Hierarchical Porous Graphene-Iron Carbide Hybrid Derived From Functionalized Graphene-Based Metal-Organic Gel as Efficient Electrochemical Dopamine Sensor

. 2020 ; 8 () : 544. [epub] 20200730

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32850616

A metal-organic gel (MOG) similar in constitution to MIL-100 (Fe) but containing a lower connectivity ligand (5-aminoisophthalate) was integrated with an isophthalate functionalized graphene (IG). The IG acted as a structure-directing templating agent, which also induced conductivity of the material. The MOG@IG was pyrolyzed at 600°C to obtain MGH-600, a hybrid of Fe/Fe3C/FeOx enveloped by graphene. MGH-600 shows a hierarchical pore structure, with micropores of 1.1 nm and a mesopore distribution between 2 and 6 nm, and Brunauer-Emmett-Teller surface area amounts to 216 m2/g. Furthermore, the MGH-600 composite displays magnetic properties, with bulk saturation magnetization value of 130 emu/g at room temperature. The material coated on glassy carbon electrode can distinguish between molecules with the same oxidation potential, such as dopamine in presence of ascorbic acid and revealed a satisfactory limit of detection and limit of quantification (4.39 × 10-7 and 1.33 × 10-6 M, respectively) for the neurotransmitter dopamine.

Zobrazit více v PubMed

Abellán-Llobregat A., Vidal L., Rodríguez-Amaro R., Canals A., Morallón E. (2018). Evaluation of herringbone carbon nanotubes-modified electrodes for the simultaneous determination of ascorbic acid and uric acid. Electrochim. Acta 285, 284–291. 10.1016/j.electacta.2018.08.007 DOI

Aiyappa H. B., Saha S., Wadge P., Banerjee R., Kurungot S. (2015). Fe(III) phytate metallogel as a prototype anhydrous, intermediate temperature proton conductor. Chem. Sci. 6, 603–607. 10.1039/C4SC02294G PubMed DOI PMC

Alahmadi M., Siaj M. (2018). Graphene-assisted magnetic iron carbide nanoparticle growth. ACS Appl. Nano Mater. 1, 7000–7005. 10.1021/acsanm.8b01794 DOI

Anu Prathap M. U., Kaur B., Srivastava S. (2019). Electrochemical sensor platforms based on nanostructured metal oxides, and zeolite-based materials. Chem. Rec. 19, 883–907. 10.1002/tcr.201800068 PubMed DOI

Baenas N., Salar F. J., Domínguez-Perles R., García-Viguera C. (2019). New UHPLC-QqQ-MS/MS method for the rapid and sensitive analysis of ascorbic and dehydroascorbic acids in plant foods. Molecules 24:1632. 10.3390/molecules24081632 PubMed DOI PMC

Bak W., Kim H. S., Chun H., Yoo W. C. (2015). Facile synthesis of metal/metal oxide nanoparticles inside a nanoporous carbon matrix (M/MO@C) through the morphology-preserved transformation of metal–organic framework. Chem. Commun. 51, 7238–7241. 10.1039/C5CC01701G PubMed DOI

Bazel Y., Riabukhina T., Tirpák J. (2018). Spectrophotometric determination of ascorbic acid in foods with the use of vortex-assisted liquid-liquid microextraction. Microchem. J. 143, 160–165. 10.1016/j.microc.2018.08.003 PubMed DOI PMC

Chen X., Liu Q., Liu M., Zhang X., Lin S., Chen Y., et al. . (2018). Protein-templated Fe2O3 microspheres for highly sensitive amperometric detection of dopamine. Microchim. Acta 185:340. 10.1007/s00604-018-2876-5 PubMed DOI

Chen Y., Wu H., Yuan Y., Lv D., Qiao Z., An D., et al. (2020). Highly rapid mechanochemical synthesis of a pillar-layer metal-organic framework for efficient CH4/N2 separation. Chem. Eng. J. 385:123836 10.1016/j.cej.2019.123836 DOI

Edris N. M. M. A., Abdullah J., Kamaruzaman S., Saiman M. I., Sulaiman Y. (2018). Electrochemical reduced graphene oxide-poly (eriochrome black T)/gold nanoparticles modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Arabian J. Chem. 11, 1301–1312. 10.1016/j.arabjc.2018.09.002 DOI

Fang J. J., Yang N. N., Gao E. Q. (2018). Making metal–organic frameworks electron-deficient for ultrasensitive electrochemical detection of dopamine. Electrochem. Commun. 89, 32–37. 10.1016/j.elecom.2018.02.014 DOI

