as an Efficient Oxygen Reduction Catalyst in an Alkaline Medium: The Role of Unique Cu/rGO Architecture. Appl. Catal., B 2015, 163, 424–435. 10.1016/j.apcatb.2014.08.022. DOI
Masa J.; Xia W.; Muhler M.; Schuhmann W. On the Role of Metals in Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction. Angew. Chem., Int. Ed. 2015, 54, 10102–10120. 10.1002/anie.201500569. PubMed DOI
Yan Y.; Xia B. Y.; Zhao B.; Wang X. A Review on Noble-Metal-Free Bifunctional Heterogeneous Catalysts for Overall Electrochemical Water Splitting. J. Mater. Chem. A 2016, 4, 17587–17603. 10.1039/C6TA08075H. DOI
Kim J.; Park J.; Lee J.; Lim W.-G.; Jo C.; Lee J. Biomass-Derived P, N Self-Doped Hard Carbon as Bifunctional Oxygen Electrocatalyst and Anode Material for Seawater Batteries. Adv. Funct. Mater. 2021, 31, 2010882.10.1002/adfm.202010882. DOI
Wang H.-F.; Xu Q. Materials Design for Rechargeable Metal-Air Batteries. Matter 2019, 1, 565–595. 10.1016/j.matt.2019.05.008. DOI
Morales D. M.; Kazakova M. A.; Purcel M.; Masa J.; Schuhmann W. The Sum is More than its Parts: Stability of MnFe Oxide Nanoparticles Supported on Oxygen-Functionalized Multi-Walled Carbon Nanotubes at Alternating Oxygen Reduction Reaction and Oxygen Evolution Reaction Conditions. J. Solid State Electrochem. 2020, 24, 2901–2906. 10.1007/s10008-020-04667-2. DOI
Qiao H.; Yang Y.; Dai X.; Zhao H.; Yong J.; Yu L.; Luan X.; Cui M.; Zhang X.; Huang X. Amorphous (Fe)Ni-MOF-Derived Hollow (Bi)Metal/Oxide@N-Graphene Polyhedron as Effectively Bifunctional Catalysts in Overall Alkaline Water Splitting. Electrochim. Acta 2019, 318, 430–439. 10.1016/j.electacta.2019.06.084. DOI
Bu F.; Chen W.; Aly Aboud M. F.; Shakir I.; Gu J.; Xu Y. Microwave-Assisted Ultrafast Synthesis of Adjustable Bimetal Phosphide/Graphene Heterostructures from Mofs for Efficient Electrochemical Water Splitting. J. Mater. Chem. A 2019, 7, 14526–14535. 10.1039/C9TA03146D. DOI
Pumera M.; Iwai H. Metallic Impurities within Residual Catalyst Metallic Nanoparticles Are in Some Cases Responsible for “Electrocatalytic” Effect of Carbon Nanotubes. Chem. Asian J. 2009, 4, 554–560. 10.1002/asia.200800420. PubMed DOI
Morales D. M.; Masa J.; Andronescu C.; Schuhmann W. Promotional Effect of Fe Impurities in Graphene Precursors on the Activity of MnOX/Graphene Electrocatalysts for the Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem. 2017, 4, 2835–2841. 10.1002/celc.201700496. DOI
Parkash A. Metal-Organic Framework Derived Ultralow-Loading Platinum-Copper Catalyst: A Highly Active and Durable Bifunctional Electrocatalyst for Oxygen-Reduction and Evolution Reactions. Nanotechnology 2021, 32, 325703.10.1088/1361-6528/abfb9b. PubMed DOI
Ma L.; Chen S.; Pei Z.; Huang Y.; Liang G.; Mo F.; Yang Q.; Su J.; Gao Y.; Zapien J. A.; Zhi C. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery. ACS Nano 2018, 12, 1949–1958. 10.1021/acsnano.7b09064. PubMed DOI
Xu Y.; Deng P.; Chen G.; Chen J.; Yan Y.; Qi K.; Liu H.; Xia B. Y. 2D Nitrogen-Doped Carbon Nanotubes/Graphene Hybrid as Bifunctional Oxygen Electrocatalyst for Long-Life Rechargeable Zn-Air Batteries. Adv. Funct. Mater. 2020, 30, 1906081.10.1002/adfm.201906081. DOI
Huang X.; Wang J.; Bao H.; Zhang X.; Huang Y. 3D Nitrogen, Sulfur-Codoped Carbon Nanomaterial-Supported Cobalt Oxides with Polyhedron-Like Particles Grafted onto Graphene Layers as Highly Active Bicatalysts for Oxygen-Evolving Reactions. ACS Appl. Mater. Interfaces 2018, 10, 7180–7190. 10.1021/acsami.8b00504. PubMed DOI
Zhang H.; Wang X.; Yang Z.; Yan S.; Zhang C.; Liu S. Space-Confined Synthesis of Lasagna-like N-Doped Graphene-Wrapped Copper-Cobalt Sulfides as Efficient and Durable Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. ACS Sustain. Chem. Eng. 2020, 8, 1004–1014. 10.1021/acssuschemeng.9b05710. DOI
Liu T.; Yang F.; Cheng G.; Luo W. Reduced Graphene Oxide-Wrapped Co9-xFexS8/Co,Fe-N-C Composite as Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Small 2018, 14, 1703748.10.1002/smll.201703748. PubMed DOI
Fang H.; Huang T.; Sun Y.; Kang B.; Liang D.; Yao S.; Yu J.; Dinesh M. M.; Wu S.; Lee J. Y.; Mao S. Metal-Organic Framework-Derived Core-Shell-Structured Nitrogen-Doped Cocx/FeCo@C Hybrid Supported by Reduced Graphene Oxide Sheets as High Performance Bifunctional Electrocatalysts for ORR and OER. J. Catal. 2019, 371, 185–195. 10.1016/j.jcat.2019.02.005. DOI
Li M.; Bao C.; Liu Y.; Meng J.; Liu X.; Cai Y.; Wuu D.; Zong Y.; Loh T.-P.; Wang Z. Reduced Graphene Oxide-Supported Cobalt Oxide Decorated N-Doped Graphitic Carbon for Efficient Bifunctional Oxygen Electrocatalysis. RSC Adv. 2019, 9, 16534–16540. 10.1039/C9RA02389E. PubMed DOI PMC
Yang W.; Zhang Y.; Liu X.; Chen L.; Jia J. In Situ Formed Fe-N Doped Metal Organic Framework@Carbon Nanotubes/Graphene Hybrids for a Rechargeable Zn-Air Battery. Chem. Commun. 2017, 53, 12934–12937. 10.1039/C7CC08008E. PubMed DOI
Liu S.; Wang M.; Sun X.; Xu N.; Liu J.; Wang Y.; Qian T.; Yan C. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries. Adv. Mater. 2018, 30, 1704898.10.1002/adma.201704898. PubMed DOI
Zheng X.; Cao Y.; Liu D.; Cai M.; Ding J.; Liu X.; Wang J.; Hu W.; Zhong C. Bimetallic Metal-Organic-Framework/Reduced Graphene Oxide Composites as Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries. ACS Appl. Mater. Interfaces 2019, 11, 15662–15669. 10.1021/acsami.9b02859. PubMed DOI
Hao Y.; Xu Y.; Liu J.; Sun X. Nickel-Cobalt Oxides Supported on Co/N Decorated Graphene as an Excellent Bifunctional Oxygen Catalyst. J. Mater. Chem. A 2017, 5, 5594–5600. 10.1039/C7TA00299H. DOI
Wahab A.; Iqbal N.; Noor T.; Ashraf S.; Raza M. A.; Ahmad A.; Khan U. A. Thermally Reduced Mesoporous Manganese MOF@Reduced Graphene Oxide Nanocomposite as Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. RSC Adv. 2020, 10, 27728–27742. 10.1039/D0RA04193A. PubMed DOI PMC
Peng X.; Wei L.; Liu Y.; Cen T.; Ye Z.; Zhu Z.; Ni Z.; Yuan D. Cobalt Nanoparticles Embedded in N-Doped Carbon Nanotubes on Reduced Graphene Oxide as Efficient Oxygen Catalysts for Zn-Air Batteries. Energy Fuels 2020, 34, 8931–8938. 10.1021/acs.energyfuels.0c01167. DOI
Xiao Y.; Guo B.; Zhang J.; Hu C.; Ma R.; Wang D.; Wang J. A Bimetallic MOF@Graphene Oxide Composite as an Efficient Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries. Dalton Trans. 2020, 49, 5730–5735. 10.1039/D0DT00976H. PubMed DOI
