Ultrathin 2D Cobalt Zeolite-Imidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30479932
PubMed Central
PMC6247023
DOI
10.1002/advs.201801029
PII: ADVS816
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, electrocatalysis, liquid‐phase exfoliation, mechanochemical synthesis, oxygen evolution, zeolite imidazole frameworks (ZIFs),
- Publikační typ
- časopisecké články MeSH
2D layered materials, including metal-di-chalcogenides and transition metal layered double hydroxides, among others, are intensively studied because of new properties that emerge from their 2D confinement, which are attractive for advanced applications. Herein, 2D cobalt ion (Co2+) and benzimidazole (bIm) based zeolite-imidazole framework nanosheets, ZIF-9(III), are reported as exceptionally efficient electrocatalysts for the oxygen evolution reaction (OER). Specifically, liquid-phase ultrasonication is applied to exfoliate a [Co4(bIm)16] zeolite-imidazole framework (ZIF), named as ZIF-9(III) phase, into nanoscale sheets. ZIF-9(III) is selectively prepared through simple mechanical grinding of cobalt nitrate and benzimidazole in the presence of a small amount of ethanol. The resultant exfoliated nanosheets exhibit significantly higher OER activity in alkaline conditions than the corresponding bulk phases ZIF-9 and ZIF-9(III). The electrochemical and physicochemical characterization data support the assignment of the OER activity of the exfoliated nanosheet derived material to nitrogen coordinated cobalt oxyhydroxide N4CoOOH sites, following a mechanism known for Co-porphyrin and related systems. Thus, exfoliated 2D nanosheets hold promise as potential alternatives to commercial noble metal electrocatalysts for the OER.
Zobrazit více v PubMed
Lewis N. S., Nocera D. G., Proc. Natl Acad. Sci. USA 2006, 103, 15729. PubMed PMC
Turner J. A., Science 2004, 305, 972. PubMed
Nowotny J., Sorrell C. C., Sheppard L. R., Bak T., Int. J. Hydrogen Energy 2005, 30, 521.
Jaramillo T. F., Jørgensen K. P., Bonde J., Nielsen J. H., Horch S., Chorkendorff I., Science 2007, 317, 100. PubMed
Jayaramulu K., Masa J., Tomanec O., Peeters D., Ranc V., Schneemann A., Zboril R., Schuhmann W., Fischer R. A., Adv. Funct. Mater. 2017, 27 1700451.
Masa J., Weide P., Peeters D., Sinev I., Xia W., Sun Z., Somsen C., Muhler M., Schuhmann W., Adv. Energy Mater. 2016, 6, 1502313.
Zhang H., ACS Nano 2015, 9, 9451. PubMed
Masa J., Sinev I., Mistry H., Ventosa E., de la Mata M., Arbiol J., Muhler M., Roldan Cuenya B., Schuhmann W., Adv. Energy Mater. 2017, 7, 1700381.
Deng D., Novoselov K. S., Fu Q., Zheng N., Tian Z., Bao X., Nat. Nano 2016, 11, 218. PubMed
Zou X., Goswami A., Asefa T., J. Am. Chem. Soc. 2013, 135, 17242. PubMed
Kitagawa S., Kitaura R., Noro S. I., Angew. Chem., Int. Ed. 2004, 43, 2334. PubMed
Yaghi O. M., Nat. Mater. 2007, 6, 92. PubMed
Jayaramulu K., Geyer F., Petr M., Zboril R., Vollmer D., Fischer R. A., Adv. Mater. 2017, 29, 1605307 PubMed
Shekhah O., Wang H., Paradinas M., Ocal C., Schupbach B., Terfort A., Zacher D., Fischer R. A., Woll C., Nat. Mater. 2009, 8, 481. PubMed
Maji T. K., Matsuda R., Kitagawa S., Nat. Mater. 2007, 6, 142. PubMed
Huang Y. B., Liang J., Wang X. S., Cao R., Chem. Soc. Rev. 2017, 46, 126. PubMed
Rodenas T., Luz I., Prieto G., Seoane B., Miro H., Corma A., Kapteijn F., Llabrés i Xamena F. X., Gascon J., Nat. Mater. 2015, 14, 48. PubMed PMC
Zhao M., Wang Y., Ma Q., Huang Y., Zhang X., Ping J., Zhang Z., Lu Q., Yu Y., Xu H., Zhao Y., Zhang H., Adv. Mater. 2015, 27, 7372. PubMed
Miguel D. R. S., Ochoa P. A., Zamora F., Chem. Commun. 2016, 52, 4113. PubMed
Peng Y., Li Y., Ban Y., Jin H., Jiao W., Liu X., Yang W., Science 2014, 346, 1356. PubMed
Zhao M. T., Lu Q. P., Ma Q. L. and Zhang H., Small Methods 2017, 1600030.