Gao S., Li H., Li M., Li C., Qian L., Yang B. (2018). A gold-nanoparticle/horizontal-graphene electrode for the simultaneous detection of ascorbic acid, dopamine, uric acid, guanine, and adenine. J. Solid State Electrochem. 22, 3245–3254. 10.1007/s10008-018-4019-7 DOI

Ghanbari Kh., Bonyadi S. (2018). An electrochemical sensor based on reduced graphene oxide decorated with polypyrrole nanofibers and zinc oxide–copper oxide p–n junction heterostructures for the simultaneous voltammetric determination of ascorbic acid, dopamine, paracetamol, and tryptophan. New J. Chem. 42, 8512–8523. 10.1039/C8NJ00857D DOI

Ghanbari Kh., Hajheidari N. (2015). ZnO–CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. Anal. Biochem. 473, 53–62. 10.1016/j.ab.2014.12.013 PubMed DOI

Gong Q., Liu Y., Dang Z. (2019). Core-shell structured Fe3O4@GO@MIL-100(Fe) magnetic nanoparticles as heterogeneous photo-Fenton catalyst for 2,4-dichlorophenol degradation under visible light. J. Hazard. Mater. 371, 677–686. 10.1016/j.jhazmat.2019.03.019 PubMed DOI

Grace A. A., Divya K. P., Dharuman V., Hahn J. H. (2019). Single step sol-gel synthesized Mn2O3-TiO2 decorated graphene for the rapid and selective ultra sensitive electrochemical sensing of dopamine. Electrochim. Acta 302, 291–300. 10.1016/j.electacta.2019.02.053 DOI

Guan B. Y., Yu L., Lou X. W. (2016). A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 9, 3092–3096. 10.1039/C6EE02171A PubMed DOI

Guo D., Han S., Wang J., Zhu Y. (2018b). MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction. Appl. Surf. Sci. 434, 1266–1273. 10.1016/j.apsusc.2017.11.230 DOI

Guo Q., Wu T., Liu L., Hou H., Chen S., Wang L. (2018a). Flexible and conductive titanium carbide-carbon nanofibers for the simultaneous determination of ascorbic acid, dopamine and uric acid. J. Mater. Chem. B 6, 4610–4617. 10.1039/C8TB00938D PubMed DOI

He S., Chen L., Cui J., Yuan B., Wang H., Wang F., et al. . (2019). General way to construct micro- and mesoporous metal–organic framework-based porous liquids. J. Am. Chem. Soc. 141, 19708–19714. 10.1021/jacs.9b08458 PubMed DOI

Horike S., Shimomura, S., Kitagawa S. (2009). Soft porous crystals. Nat. Chem. 1, 695–704. 10.1038/nchem.444 PubMed DOI

Huang G., Yang L., Yin Q., Fang Z. B., Hu X. J., Zhang A. A., et al. . (2020). A comparison of two isoreticular metal–organic frameworks with cationic and neutral skeletons: stability, mechanism, and catalytic activity. Angew. Chem. Int. Ed. 59, 1–7. 10.1002/anie.201916649 PubMed DOI

Jayaramulu K., Geyer F., Petr M., Zboril R., Vollmer D., Fischer R. A. (2017). Shape controlled hierarchical porous hydrophobic/oleophilic metal-organic nanofibrous gel composites for oil adsorption. Adv. Mater. 29:1605307. 10.1002/adma.201605307 PubMed DOI

Jayaramulu K., Geyer F., Schneemann A., Kment Š., Otyepka M., Zboril R., et al. . (2019). Hydrophobic metal–organic frameworks. Adv. Mater. 31:1900820. 10.1002/adma.201900820 PubMed DOI

Ji D., Liu Z., Liu L., Low S. S., Lu Y., Yu X., et al. . (2018). Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens. Bioelectron. 119, 55–62. 10.1016/j.bios.2018.07.074 PubMed DOI

Klencsár Z., Kuzmann E., Vértes A. (1996). User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 210, 105–118. 10.1007/BF02055410 DOI

Kornienko N., Zhao Y., Kley C. S., Zhu C., Kim D., Lin S., et al. . (2015). Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135. 10.1021/jacs.5b08212 PubMed DOI

Li L., Xiang S., Cao S., Zhang J., Ouyang G., Chen L., et al. . (2013). A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nat. Commun. 4:1774. 10.1038/ncomms2757 PubMed DOI PMC

Li S., Ma Y., Liu Y., Xin G., Wang M., Zhang Z., et al. (2019). Electrochemical sensor based on a three dimensional nanostructured MoS2 nanosphere-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid. RSC Adv. 9, 2997–3003. 10.1039/C8RA09511F PubMed DOI PMC