Zou H.; Li G.; Duan L.; Kou Z.; Wang J. In Situ Coupled Amorphous Cobalt Nitride with Nitrogen-Doped Graphene Aerogel as a Trifunctional Electrocatalyst Towards Zn-Air Battery Deriven Full Water Splitting. Appl. Catal., B 2019, 259, 118100.10.1016/j.apcatb.2019.118100. DOI
Wang H.; Liu G.; Chen C.; Tu W.; Lu Y.; Wu S.; O’Hare D.; Xu R. Single-Ni Sites Embedded in Multilayer Nitrogen-Doped Graphene Derived from Amino-Functionalized MOF for Highly Selective CO2 Electroreduction. ACS Sustain. Chem. Eng. 2021, 9, 3792–3801. 10.1021/acssuschemeng.0c08749. DOI
Liu A.; Gao M.; Ren X.; Meng F.; Yang Y.; Gao L.; Yang Q.; Ma T. Current Progress in Electrocatalytic Carbon Dioxide Reduction to Fuels on Heterogeneous Catalysts. J. Mater. Chem. A 2020, 8, 3541–3562. 10.1039/C9TA11966C. DOI
Abdelkader-Fernández V. K.; Fernandes D. M.; Freire C. Carbon-Based Electrocatalysts for CO2 Electroreduction Produced via MOF, Biomass, and Other Precursors Carbonization: A Review. J. CO2 Util. 2020, 42, 101350.10.1016/j.jcou.2020.101350. DOI
Pan F.; Zhang H.; Liu Z.; Cullen D.; Liu K.; More K.; Wu G.; Wang G.; Li Y. Atomic-Level Active Sites of Efficient Imidazolate Framework-Derived Nickel Catalysts for CO2 Reduction. J. Mater. Chem. A 2019, 7, 26231–26237. 10.1039/C9TA08862H. DOI
Zhang Y.; Li K.; Chen M.; Wang J.; Liu J.; Zhang Y. Cu/Cu2O Nanoparticles Supported on Vertically ZIF-L-Coated Nitrogen-Doped Graphene Nanosheets for Electroreduction of CO2 to Ethanol. ACS Appl. Nano Mater. 2020, 3, 257–263. 10.1021/acsanm.9b01935. DOI
Hwang S.-M.; Choi S. Y.; Youn M. H.; Lee W.; Park K. T.; Gothandapani K.; Grace A. N.; Jeong S. K. Investigation on Electroreduction of CO2 to Formic Acid Using Cu3(BTC)2 Metal-Organic Framework (Cu-MOF) and Graphene Oxide. ACS Omega 2020, 5, 23919–23930. 10.1021/acsomega.0c03170. PubMed DOI PMC
Ghavam S.; Vahdati M.; Wilson I. A. G.; Styring P. Sustainable Ammonia Production Processes. Front. Energy Res. 2021, 9, 34.10.3389/fenrg.2021.580808. DOI
Shen H.; Choi C.; Masa J.; Li X.; Qiu J.; Jung Y.; Sun Z. Electrochemical Ammonia Synthesis: Mechanistic Understanding and Catalyst Design. Chem. 2021, 7, 1708–1754. 10.1016/j.chempr.2021.01.009. DOI
Cui Q.; Qin G.; Wang W.; K. R. G.; Du A.; Sun Q. Mo-Based 2D MOF as a Highly Efficient Electrocatalyst for Reduction of N2 to NH3: A Density Functional Theory Study. J. Mater. Chem. A 2019, 7, 14510–14518. 10.1039/C9TA02926E. DOI
Wang C.; Zhao Y.-N.; Zhu C.-Y.; Zhang M.; Geng Y.; Li Y.-G.; Su Z.-M. A Two-Dimensional Conductive Mo-Based Covalent Organic Framework as an Efficient Electrocatalyst for Nitrogen Fixation. J. Mater. Chem. A 2020, 8, 23599–23606. 10.1039/D0TA08676B. DOI
Chen S.; Jang H.; Wang J.; Qin Q.; Liu X.; Cho J. Bimetallic Metal-Organic Framework-Derived MoFe-PC Microspheres for Electrocatalytic Ammonia Synthesis Under Ambient Conditions. J. Mater. Chem. A 2020, 8, 2099–2104. 10.1039/C9TA10524G. DOI
Zhao L.; Kuang X.; Chen C.; Sun X.; Wang Z.; Wei Q. Boosting Electrocatalytic Nitrogen Fixation via Energy-Efficient Anodic Oxidation of Sodium Gluconate. Chem. Commun. 2019, 55, 10170–10173. 10.1039/C9CC04378K. PubMed DOI
Liu Y.; Li C.; Guan L.; Li K.; Lin Y. Oxygen Vacancy Regulation Strategy Promotes Electrocatalytic Nitrogen Fixation by Doping Bi into Ce-MOF-Derived CeO2 Nanorods. J. Phys. Chem. C 2020, 124, 18003–18009. 10.1021/acs.jpcc.0c05949. DOI
Zhang R.; Jiao L.; Yang W.; Wan G.; Jiang H.-L. Single-Atom Catalysts Templated by Metal-Organic Frameworks for Electrochemical Nitrogen Reduction. J. Mater. Chem. A 2019, 7, 26371–26377. 10.1039/C9TA10206J. DOI
Mukherjee S.; Yang X.; Shan W.; Samarakoon W.; Karakalos S.; Cullen D. A.; More K.; Wang M.; Feng Z.; Wang G.; Wu G. Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N2 and H2O. Small Methods 2020, 4, 1900821.10.1002/smtd.201900821. DOI
Lawrence R. M.; Unni S. M. Defect Induced Nitrogen Reduction Reaction of Carbon Nanomaterials. Sust. Energy Fuels 2021, 5, 3765–3790. 10.1039/D1SE00644D. DOI
Gao Y.; Han Z.; Hong S.; Wu T.; Li X.; Qiu J.; Sun Z. ZIF-67-Derived Cobalt/Nitrogen-Doped Carbon Composites for Efficient Electrocatalytic N2 Reduction. ACS Appl. Energy Mater. 2019, 2, 6071–6077. 10.1021/acsaem.9b01135. DOI
Luo S.; Li X.; Zhang B.; Luo Z.; Luo M. MOF-Derived Co3O4@NC with Core-Shell Structures for N2 Electrochemical Reduction under Ambient Conditions. ACS Appl. Mater. Interfaces 2019, 11, 26891–26897. 10.1021/acsami.9b07100. PubMed DOI
Yang B.; Ding W.; Zhang H.; Zhang S. Recent Progress in Electrochemical Synthesis of Ammonia from Nitrogen: Strategies to Improve the Catalytic Activity and Selectivity. Energy Environ. Sci. 2021, 14, 672–687. 10.1039/D0EE02263B. DOI
Wang J.; Liu Y.-p.; Zhang H.; Huang D.-j.; Chu K. Ambient Electrocatalytic Nitrogen Reduction on a MoO2/Graphene Hybrid: Experimental and DFT Studies. Catal. Sci. Technol. 2019, 9, 4248–4254. 10.1039/C9CY00907H. DOI
Zhang F.; Wang X.; Liu H.; Liu C.; Wan Y.; Long Y.; Cai Z. Recent Advances and Applications of Semiconductor Photocatalytic Technology. Appl. Sci. 2019, 9, 2489.10.3390/app9122489. DOI
Huang L.; Liu B. Synthesis of a Novel and Stable Reduced Graphene Oxide/MOF Hybrid Nanocomposite and Photocatalytic Performance for the Degradation of Dyes. RSC Adv. 2016, 6, 17873–17879. 10.1039/C5RA25689E. DOI
Reynal A.; Lakadamyali F.; Gross M. A.; Reisner E.; Durrant J. R. Parameters Affecting Electron Transfer Dynamics from Semiconductors to Molecular Catalysts for the Photochemical Reduction of Protons. Energy Environ. Sci. 2013, 6, 3291–3300. 10.1039/c3ee40961a. DOI
Kang X.; Liu S.; Dai Z.; He Y.; Song X.; Tan Z. Titanium Dioxide: From Engineering to Applications. Catalysts 2019, 9, 191.10.3390/catal9020191. DOI
Li Y.; Xu H.; Ouyang S.; Ye J. Metal-rganic Frameworks for Photocatalysis. Phys. Chem. Chem. Phys. 2016, 18, 7563–7572. 10.1039/C5CP05885F. PubMed DOI
Li Z.; Zhou H.-Y.; Zhao F.-L.; Wang T.-X.; Ding X.; Han B.-H.; Feng W. Three-dimensional Covalent Organic Frameworks as Host Materials for Lithium-Sulfur Batteries. Chin. J. Polym. Sci. 2020, 38, 550–557. 10.1007/s10118-020-2384-z. DOI