Zhao S., Wang Y., Dong J., He C.‐T., Yin H., An P., Zhao K., Zhang X., Gao C., Zhang L., Lv J., Wang J., Zhang J., Khattak A. M., Khan N. A., Wei Z., Zhang J., Liu S., Zhao H., Tang Z., Nat. Energy 2016, 1, 16184.
Cravillon J., Münzer S., Lohmeier S.‐J., Feldhoff A., Huber K., Wiebcke M., Chem. Mater. 2009, 21, 1410.
Jiang Y., Ryu G. H., Joo S. H., Chen X., Lee S. H., Chen X., Huang M., Wu X., Luo D., Huang Y., Lee J. H., Wang B., Zhang X., Kwak S. K., Lee Z., Ruoff R. S., ACS Appl. Mater. Interface 2017, 9, 28107. PubMed
Wasylenko D. J., Palmer R. D., Schott E., Berlinguette C. P., Chem. Commun. 2012, 48, 2107. PubMed
Zhu Y.‐P., Liu Y.‐P., Ren T.‐Z., Yuan Z.‐Y., Adv. Funct. Mater. 2015, 25, 7337.
Esswein A. J., McMurdo M. J., Ross P. N., Bell A. T., Tilley T. D., J. Phys. Chem. 2009, 113, 15068.
Dutta A., Samantara A. K., Dutta S. K., Jena B. K., Pradhan N., ACS Energy Lett. 2016, 1, 169.
Hou C.‐C., Cao S., Fu W.‐F., Chen Y., ACS App. Mater. Interface 2015, 7, 28412. PubMed
Suen N.‐T., Hung S.‐F., Quan Q., Zhang N., Xu Y.‐J., Chen H. M., Chem. Soc. Rev. 2017, 46, 337. PubMed
McCrory C. C. L., Jung S., Peters J. C., Jaramillo T. F., J. Am. Chem. Soc. 2013, 135, 16977. PubMed
Li Y., Zhao C., Chem. Mater. 2016, 28, 5659.
Li Y., Zhang H., Jiang M., Kuang Y., Sun X., Duan X., Nano Res. 2016, 9, 2251.
Masa J., Barwe S., Andronescu C., Sinev I., Ruff A., Jayaramulu K., Elumeeva K., Konkena B., Roldan Cuenya B., Schuhmann W., ACS Energy Lett. 2016, 1, 1192.
Lee Y., Suntivich J., May K. J., Perry E. E., Shao‐Horn Y., J. Phys. Chem. Lett. 2012, 3, 399. PubMed
Gao M.‐R., Cao X., Gao Q., Xu Y.‐F., Zheng Y.‐R., Jiang J., Yu S.‐H., ACS Nano 2014, 8, 3970. PubMed
Wu L., Li Q., Wu C. H., Zhu H., Mendoza‐Garcia A., Shen B., Guo J., Sun S., J. Am. Chem. Soc. 2015, 137, 7071. PubMed
Wang J., Cui W., Liu Q., Xing Z., Asiri A. M., Sun X., Adv. Mater. 2016, 28, 215. PubMed
Szybowicz M., Bała W., Dümecke S., Fabisiak K., Paprocki K., Drozdowski M., Thin Solid Films 2011, 520, 623.
Kötz R., Yeager E., J. Electroanal. Chem. 1980, 113, 113.
Han D., Li C., Chen H., Spectrochem. Lett. 1998, 31, 1263.
Yang J., Liu H., Martens W. N., Frost R. L., J. Phys. Chem. C 2010, 114, 111.
Masikhwa T. M., Madito M. J., Momodu D., Bello A., Dangbegnon J. K., Manyala N., J. Colloid Interface Sci. 2016, 484, 77. PubMed
Bockris J. O., Otagawa T., J. Phys. Chem. 1983, 87, 2960.
Shinagawa T., Garcia‐Esparza A. T., Takanabe K., Sci. Rep. 2015, 5, 13801. PubMed PMC
McIntyre N. S., Cook M. G., Anal. Chem. 1975, 47, 2208.
Wang D., Groves J. T., Proc. Natl. Acad. Sci. USA 2013, 110, 15579. PubMed PMC
Nakazono T., Parent A. R., Sakai K., Chem. Commun. 2013, 49, 6325. PubMed
Dau H., Limberg C., Reier T., Risch M., Roggan S., Strasser P., ChemCatChem 2010, 2, 724.
Das D., Pattanayak S., Singh K. K., Garai B., Sen Gupta S., Chem. Commun. 2016, 52, 11787. PubMed
Synergistic metal halide perovskite@metal-organic framework hybrids for photocatalytic CO2 reduction