Li X., Zheng S., Jin L., Li Y., Geng P., Xue H., et al. (2018b). Metal-organic framework-derived carbons for battery applications. Adv. Energy Mater. 8:1800716 10.1002/aenm.201800716 DOI

Li Y., Xu Y., Yang W., Shen W., Xue H., Pang H. (2018a). MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 14:1704435. 10.1002/smll.201704435 PubMed DOI

Lin X., Wang Y., Zou M., Lan T., Ni Y. (2019). Electrochemical non-enzymatic glucose sensors based on nano-composite of Co3O4 and multiwalled carbon nanotube. Chin. Chem. Lett. 30, 1157–1160. 10.1016/j.cclet.2019.04.009 DOI

Liu A., Liu J., Pan B., Zhang W. (2014). Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water. RSC Adv. 4, 57377–57382. 10.1039/C4RA08988J DOI

Lohe M. R., Rose M., Kaskel S. (2009). Metal–organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 2009, 6056–6058. 10.1039/B910175F PubMed DOI

Luo W., Zhao T., Li Y., Wei J., Xu P., Li X., et al. . (2016). A Micelle fusion–aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing. J. Am. Chem. Soc. 138, 12586–12595. 10.1021/jacs.6b07355 PubMed DOI

Ma S., Xu Z., Ren J. (2019). Analysis of neurochemicals by capillary electrophoresis in athletes' urine and a pilot study of their changes responding to sport fatigue. Anal. Methods 11, 2712–2719. 10.1039/C9AY00457B DOI

McConnell M. J., Herst P. M. (2014). Ascorbate combination therapy: new tool in the anticancer toolbox? Sci. Transl. Med. 6:222fs6. 10.1126/scitranslmed.3008488 PubMed DOI

Pechoušek J., Jančík D., Frydrych J., Navarík J., Novák P. (2012). Setup of Mössbauer spectrometers at RCPTM. AIP Conf. Proc. 1489, 186–193. 10.1063/1.4759489 DOI

Pechousek J., Prochazka R., Jančik D., Frydrych J., Mashlan M. (2010). Universal LabVIEW-powered Mössbauer spectrometer based on USB, PCI or PXI devices. J. Phys. Conf. Ser. 217:012006 10.1088/1742-6596/217/1/012006 DOI

Randviir E. P. (2018). A cross examination of electron transfer rate constants for carbon screen-printed electrodes using electrochemical impedance spectroscopy and cyclic voltammetry. Electrochim. Acta 286, 179–186. 10.1016/j.electacta.2018.08.021 DOI

Randviir E. P., Banks C. E. (2013). Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods 5, 1098–1115. 10.1039/C3AY26476A PubMed DOI

Roztocki K., Formalik F., Krawczuk A., Senkovska I., Kuchta B., Kaskel S., et al. . (2020). Collective breathing in an eightfold interpenetrated metal–organic framework: from mechanistic understanding towards threshold sensing architectures. Angew. Chem. Int. Ed. 59, 2–9. 10.1002/anie.201914198 PubMed DOI

Takisawa S., Funakoshi T., Yatsu T., Nagata K., Aigaki T., Machida S., et al. . (2019). Vitamin C deficiency causes muscle atrophy and a deterioration in physical performance. Sci. Rep. 9:4702. 10.1038/s41598-019-41229-7 PubMed DOI PMC

Tang B., Wang S., Li R., Gou X., Long J. (2019). Urea treated metal organic frameworks-graphene oxide composites derived N-doped Co-based materials as efficient catalyst for enhanced oxygen reduction. J. Power Sources 425, 76–86. 10.1016/j.jpowsour.2019.04.007 DOI

Thapa B., Diaz-Diestra D., Badillo-Diaz D., Sharma R. K., Dasari K., Kumari S., et al. . (2019). Controlling the transverse proton relaxivity of magnetic graphene oxide. Sci. Rep. 9:5633. 10.1038/s41598-019-42093-1 PubMed DOI PMC

Thirumalai D., Subramani D., Yoon J. H., Lee J., Paik H. J., Chang S. C. (2018). De-bundled single-walled carbon nanotube modified sensors for simultaneous differential pulse voltammetric determination of ascorbic acid, dopamine, and uric acid. New J. Chem. 42, 2432–2438. 10.1039/C7NJ04371F DOI

Tian Z., Yao X., Ma K., Niu X., Grothe J., Xu Q., et al. . (2017). Metal–organic framework/graphene quantum dot nanoparticles used for synergistic chemo- and photothermal therapy. ACS Omega 2, 1249–1258. 10.1021/acsomega.6b00385 PubMed DOI PMC