Guo M.; Zhang M.; Liu R.; Zhang X.; Li G. State-of-the-Art Advancements in Photocatalytic Hydrogenation: Reaction Mechanism and Recent Progress in Metal-Organic Framework (MOF)-Based Catalysts. Adv. Sci. 2022, 9, 2103361.10.1002/advs.202103361. PubMed DOI PMC
Zhang C.; Ai L.; Jiang J. Graphene Hybridized Photoactive Iron Terephthalate with Enhanced Photocatalytic Activity for the Degradation of Rhodamine B under Visible Light. Ind. Eng. Chem. Res. 2015, 54, 153–163. 10.1021/ie504111y. DOI
Liu D.; Jin Z.; Bi Y. Charge Transmission Channel Construction Between a MOF and rGO by Means of Co-Mo-S Modification. Catal. Sci. Technol. 2017, 7, 4478–4488. 10.1039/C7CY01514C. DOI
Wang Y.; Ling L.; Zhang W.; Ding K.; Yu Y.; Duan W.; Liu B. A Strategy to Boost H2 Generation Ability of Metal-Organic Frameworks: Inside-Outside Decoration for the Separation of Electrons and Holes. ChemSusChem 2018, 11, 666–671. 10.1002/cssc.201702316. PubMed DOI
Lin R.; Shen L.; Ren Z.; Wu W.; Tan Y.; Fu H.; Zhang J.; Wu L. Enhanced Photocatalytic Hydrogen Production Activity via Dual Modification of MOF and Reduced Graphene Oxide on CdS. Chem. Commun. 2014, 50, 8533–8535. 10.1039/C4CC01776E. PubMed DOI
Wu Y.; Luo H.; Zhang L. Pd Nanoparticles Supported on MIL-101/Reduced Graphene Oxide Photocatalyst: An Efficient and Recyclable Photocatalyst for Triphenylmethane Dye Degradation. Environ. Sci. Pollut. Res. 2015, 22, 17238–17243. 10.1007/s11356-015-5364-z. PubMed DOI
Vu H. T.; Nguyen M. B.; Vu T. M.; Le G. H.; Pham T. T. T.; Nguyen T. D.; Vu T. A. Synthesis and Application of Novel Nano Fe-BTC/GO Composites as Highly Efficient Photocatalysts in the Dye Degradation. Top. Catal. 2020, 63, 1046–1055. 10.1007/s11244-020-01289-w. DOI
Thi Q. V.; Tamboli M. S.; Thanh Hoai Ta Q.; Kolekar G. B.; Sohn D. A Nanostructured MOF/Reduced Graphene Oxide Hybrid for Enhanced Photocatalytic Efficiency Under Solar Light. Mater. Sci. Eng., B 2020, 261, 114678.10.1016/j.mseb.2020.114678. DOI
Fakhri H.; Bagheri H. Highly Efficient Zr-MOF@WO3/Graphene Oxide Photocatalyst: Synthesis, Characterization and Photodegradation of Tetracycline and Malathion. Mater. Sci. Semicond. Process. 2020, 107, 104815.10.1016/j.mssp.2019.104815. DOI
Tang B.; Dai Y.; Sun Y.; Chen H.; Wang Z. Graphene and MOFs Co-Modified Composites for High Adsorption Capacity and Photocatalytic Performance to Remove Pollutant Under Both UV- and Visible-Light Irradiation. J. Solid State Chem. 2020, 284, 121215.10.1016/j.jssc.2020.121215. DOI
Xiao S.; Pan D.; Liang R.; Dai W.; Zhang Q.; Zhang G.; Su C.; Li H.; Chen W. Bimetal MOF Derived Mesocrystal ZnCo2O4 On rGO with High Performance in Visible-Light Photocatalytic NO Oxidization. Appl. Catal., B 2018, 236, 304–313. 10.1016/j.apcatb.2018.05.033. DOI
Li T.; Tian T.; Chen F.; Liu X.; Zhao X. Pd Nanoparticles Incorporated Within a Zr-Based Metal-Organic Framework/Reduced Graphene Oxide Multifunctional Composite for Efficient Visible-Light-Promoted Benzyl Alcohol Oxidation. Aust. J. Chem. 2019, 72, 334–340. 10.1071/CH18387. DOI
Zhang S.; Lu Y.; Wan X.; Duan Y.; Gao J.; Ge Z.; Wei L.; Chen Y.; Ma Y.; Chen Y. Hot Electron Prompted Highly Efficient Photocatalysis Based on 3D Graphene/Non-Precious Metal Nanoparticles. RSC Adv. 2020, 10, 42054–42061. 10.1039/D0RA07146C. PubMed DOI PMC
Olowoyo J. O.; Saini U.; Kumar M.; Valdés H.; Singh H.; Omorogie M. O.; Babalola J. O.; Vorontsov A. V.; Kumar U.; Smirniotis P. G. Reduced Graphene Oxide/NH2-MIL-125(Ti) Composite: Selective CO2 Photoreduction to Methanol Under Visible Light and Computational Insights into Charge Separation. J. CO2 Util. 2020, 42, 101300.10.1016/j.jcou.2020.101300. DOI
Liu D.; Jin Z.; Zhang Y.; Wang G.; Ma B. Light Harvesting and Charge Management by Ni4S3Modified Metal-Organic Frameworks and rGO in the Process of Photocatalysis. J. Colloid Interface Sci. 2018, 529, 44–52. 10.1016/j.jcis.2018.06.001. PubMed DOI
Bag P. P.; Wang X.-S.; Sahoo P.; Xiong J.; Cao R. Efficient Photocatalytic Hydrogen Evolution under Visible Light by Ternary Composite CdS@NU-1000/RGO. Catal. Sci. Technol. 2017, 7, 5113–5119. 10.1039/C7CY01254C. DOI
Bu Y.; Li F.; Zhang Y.; Liu R.; Luo X.; Xu L. Immobilizing CdS Nanoparticles And MoS2/RGO On Zr-Based Metal-Organic Framework 12-Tungstosilicate@UiO-67 Toward Enhanced Photocatalytic H2 Evolution. RSC Adv. 2016, 6, 40560–40566. 10.1039/C6RA05522B. DOI
Wu Y.; Luo H.; Wang H. Synthesis of Iron(Iii)-Based Metal-Organic Framework/Graphene Oxide Composites with Increased Photocatalytic Performance for Dye Degradation. RSC Adv. 2014, 4, 40435–40438. 10.1039/C4RA07566H. DOI
Yuan X.; Wang H.; Wu Y.; Zeng G.; Chen X.; Leng L.; Wu Z.; Li H. One-Pot Self-Assembly and Photoreduction Synthesis of Silver Nanoparticle-Decorated Reduced Graphene Oxide/MIL-125(Ti) Photocatalyst with Improved Visible Light Photocatalytic Activity. Appl. Organomet. Chem. 2016, 30, 289–296. 10.1002/aoc.3430. DOI
Liu N.; Huang W.; Zhang X.; Tang L.; Wang L.; Wang Y.; Wu M. Ultrathin Graphene Oxide Encapsulated in Uniform MIL-88A(Fe) for Enhanced Visible Light-Driven Photodegradation of RhB. Appl. Catal., B 2018, 221, 119–128. 10.1016/j.apcatb.2017.09.020. DOI
Samuel M. S.; Suman S.; Venkateshkannan; Selvarajan E.; Mathimani T.; Pugazhendhi A. Immobilization of Cu3(Btc)2 on Graphene Oxide-Chitosan Hybrid Composite for the Adsorption and Photocatalytic Degradation of Methylene Blue. J. Photochem. Photobiol., B 2020, 204, 111809.10.1016/j.jphotobiol.2020.111809. PubMed DOI
Hou X.; Hu K.; Zhang H.; Tao Z.; Yang M.; Wang G. Construction of 2D MOFs@reduced Graphene Oxide Nanocomposites with Enhanced Visible Light-induced Fenton-like Catalytic Performance by Seeded Growth Strategy. ChemCatChem. 2019, 11, 4411–4419. 10.1002/cctc.201900760. DOI
Mohaghegh N.; Tasviri M.; Rahimi E.; Gholami M. R. Comparative Studies on Ag3PO4/BiPO4-Metal-Organic Framework-Graphene-Based Nanocomposites for Photocatalysis Application. Appl. Surf. Sci. 2015, 351, 216–224. 10.1016/j.apsusc.2015.05.135. DOI
Yang C.; You X.; Cheng J.; Zheng H.; Chen Y. A Novel Visible-Light-Driven In-Based MOF/Graphene Oxide Composite Photocatalyst with Enhanced Photocatalytic Activity Toward the Degradation of Amoxicillin. Appl. Catal., B 2017, 200, 673–680. 10.1016/j.apcatb.2016.07.057. DOI
Wu Q.; Liu Y.; Jing H.; Yu H.; Lu Y.; Huo M.; Huo H. Peculiar Synergetic Effect of Γ-Fe2O3 Nanoparticles and Graphene Oxide on MIL-53 (Fe) for Boosting Photocatalysis. Chem. Eng. J. 2020, 390, 124615.10.1016/j.cej.2020.124615. DOI
El-Fawal E. M.; Younis S. A.; Zaki T. Designing AgFeO2-Graphene/Cu2(BTC)3 MOF Heterojunction Photocatalysts for Enhanced Treatment of Pharmaceutical Wastewater Under Sunlight. J. Photochem. Photobiol., A 2020, 401, 112746.10.1016/j.jphotochem.2020.112746. DOI
Hao X.; Jin Z.; Yang H.; Lu G.; Bi Y. Peculiar Synergetic Effect of MoS2 Quantum Dots and Graphene on Metal-Organic Frameworks for Photocatalytic Hydrogen Evolution. Appl. Catal., B 2017, 210, 45–56. 10.1016/j.apcatb.2017.03.057. DOI
Ling L.; Wang Y.; Zhang W.; Ge Z.; Duan W.; Liu B. Preparation of a Novel Ternary Composite of TiO2/UiO-66-NH2/Graphene Oxide with Enhanced Photocatalytic Activities. Catal. Lett. 2018, 148, 1978–1984. 10.1007/s10562-018-2353-0. DOI
Wang Y.; Yu Y.; Li R.; Liu H.; Zhang W.; Ling L.; Duan W.; Liu B. Hydrogen Production with Ultrahigh Efficiency under Visible Light by Graphene Well-Wrapped Uio-66-NH2 Octahedrons. J. Mater. Chem. A 2017, 5, 20136–20140. 10.1039/C7TA06341E. DOI
Yao J.; Chen J.; Shen K.; Li Y. Phase-Controllable Synthesis of MOF-Templated Maghemite-Carbonaceous Composites for Efficient Photocatalytic Hydrogen Production. J. Mater. Chem. A 2018, 6, 3571–3582. 10.1039/C7TA10284D. DOI
Jing D.; Guo L. A Novel Method for the Preparation of a Highly Stable and Active CdS Photocatalyst with a Special Surface Nanostructure. J. Phys. Chem. B 2006, 110, 11139–11145. 10.1021/jp060905k. PubMed DOI
Li A.; Liu Y.; Xu X.; Zhang Y.; Si Z.; Wu X.; Ran R.; Weng D. MOF-Derived (MoS2, Γ-Fe2O3)/Graphene Z-Scheme Photocatalysts with Excellent Activity for Oxygen Evolution Under Visible Light Irradiation. RSC Adv. 2020, 10, 17154–17162. 10.1039/D0RA02083D. PubMed DOI PMC
Sadeghi N.; Sharifnia S.; Do T.-O. Enhanced CO2 Photoreduction by a Graphene-Porphyrin Metal-Organic Framework under Visible Light Irradiation. J. Mater. Chem. A 2018, 6, 18031–18035. 10.1039/C8TA07158F. DOI
Liu N.; Tang M.; Wu J.; Tang L.; Huang W.; Li Q.; Lei J.; Zhang X.; Wang L. Boosting Visible-Light Photocatalytic Performance for CO2 Reduction via Hydroxylated Graphene Quantum Dots Sensitized MIL-101(Fe). Adv. Mater. Interfaces 2020, 7, 2000468.10.1002/admi.202000468. DOI
Inoue T.; Fujishima A.; Konishi S.; Honda K. Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature 1979, 277, 637–638. 10.1038/277637a0. DOI
Meng J.; Chen Q.; Lu J.; Liu H. Z-Scheme Photocatalytic CO2 Reduction on a Heterostructure of Oxygen-Defective ZnO/Reduced Graphene Oxide/UiO-66-NH2 under Visible Light. ACS Appl. Mater. Interfaces 2019, 11, 550–562. 10.1021/acsami.8b14282. PubMed DOI
Yang Z.; Xu X.; Liang X.; Lei C.; Gao L.; Hao R.; Lu D.; Lei Z. Fabrication of Ce Doped UiO-66/Graphene Nanocomposites with Enhanced Visible Light Driven Photoactivity for Reduction of Nitroaromatic Compounds. Appl. Surf. Sci. 2017, 420, 276–285. 10.1016/j.apsusc.2017.05.158. DOI
Cai J.; Lu J.-Y.; Chen Q.-Y.; Qu L.-L.; Lu Y.-Q.; Gao G.-F. Eu-Based MOF/Graphene Oxide Composite: A Novel Photocatalyst for the Oxidation of Benzyl Alcohol Using Water as Oxygen Source. New J. Chem. 2017, 41, 3882–3886. 10.1039/C7NJ00501F. DOI
Li X.; Le Z.; Chen X.; Li Z.; Wang W.; Liu X.; Wu A.; Xu P.; Zhang D. Graphene Oxide Enhanced Amine-Functionalized Titanium Metal Organic Framework for Visible-Light-Driven Photocatalytic Oxidation of Gaseous Pollutants. Appl. Catal., B 2018, 236, 501–508. 10.1016/j.apcatb.2018.05.052. DOI
Zhao Y.; Cai W.; Chen J.; Miao Y.; Bu Y. A Highly Efficient Composite Catalyst Constructed From NH2-MIL-125(Ti) and Reduced Graphene Oxide for CO2 Photoreduction. Front. Chem. 2019, 7, 789.10.3389/fchem.2019.00789. PubMed DOI PMC
Xu J.; He S.; Zhang H.; Huang J.; Lin H.; Wang X.; Long J. Layered Metal-Organic Framework/Graphene Nanoarchitectures for Organic Photosynthesis under Visible Light. J. Mater. Chem. A 2015, 3, 24261–24271. 10.1039/C5TA06838J. DOI
Wang H.; Zhu Q.-L.; Zou R.; Xu Q. Metal-Organic Frameworks for Energy Applications. Chem. 2017, 2, 52–80. 10.1016/j.chempr.2016.12.002. DOI
Lei Z.; Zhang J.; Zhang L. L.; Kumar N. A.; Zhao X. S. Functionalization of Chemically Derived Graphene for Improving its Electrocapacitive Energy Storage Properties. Energy Environ. Sci. 2016, 9, 1891–1930. 10.1039/C6EE00158K. DOI
Xia W.; Mahmood A.; Zou R.; Xu Q. Metal-Organic Frameworks and their Derived Nanostructures for Electrochemical Energy Storage and Conversion. Energy Environ. Sci. 2015, 8, 1837–1866. 10.1039/C5EE00762C. DOI
Zhu Q.-L.; Xu Q. Metal-Organic Framework Composites. Chem. Soc. Rev. 2014, 43, 5468–5512. 10.1039/C3CS60472A. PubMed DOI
Li Z.; Ge X.; Li C.; Dong S.; Tang R.; Wang C.; Zhang Z.; Yin L. Rational Microstructure Design on Metal-Organic Framework Composites for Better Electrochemical Performances: Design Principle, Synthetic Strategy, and Promotion Mechanism. Small Methods 2020, 4, 1900756.10.1002/smtd.201900756. DOI
Zheng Y.; Zheng S.; Xue H.; Pang H. Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications. Adv. Funct. Mater. 2018, 28, 1804950.10.1002/adfm.201804950. DOI
Dubal D. P.; Chodankar N. R.; Kim D. H.; Gomez-Romero P. Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics. Chem. Soc. Rev. 2018, 47, 2065–2129. 10.1039/C7CS00505A. PubMed DOI
Jayaramulu K.; Dubal D. P.; Nagar B.; Ranc V.; Tomanec O.; Petr M.; Datta K. K. R.; Zboril R.; Gomez-Romero P.; Fischer R. A. Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitors and Redox Electrolyte Energy Storage. Adv. Mater. 2018, 30, 170578910.1002/adma.201705789. PubMed DOI
Kumar N. A.; Baek J.-B. Doped Graphene Supercapacitors. Nanotechnology 2015, 26, 492001.10.1088/0957-4484/26/49/492001. PubMed DOI
Zheng S.; Li X.; Yan B.; Hu Q.; Xu Y.; Xiao X.; Xue H.; Pang H. Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage. Adv. Energy Mater. 2017, 7, 1602733.10.1002/aenm.201602733. DOI
Zhou Y.; Mao Z.; Wang W.; Yang Z.; Liu X. In-Situ Fabrication of Graphene Oxide Hybrid Ni-Based Metal-Organic Framework (Ni-MOFs@GO) with Ultrahigh Capacitance as Electrochemical Pseudocapacitor Materials. ACS Appl. Mater. Interfaces 2016, 8, 28904–28916. 10.1021/acsami.6b10640. PubMed DOI