Tuček J., Zboril R., Petridis D. (2006). Maghemite nanoparticles by view of Mössbauer spectroscopy. J. Nanosci. Nanotechnol. 6, 926–947. 10.1166/jnn.2006.183 PubMed DOI

Urbanová V., Jayaramulu K., Schneemann A., Kment A., Fischer R. A., Zboril R. (2018). Hierarchical porous fluorinated graphene oxide@metal-organic gel composite: label-free electrochemical aptasensor for selective detection of thrombin. ACS Appl. Mater. Interfaces 10, 41089–41097. 10.1021/acsami.8b14344 PubMed DOI

Vermisoglou E. C., Devlin E., Giannakopoulou T., Romanos G., Boukos N., Psycharis V., et al. (2014). Reduced graphene oxide/iron carbide nanocomposites for magnetic and supercapacitor applications. J. Alloys Comp. 590, 102–109. 10.1016/j.jallcom.2013.11.087 DOI

Vermisoglou E. C., Giannakopoulou T., Todorova N., Boukos N., Vaimakis T., Petridis D., et al. (2018). Organoclay/graphitic nanoplatelets lamellar hybrid composites. J. Nanosci. Nanotechnol. 18, 7797–7803. 10.1166/jnn.2018.15534 PubMed DOI

Vermisoglou E. C., Jakubec P., Bakandritsos A., Pykal M., Talande S., Kupka V., et al. . (2019). Chemical tuning of specific capacitance in functionalized fluorographene. Chem. Mater. 31, 4698–4709. 10.1021/acs.chemmater.9b00655 PubMed DOI PMC

Wan Y., Wang J., Huang F., Xue Y., Cai N., Liu J., et al. (2018). Synergistic effect of adsorption coupled with catalysis based on graphene-supported MOF hybrid aerogel for promoted removal of dyes. RSC Adv. 8, 34552–34559. 10.1039/C8RA05873C PubMed DOI PMC

Wang J., Yin N., Deng Y., Wei Y, Huang Y., Pu X., et al. . (2016). Ascorbic acid protects against hypertension through downregulation of ACE1 gene expression mediated by histone deacetylation in prenatal inflammation-induced offspring. Sci. Rep. 6:39469. 10.1038/srep39469 PubMed DOI PMC

Wang Y., Chen S., Qiu L., Wang K., Wang H., Simon G. P., et al. (2015). Graphene-directed supramolecular assembly of multifunctional polymer hydrogel membranes. Adv. Funct. Mater. 25, 126–133. 10.1002/adfm.201402952 DOI

Wang Y., Tao L., Xiao Z., Chen R., Jiang Z., Wang S. (2018). 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 28:1705356 10.1002/adfm.201705356 DOI

Wu R., Qian X., Zhou K., Wei J., Lou J., Ajayan P. M. (2014). Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8, 6297–6303. 10.1021/nn501783n PubMed DOI

Xie L. Q., Zhang Y. H., Gao F., Wu Q. A., Xu P. Y., Wang S. S. (2017). A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite. Chin. Chem. Lett. 28, 41–48. 10.1016/j.cclet.2016.05.015 DOI

Yuan S., Feng L., Wang K., Pang J., Bosch M., Lollar C., et al. . (2018). Stable metal-organic frameworks: design, synthesis, and applications. Adv. Mater. 30:1704303. 10.1002/adma.201704303 PubMed DOI

Zhang C., Lee B. J., Li H., Samdani J., Kang T. H., Yu J. S. (2018). Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications. Commun. Chem. 1:94 10.1038/s42004-018-0088-x DOI

Zhao C. W., Li Y. A., Wang X. R., Chen G. J., Liu Q. K., Ma J. P., et al. . (2015). Fabrication of Cd(II)-MOF-based ternary photocatalytic composite materials for H2 production via a gel-to-crystal approach. Chem. Commun. 51, 15906–15909. 10.1039/C5CC06291H PubMed DOI

Zhao T., Qiu P., Fan Y., Yang J., Jiang W., Wang L. (2019a). Hierarchical branched mesoporous TiO2-SnO2 nanocomposites with well-defined n–n heterojunctions for highly efficient ethanol sensing. Adv. Sci. 6:1902008. 10.1002/advs.201902008 PubMed DOI PMC

Zhao T., Ren Y., Jia G., Zhao Y., Fan Y., Yang J., et al. (2019b). Facile synthesis of mesoporous WO3@graphene aerogel nanocomposites for low-temperature acetone sensing. Chin. Chem. Lett. 30, 2032–2038. 10.1016/j.cclet.2019.05.006 DOI

Zhu Q. L., Xia W., Zheng L. R., Zou R., Liu Z., Xu Q. (2017). Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2, 504–511. 10.1021/acsenergylett.6b00686 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...