Banerjee P. C.; Lobo D. E.; Middag R.; Ng W. K.; Shaibani M. E.; Majumder M. Electrochemical Capacitance of Ni-Doped Metal Organic Framework and Reduced Graphene Oxide Composites: More than the Sum of Its Parts. ACS Appl. Mater. Interfaces 2015, 7, 3655–3664. 10.1021/am508119c. PubMed DOI
Li W.; Xu A.; Zhang Y.; Yu Y.; Liu Z.; Qin Y. Metal-Organic Framework-Derived Mn3O4 Nanostructure on Reduced Graphene Oxide as High-Performance Supercapacitor Electrodes. J. Alloys. Compd. 2022, 897, 162640.10.1016/j.jallcom.2021.162640. DOI
Liu L.; Yan Y.; Cai Z.; Lin S.; Hu X. Growth-Oriented Fe-Based MOFs Synergized with Graphene Aerogels for High-Performance Supercapacitors. Adv. Mater. Interfaces 2018, 5, 1701548.10.1002/admi.201701548. DOI
Xiao P.; Bu F.; Zhao R.; Aly Aboud M. F.; Shakir I.; Xu Y. Sub-5 nm Ultrasmall Metal-Organic Framework Nanocrystals for Highly Efficient Electrochemical Energy Storage. ACS Nano 2018, 12, 3947–3953. 10.1021/acsnano.8b01488. PubMed DOI
Du Y.; Li G.; Ye L.; Che C.; Yang X.; Zhao L. Sandwich-Like Ni-Zn Hydroxide Nanosheets Vertically Aligned on Reduced Graphene Oxide via MOF Templates Towards Boosting Supercapacitive Performance. Chem. Eng. J. 2021, 417, 129189.10.1016/j.cej.2021.129189. DOI
Ashourdan M.; Semnani A.; Hasanpour F.; Moosavifard S. E. Synthesis of Nickel Cobalt Manganese Metal Organic Framework@High Quality Graphene Composites as Novel Electrode Materials for High Performance Supercapacitors. J. Electroanal. Chem. 2021, 895, 115452.10.1016/j.jelechem.2021.115452. DOI
Zhang W.; Wang Y.; Guo X.; Liu Y.; Zheng Y.; Zhang M.; Li R.; Peng Z.; Xie H.; Zhao Y. Graphene-Carbon Nanotube @ Cobalt Derivatives from ZIF-67 for All-Solid-State Asymmetric Supercapacitor. Appl. Surf. Sci. 2021, 568, 150929.10.1016/j.apsusc.2021.150929. DOI
Cao X.; Zheng B.; Shi W.; Yang J.; Fan Z.; Luo Z.; Rui X.; Chen B.; Yan Q.; Zhang H. Reduced Graphene Oxide-Wrapped MoO3 Composites Prepared by Using Metal-Organic Frameworks as Precursor for All-Solid-State Flexible Supercapacitors. Adv. Mater. 2015, 27, 4695–4701. 10.1002/adma.201501310. PubMed DOI
Dubal D. P.; Ayyad O.; Ruiz V.; Gomez-Romero P. Hybrid Energy Storage: The Merging of Battery and Supercapacitor Chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790. 10.1039/C4CS00266K. PubMed DOI
Han Y.; Liu Z.; Zheng F.; Bai Y.; Zhang Z.; Li X.; Xiong W.; Zhang J.; Yuan A. Two-Dimensional Flower-Like Cobalt-Porphyrin MOF/rGO Composite Anodes for High-Performance Li-Ion Batteries. J. Alloys Compd. 2021, 881, 160531.10.1016/j.jallcom.2021.160531. DOI
Gao C.; Wang P.; Wang Z.; Kær S. K.; Zhang Y.; Yue Y. The Disordering-Enhanced Performances of the Al-MOF/Graphene Composite Anodes for Lithium Ion Batteries. Nano Energy 2019, 65, 104032.10.1016/j.nanoen.2019.104032. DOI
Liu C.; Tian R.; Sun D.; Liu H.; Duan H. MOF-Derived 3D Hollow Porous Carbon/Graphene Composites for Advanced Lithium-Ion Battery Anodes. J. Solid State Chem. 2020, 290, 121568.10.1016/j.jssc.2020.121568. DOI
Liu X.; Zhang S.; Xing Y.; Wang S.; Yang P.; Li H. MOF-Derived, N-Doped Porous Carbon Coated Graphene Sheets as High-Performance Anodes for Lithium-Ion Batteries. New J. Chem. 2016, 40, 9679–9683. 10.1039/C6NJ01896C. DOI
Wang C.; Mutahir S.; Wang L.; Lei W.; Xia X.; Jiao X.; Hao Q. Hierarchical MOF-Derived Layered Fe3O4 QDs@C Imbedded on Graphene Sheets as a High-Performance Anode for Lithium-Ion Storage. Appl. Surf. Sci. 2020, 509, 144882.10.1016/j.apsusc.2019.144882. DOI
Li S.; Liu Y.; Zhou J.; Hong S.; Dong Y.; Wang J.; Gao X.; Qi P.; Han Y.; Wang B. Monodispersed MnO Nanoparticles in Graphene-an interconnected N-Doped 3D Carbon Framework as a Highly Efficient Gas Cathode in Li-CO2 Batteries. Energy Environ. Sci. 2019, 12, 1046–1054. 10.1039/C8EE03283A. DOI
Jayaramulu K.; Dubal D. P.; Schneemann A.; Ranc V.; Perez-Reyes C.; Stráská J.; Kment Š; Otyepka M.; Fischer R. A.; Zbořil R. Shape-Assisted 2D MOF/Graphene Derived Hybrids as Exceptional Lithium-Ion Battery Electrodes. Adv. Funct. Mater. 2019, 29, 1902539.10.1002/adfm.201902539. DOI
Gao M.; Liu X.; Yang H.; Yu Y. FeP Nanoparticles Derived fom Metal-Organic Frameworks/GO as High-Performance Anode Material for Lithium Ion Batteries. Sci. China Chem. 2018, 61, 1151–1158. 10.1007/s11426-018-9278-5. DOI
Horn M. R.; Singh A.; Alomari S.; Goberna-Ferrón S.; Benages-Vilau R.; Chodankar N.; Motta N.; Ostrikov K.; MacLeod J.; Sonar P.; Gomez-Romero P.; Dubal D. Polyoxometalates (Poms): From Electroactive Clusters to Energy Materials. Energy Environ. Sci. 2021, 14, 1652–1700. 10.1039/D0EE03407J. DOI
Dubal D. P.; Suarez-Guevara J.; Tonti D.; Enciso E.; Gomez-Romero P. A High Voltage Solid State Symmetric Supercapacitor Based on Graphene-Polyoxometalate Hybrid Electrodes with a Hydroquinone Doped Hybrid Gel-Electrolyte. J. Mater. Chem. A 2015, 3, 23483–23492. 10.1039/C5TA05660H. DOI
Wei T.; Zhang M.; Wu P.; Tang Y.-J.; Li S.-L.; Shen F.-C.; Wang X.-L.; Zhou X.-P.; Lan Y.-Q. POM-Based Metal-Organic Framework/Reduced Graphene Oxide Nanocomposites with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage. Nano Energy 2017, 34, 205–214. 10.1016/j.nanoen.2017.02.028. DOI
Yao J.; Zhang M.; Han G.; Wang X.; Wang Z.; Wang J. Reduced Graphene Oxide Coated Fe-Soc as a Cathode Material for High-Performance Lithium-Sulfur Batteries. Ceram. Int. 2020, 46, 24155–24161. 10.1016/j.ceramint.2020.06.195. DOI
Jin J.; Cai W.; Cai J.; Shao Y.; Song Y.; Xia Z.; Zhang Q.; Sun J. MOF-Derived Hierarchical Cop Nanoflakes Anchored on Vertically Erected Graphene Scaffolds as Self-Supported and Flexible Hosts for Lithium-Sulfur Batteries. J. Mater. Chem. A 2020, 8, 3027–3034. 10.1039/C9TA13046B. DOI
Song C.-L.; Li Z.-H.; Li M.-Z.; Huang S.; Hong X.-J.; Si L.-P.; Zhang M.; Cai Y.-P. Iron Carbide Dispersed on Nitrogen-Doped Graphene-like Carbon Nanosheets for Fast Conversion of Polysulfides in Li-S Batteries. ACS Appl. Nano Mater. 2020, 3, 9686–9693. 10.1021/acsanm.0c01689. DOI
Xu F.; Dong C.; Jin B.; Li H.; Wen Z.; Jiang Q. MOF-Derived LDH Wrapped with rGO as an Efficient Sulfur Host for Lithium-Sulfur Batteries. J. Electroanal. Chem. 2020, 876, 114545.10.1016/j.jelechem.2020.114545. DOI
Wei R.; Dong Y.; Zhang Y.; Zhang R.; Al-Tahan M. A.; Zhang J. In-Situ Self-Assembled Hollow Urchins F-Co-MOF on rGO as Advanced Anodes for Lithium-Ion and Sodium-Ion Batteries. J. Colloid Interface Sci. 2021, 582, 236–245. 10.1016/j.jcis.2020.08.044. PubMed DOI
Zhang Y.; Wu Y.; Zhong W.; Xiao F.; Kashif Aslam M.; Zhang X.; Xu M. Highly Efficient Sodium-Ion Storage Enabled by an rGO-Wrapped FeSe2 Composite. ChemSusChem 2021, 14, 1336–1343. 10.1002/cssc.202002552. PubMed DOI
Lu C.; Li Z.; Xia Z.; Ci H.; Cai J.; Song Y.; Yu L.; Yin W.; Dou S.; Sun J.; Liu Z. Confining MOF-Derived Snse Nanoplatelets in Nitrogen-Doped Graphene Cages via Direct CVD for Durable Sodium Ion Storage. Nano Res. 2019, 12, 3051–3058. 10.1007/s12274-019-2551-0. DOI
Zhang Z.; Wu C.; Chen Z.; Li H.; Cao H.; Luo X.; Fang Z.; Zhu Y. Spatially Confined Synthesis of a Flexible and Hierarchically Porous Three-Dimensional Graphene/Fep Hollow Nanosphere Composite Anode for Highly Efficient and Ultrastable Potassium Ion Storage. J. Mater. Chem. A 2020, 8, 3369–3378. 10.1039/C9TA12191A. DOI
Xiao P.; Li S.; Yu C.; Wang Y.; Xu Y. Interface Engineering between the Metal-Organic Framework Nanocrystal and Graphene toward Ultrahigh Potassium-Ion Storage Performance. ACS Nano 2020, 14, 10210–10218. 10.1021/acsnano.0c03488. PubMed DOI
Deng Q.; Luo Z.; Liu H.; Zhou Y.; Zhou C.; Yang R.; Wang L.; Yan Y.; Xu Y. Facile Synthesis of Fe-Based Metal-Organic Framework and Graphene Composite as an Anode Material for K-Ion Batteries. Ionics 2020, 26, 5565–5573. 10.1007/s11581-020-03735-x. DOI
Xie J.; Zhu Y.; Zhuang N.; Lei H.; Zhu W.; Fu Y.; Javed M. S.; Li J.; Mai W. Rational Design of Metal Organic Framework-Derived FeS2 Hollow Nanocages@Reduced Graphene Oxide for K-Ion Storage. Nanoscale 2018, 10, 17092–17098. 10.1039/C8NR05239E. PubMed DOI
Li C.; Hu C.; Zhao Y.; Song L.; Zhang J.; Huang R.; Qu L. Decoration of Graphene Network with Metal-Organic Frameworks for Enhanced Electrochemical Capacitive Behavior. Carbon 2014, 78, 231–242. 10.1016/j.carbon.2014.06.076. DOI
Hao G.-P.; Zhang Q.; Sin M.; Hippauf F.; Borchardt L.; Brunner E.; Kaskel S. Design of Hierarchically Porous Carbons with Interlinked Hydrophilic and Hydrophobic Surface and Their Capacitive Behavior. Chem. Mater. 2016, 28, 8715–8725. 10.1021/acs.chemmater.6b03964. DOI
Fu D.; Zhou H.; Zhang X.-M.; Han G.; Chang Y.; Li H. Flexible Solid-State Supercapacitor of Metal-Organic Framework Coated on Carbon Nanotube Film Interconnected by Electrochemically-Codeposited PEDOT-GO. ChemistrySelect 2016, 1, 285–289. 10.1002/slct.201600084. DOI
Zhao K.; Lyu K.; Liu S.; Gan Q.; He Z.; Zhou Z. Ordered Porous Mn3O4@N-Doped Carbon/Graphene Hybrids Derived from Metal-Organic Frameworks for Supercapacitor Electrodes. J. Mater. Sci. 2017, 52, 446–457. 10.1007/s10853-016-0344-3. DOI
Kumar S.; Sekar S.; Kaliamurthy A. K.; Lee S. Bifunctional rGO-NiCo2S4MOF Hybrid with High Electrochemical and Catalytic Activity for Supercapacitor and Nitroarene Reduction. J. Mater. Res. Technol. 2021, 12, 2489–2501. 10.1016/j.jmrt.2021.04.001. DOI
Yang Y.; Zhong Z.; Li J.; Du H.; Wang W.; Huang J. Fast and Low-Consumption Granular NiCo-LDH/Graphene Nanosheet Composites for High-Performance Supercapacitor Electrodes. J. Mater. Sci. Mater. Electron. 2021, 32, 23750–23761. 10.1007/s10854-021-06674-z. DOI
Wu C.-L.; Chen D.-H. Fabrication of rGO/CoSx-rGO/rGO Hybrid Film via Coassembly and Sulfidation of 2D Metal Organic Framework Nanoflakes and Graphene Oxide as Free-Standing Supercapacitor Electrode. J. Alloys. Compd. 2021, 872, 159702.10.1016/j.jallcom.2021.159702. DOI
Li S.; Shi C.; Pan Y.; Wang Y. 2D/2D NiCo-MOFs/GO Hybrid Nanosheets for High-Performance Asymmetrical Supercapacitor. Diam. Relat. Mater. 2021, 115, 108358.10.1016/j.diamond.2021.108358. DOI
Li X.; Li J.; Zhang Y.; Zhao P. Synthesis of Ni-MOF Derived NiO/rGO Composites as Novel Electrode Materials for High Performance Supercapacitors. Colloids Surf., A 2021, 622, 126653.10.1016/j.colsurfa.2021.126653. DOI
Hira S. A.; Park K. H. Nitrogen-Doped Zeolitic Imidazolate Framework and Particle-Reduced Graphene Oxide Composites as Electrochemical Sensors and Battery-Type Supercapacitors. ACS Appl. Nano Mater. 2021, 4, 7870–7878. 10.1021/acsanm.1c01189. DOI
Zhu L.; Hao C.; Wang X.; Guo Y. Fluffy Cotton-Like GO/Zn-Co-Ni Layered Double Hydroxides Form from a Sacrificed Template GO/ZIF-8 for High Performance Asymmetric Supercapacitors. ACS Sustain. Chem. Eng. 2020, 8, 11618–11629. 10.1021/acssuschemeng.0c02916. DOI
Wang B. R.; Hu Y.; Pan Z.; Wang J. MOF-Derived Manganese Oxide/Carbon Nanocomposites with Raised Capacitance for Stable Asymmetric Supercapacitor. RSC Adv. 2020, 10, 34403–34412. 10.1039/D0RA05494A. PubMed DOI PMC
Eswaramoorthi T.; Ganesan S.; Marimuthu M.; Santhosh K. Thin Niobium and Iron-Graphene Oxide Composite Metal-Organic Framework Electrodes for High Performance Supercapacitors. New J. Chem. 2020, 44, 12664–12673. 10.1039/D0NJ02793F. DOI
Tan Q.; Chen X.; Wan H.; Zhang B.; Liu X.; Li L.; Wang C.; Gan Y.; Liang P.; Wang Y.; Zhang J.; Wang H.; Miao L.; Jiang J.; van Aken P. A.; Wang H. Metal-Organic Framework-Derived High Conductivity Fe3C with Porous Carbon on Graphene as Advanced Anode Materials for Aqueous Battery-Supercapacitor Hybrid Devices. J. Power Sources 2020, 448, 227403.10.1016/j.jpowsour.2019.227403. DOI
Wang Y.-F.; Yang S.-Y.; Yue Y.; Bian S.-W. Conductive Copper-Based Metal-Organic Framework Nanowire Arrays Grown on Graphene Fibers for Flexible All-Solid-State Supercapacitors. J. Alloys. Compd. 2020, 835, 155238.10.1016/j.jallcom.2020.155238. DOI
Hu X.; Li J.; Wu Q.; Chen R. MOF-Derived CoS2 Porous Nanocubes Assembled on Graphene Oxide Nanosheets as Electrode for Supercapacitor Applications. Ionics 2020, 26, 1045–1050. 10.1007/s11581-019-03331-8. DOI
Sundriyal S.; Shrivastav V.; Mishra S.; Deep A. Enhanced Electrochemical Performance of Nickel Intercalated ZIF-67/rGO Composite Electrode for Solid-State Supercapacitors. Int. J. Hydrog. Energy 2020, 45, 30859–30869. 10.1016/j.ijhydene.2020.08.075. DOI
Huang N.; Lee K. H.; Yue Y.; Xu X.; Irle S.; Jiang Q.; Jiang D. A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. Angew. Chem., Int. Ed. 2020, 59, 16587–16593. 10.1002/anie.202005274. PubMed DOI
Ren C.; Jia X.; Zhang W.; Hou D.; Xia Z.; Huang D.; Hu J.; Chen S.; Gao S. Hierarchical Porous Integrated Co1- xS/CoFe2O4@rGO Nanoflowers Fabricated via Temperature-Controlled In Situ Calcining Sulfurization of Multivariate CoFe-MOF-74@rGO for High-Performance Supercapacitor. Adv. Funct. Mater. 2020, 30, 2004519.10.1002/adfm.202004519. DOI
Liu X.; Ding S.; Ye L.; Du Y.; Zhao L.; Zhu Y. Optimizing the Supercapacitive Performance via Encasing MOF-Derived Hollow (Ni,Co)Se2 Nanocubes into Reduced Graphene Oxide. Chem. Eng. J. 2020, 399, 125789.10.1016/j.cej.2020.125789. DOI
Wang P.; Zhou H.; Meng C.; Wang Z.; Akhtar K.; Yuan A. Cyanometallic Framework-Derived Hierarchical Co3O4-NiO/Graphene Foam as High-Performance Binder-Free Electrodes for Supercapacitors. Chem. Eng. J. 2019, 369, 57–63. 10.1016/j.cej.2019.03.080. DOI
Guo D.; Song X.; Tan L.; Ma H.; Sun W.; Pang H.; Zhang L.; Wang X. A Facile Dissolved and Reassembled Strategy Towards Sandwich-Like rGO@NiCoAl-LDHs with Excellent Supercapacitor Performance. Chem. Eng. J. 2019, 356, 955–963. 10.1016/j.cej.2018.09.101. DOI
Rajak R.; Saraf M.; Mobin S. M. Robust Heterostructures of a Bimetallic Sodium-Zinc Metal-Organic Framework and Reduced Graphene Oxide for High-Performance Supercapacitors. J. Mater. Chem. A 2019, 7, 1725–1736. 10.1039/C8TA09528K. DOI
Li Z.; Liu X.; Wang L.; Bu F.; Wei J.; Pan D.; Wu M. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors. Small 2018, 14, 180149810.1002/smll.201801498. PubMed DOI
Qu C.; Zhang L.; Meng W.; Liang Z.; Zhu B.; Dang D.; Dai S.; Zhao B.; Tabassum H.; Gao S.; Zhang H.; Guo W.; Zhao R.; Huang X.; Liu M.; Zou R. MOF-Derived α-NiS Nanorods on Graphene as an Electrode for High-Energy-Density Supercapacitors. J. Mater. Chem. A 2018, 6, 4003–4012. 10.1039/C7TA11100B. DOI
Vilian A. T. E.; Dinesh B.; Rethinasabapathy M.; Hwang S.-K.; Jin C.-S.; Huh Y. S.; Han Y.-K. Hexagonal Co3O4 Anchored Reduced Graphene Oxide Sheets for High-Performance Supercapacitors and Non-Enzymatic Glucose Sensing. J. Mater. Chem. A 2018, 6, 14367–14379. 10.1039/C8TA04941F. DOI
Wang P.; Li C.; Wang W.; Wang J.; Zhu Y.; Wu Y. Hollow Co9S8fFrom Metal Organic Framework Supported on rGO as Electrode Material for Highly Stable Supercapacitors. Chin. Chem. Lett. 2018, 29, 612–615. 10.1016/j.cclet.2018.01.051. DOI
Bai X.; Liu Q.; Lu Z.; Liu J.; Chen R.; Li R.; Song D.; Jing X.; Liu P.; Wang J. Rational Design of Sandwiched Ni-Co Layered Double Hydroxides Hollow Nanocages/Graphene Derived from Metal-Organic Framework for Sustainable Energy Storage. ACS Sustain. Chem. Eng. 2017, 5, 9923–9934. 10.1021/acssuschemeng.7b01879. DOI
Jayakumar A.; Antony R. P.; Wang R.; Lee J. M. MOF-Derived Hollow Cage Nix Co3-x O4 and Their Synergy with Graphene for Outstanding Supercapacitors. Small 2017, 13, 1603102.10.1002/smll.201603102. PubMed DOI
Punde N. S.; Rawool C. R.; Rajpurohit A. S.; Karna S. P.; Srivastava A. K. Hybrid Composite Based on Porous Cobalt-Benzenetricarboxylic Acid Metal Organic Framework and Graphene Nanosheets as High Performance Supercapacitor Electrode. ChemistrySelect 2018, 3, 11368–11380. 10.1002/slct.201802721. DOI
Lv Z.; Zhong Q.; Bu Y. In-Situ Conversion of rGO/Ni2P Composite from GO/Ni-MOF Precursor with Enhanced Electrochemical Property. Appl. Surf. Sci. 2018, 439, 413–419. 10.1016/j.apsusc.2017.12.185. DOI
Samuel E.; Joshi B.; Park C.; Aldalbahi A.; Rahaman M.; Yoon S. S. Supersonically Sprayed rGO/ZIF-8 on Nickel Nanocone Substrate for Highly Stable Supercapacitor Electrodes. Electrochim. Acta 2020, 362, 137154.10.1016/j.electacta.2020.137154. DOI
Bao W. Z.; Zhang Z. A.; Qu Y. H.; Zhou C. K.; Wang X. W.; Li J. Confine Sulfur in Mesoporous Metal-Organic Framework@Reduced Graphene Oxide for Lithium Sulfur Battery. J. Alloys. Compd. 2014, 582, 334–340. 10.1016/j.jallcom.2013.08.056. DOI
Chen R.; Zhao T.; Tian T.; Cao S.; Coxon P. R.; Xi K.; Fairen-Jimenez D.; Vasant Kumar R.; Cheetham A. K. Graphene-Wrapped Sulfur/Metal Organic Framework-Derived Microporous Carbon Composite for Lithium Sulfur Batteries. APL Mater. 2014, 2, 124109.10.1063/1.4901751. DOI
Zhao Z. X.; Wang S.; Liang R.; Li Z.; Shi Z. C.; Chen G. H. Graphene-Wrapped Chromium-MOF(MIL-101)/Sulfur Composite for Performance Improvement of High-Rate Rechargeable Li-S Batteries. J. Mater. Chem. A 2014, 2, 13509–13512. 10.1039/C4TA01241K. DOI
He J.; Chen Y.; Manthiram A. MOF-derived Cobalt Sulfide Grown on 3D Graphene Foam as an Efficient Sulfur Host for Long-Life Lithium-Sulfur Batteries. iScience 2018, 4, 36–43. 10.1016/j.isci.2018.05.005. PubMed DOI PMC
Xu J.; Zhang W. X.; Chen Y.; Fan H. B.; Su D. W.; Wang G. X. MOF-Derived Porous N-Co3O4@N-C Nanododecahedra Wrapped with Reduced Graphene Oxide as a High Capacity Cathode for Lithium-Sulfur Batteries. J. Mater. Chem. A 2018, 6, 2797–2807. 10.1039/C7TA10272K. DOI
Cai D.; Lu M.; Li L.; Cao J.; Chen D.; Tu H.; Li J.; Han W. A Highly Conductive MOF of Graphene Analogue Ni3(HITP)2 as a Sulfur Host for High-Performance Lithium-Sulfur Batteries. Small 2019, 15, 190260510.1002/smll.201902605. PubMed DOI
Wu Y.; Jiang H.; Ke F. S.; Deng H. Three-Dimensional Hierarchical Constructs of MOF-on-Reduced Graphene Oxide for Lithium-Sulfur Batteries. Chem. Asian J. 2019, 14, 3577–3582. 10.1002/asia.201900848. PubMed DOI
Baumann A. E.; Downing J. R.; Burns D. A.; Hersam M. C.; Thoi V. S. Graphene-Metal-Organic Framework Composite Sulfur Electrodes for Li-S Batteries with High Volumetric Capacity. ACS Appl. Mater. Interfaces 2020, 12, 37173–37181. 10.1021/acsami.0c09622. PubMed DOI
Xu F. C.; Dong C. W.; Jin B.; Li H.; Wen Z.; Jiang Q. MOF-Derived LDH Wrapped with rGO as an Efficient Sulfur Host for Lithium-Sulfur Batteries. J. Electroanal. Chem. 2020, 876, 114545.10.1016/j.jelechem.2020.114545. DOI
Li Z. Q.; Yin L. W. Sandwich-Like Reduced Graphene Oxide Wrapped MOF-Derived ZnCo2O4-ZnO-C On Nickel Foam as Anodes for High Performance Lithium Ion Batteries. J. Mater. Chem. A 2015, 3, 21569–21577. 10.1039/C5TA05733G. DOI
Jin Y.; Zhao C. C.; Sun Z. X.; Lin Y. C.; Chen L.; Wang D. Y.; Shen C. Facile Synthesis of Fe-MOF/RGO and its Application as a High Performance Anode in Lithium-Ion Batteries. RSC Adv. 2016, 6, 30763–30768. 10.1039/C6RA01645F. DOI
Liu X.; Zhang S. C.; Xing Y. L.; Wang S. B.; Yang P. H.; Li H. L. MOF-Derived, N-Doped Porous Carbon Coated Graphene Sheets as High-Performance Anodes for Lithium-Ion Batteries. New J. Chem. 2016, 40, 9679–9683. 10.1039/C6NJ01896C. DOI
Ji D.; Zhou H.; Tong Y.; Wang J.; Zhu M.; Chen T.; Yuan A. Facile Fabrication of MOF-Derived Octahedral CuO Wrapped 3D Graphene Network as Binder-Free Anode for High Performance Lithium-Ion Batteries. Chem. Eng. J. 2017, 313, 1623–1632. 10.1016/j.cej.2016.11.063. DOI
Li C.; Lou X.; Yang Q.; Zou Y.; Hu B. Remarkable Improvement in the Lithium Storage Property of Co2(OH)2BDC MOF by Covalent Stitching to Graphene and the Redox Chemistry Boosted by Delocalized Electron Spins. Chem. Eng. J. 2017, 326, 1000–1008. 10.1016/j.cej.2017.06.048. DOI
Zhou X.; Chen S.; Yang J.; Bai T.; Ren Y.; Tian H. Metal-Organic Frameworks Derived Okra-like SnO2 Encapsulated in Nitrogen-Doped Graphene for Lithium Ion Battery. ACS Appl. Mater. Interfaces 2017, 9, 14309–14318. 10.1021/acsami.7b04584. PubMed DOI
Gan Q.; Liu B.; Zhao K.; He Z.; Liu S. Flower-Like NiCo2O4 from Ni-Co 1,3,5-Benzenetricarboxylate Metal Organic Framework Tuned by Graphene Oxide for High-Performance Lithium Storage. Electrochim. Acta 2018, 279, 152–160. 10.1016/j.electacta.2018.05.055. DOI
Gao M.; Liu X. W.; Yang H.; Yu Y. Fep Nanoparticles Derived from Metal-Organic Frameworks/GO as High-Performance Anode Material for Lithium Ion Batteries. Sci. China Chem. 2018, 61, 1151–1158. 10.1007/s11426-018-9278-5. DOI
Zhang L.; Liu W.; Shi W.; Xu X.; Mao J.; Li P.; Ye C.; Yin R.; Ye S.; Liu X.; Cao X.; Gao C. Boosting Lithium Storage Properties of MOF Derivatives through a Wet-Spinning Assembled Fiber Strategy. Chem. Eur. J. 2018, 24, 13792–13799. 10.1002/chem.201802826. PubMed DOI
Cao Y.; Lu Y.; Ang E. H.; Geng H.; Cao X.; Zheng J.; Gu H. MOF-Derived Uniform Ni Nanoparticles Encapsulated in Carbon Nanotubes Grafted on rGO Nanosheets as Bifunctional Materials for Lithium-Ion Batteries and Hydrogen Evolution Reaction. Nanoscale 2019, 11, 15112–15119. 10.1039/C9NR05504E. PubMed DOI
Gao C. W.; Wang P. X.; Wang Z. Y.; Kaer S. K.; Zhang Y. F.; Yue Y. Z. The Disordering-Enhanced Performances of the Al-MOF/Graphene Composite Anodes for Lithium Ion Batteries. Nano Energy 2019, 65, 104032.10.1016/j.nanoen.2019.104032. DOI
Yu H.; Zhu W. J.; Zhou H.; Liu J. F.; Yang Z.; Hu X. C.; Yuan A. H. Porous Carbon Derived from Metal-Organic Framework@Graphene Quantum Dots as Electrode Materials for Supercapacitors and Lithium-Ion Batteries. RSC Adv. 2019, 9, 9577–9583. 10.1039/C9RA01488H. PubMed DOI PMC
Gao C. W.; Jiang Z. J.; Wang P. X.; Jensen L. R.; Zhang Y. F.; Yue Y. Z. Optimized Assembling of MOF/SnO2/Graphene Leads to Superior Anode for Lithium Ion Batteries. Nano Energy 2020, 74, 104868.10.1016/j.nanoen.2020.104868. DOI
Guo C.; Xie Y.; Pan K.; Li L. MOF-Derived Hollow SiOx Nanoparticles Wrapped in 3D Porous Nitrogen-Doped Graphene Aerogel and their Superior Performance as the Anode for Lithium-Ion Batteries. Nanoscale 2020, 12, 13017–13027. 10.1039/D0NR02453H. PubMed DOI
Liu C. H.; Tian R.; Sun D.; Liu H. Z.; Duan H. N. MOF-Derived 3D Hollow Porous Carbon/Graphene Composites for Advanced Lithium-Ion Battery Anodes. J. Solid State Chem. 2020, 290, 121568.10.1016/j.jssc.2020.121568. DOI
Wang C. X.; Mutahir S.; Wang L.; Lei W.; Xia X. F.; Jiao X. Y.; Hao Q. L. Hierarchical MOF-Derived Layered Fe3O4 QDs@C Imbedded on Graphene Sheets as a High-Performance Anode for Lithium-Ion Storage. Appl. Surf. Sci. 2020, 509, 144882.10.1016/j.apsusc.2019.144882. DOI
Bu F.; Xiao P.; Chen J.; Aly Aboud M. F.; Shakir I.; Xu Y. Rational Design of Three-Dimensional Graphene Encapsulated Core-Shell Fes@Carbon Nanocomposite as a Flexible High-Performance Anode for Sodium-Ion Batteries. J. Mater. Chem. A 2018, 6, 6414–6421. 10.1039/C7TA11111H. DOI
Yang M.-Q.; Xu Y.-J. Basic Principles for Observing the Photosensitizer Role of Graphene in the Graphene-Semiconductor Composite Photocatalyst from a Case Study on Graphene-ZnO. J. Phys. Chem. C 2013, 117, 21724–21734. 10.1021/jp408400c. DOI
Tang Y.; Wu H.; Cao W.; Cui Y.; Qian G. Luminescent Metal-Organic Frameworks for White LEDs. Adv. Opt. Mater. 2021, 9, 2001817.10.1002/adom.202001817. DOI
Gu Y.; Qiu Z.; Müllen K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J. Am. Chem. Soc. 2022, 144, 11499–11524. 10.1021/jacs.2c02491. PubMed DOI PMC
Liu K.; Li J.; Qi H.; Hambsch M.; Rawle J.; Vázquez A. R.; Nia A. S.; Pashkin A.; Schneider H.; Polozij M.; Heine T.; Helm M.; Mannsfeld S. C. B.; Kaiser U.; Dong R.; Feng X. A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer. Angew. Chem., Int. Ed. 2021, 60, 13859–13864. 10.1002/anie.202102984. PubMed DOI PMC
Liu Y.; Weiss N. O.; Duan X.; Cheng H.-C.; Huang Y.; Duan X. Van der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016, 1, 16042.10.1038/natrevmats.2016.42. DOI
Rizzo D. J.; Veber G.; Cao T.; Bronner C.; Chen T.; Zhao F.; Rodriguez H.; Louie S. G.; Crommie M. F.; Fischer F. R. Topological Band Engineering of Graphene Nanoribbons. Nature 2018, 560, 204–208. 10.1038/s41586-018-0376-8. PubMed DOI
Wang X.; Ma J.; Zheng W.; Osella S.; Arisnabarreta N.; Droste J.; Serra G.; Ivasenko O.; Lucotti A.; Beljonne D.; Bonn M.; Liu X.; Hansen M. R.; Tommasini M.; De Feyter S.; Liu J.; Wang H. I.; Feng X. Cove-Edged Graphene Nanoribbons with Incorporation of Periodic Zigzag-Edge Segments. J. Am. Chem. Soc. 2022, 144, 228–235. 10.1021/jacs.1c09000. PubMed DOI
Xu K.; Urgel J. I.; Eimre K.; Di Giovannantonio M.; Keerthi A.; Komber H.; Wang S.; Narita A.; Berger R.; Ruffieux P.; Pignedoli C. A.; Liu J.; Müllen K.; Fasel R.; Feng X. On-Surface Synthesis of a Nonplanar Porous Nanographene. J. Am. Chem. Soc. 2019, 141, 7726–7730. 10.1021/jacs.9b03554. PubMed DOI PMC
Yankowitz M.; Ma Q.; Jarillo-Herrero P.; LeRoy B. J. Van der Waals Heterostructures Combining Graphene and Hexagonal Boron Nitride. Nature Rev. Phys. 2019, 1, 112–125. 10.1038/s42254-018-0016-0. DOI
Waterman K. C.Handbook of Stability Testing in Pharmaceutical Development: Regulations, Methodologies, and Best Practices; Huynh-Ba K., Ed.; Springer New York, New York, 2009; pp 21–41.
2D Nitrogen-Doped Graphene Materials for Noble Gas Separation
Lewis Acid Catalyzed Amide Bond Formation in Covalent Graphene-MOF Hybrids