Consensus guidelines for the detection of immunogenic cell death
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu přehledy, práce podpořená grantem, časopisecké články
Grantová podpora
11335
Cancer Research UK - United Kingdom
R01 NS082311
NINDS NIH HHS - United States
R01 NS074387
NINDS NIH HHS - United States
17737
Cancer Research UK - United Kingdom
R01 NS061107
NINDS NIH HHS - United States
R01 NS057711
NINDS NIH HHS - United States
R01 CA129536
NCI NIH HHS - United States
PubMed
25941621
PubMed Central
PMC4292729
DOI
10.4161/21624011.2014.955691
PII: 955691
Knihovny.cz E-zdroje
- Klíčová slova
- APC, antigen-presenting cell, ATF6, activating transcription factor 6, ATP release, BAK1, BCL2-antagonist/killer 1, BAX, BCL2-associated X protein, BCL2, B-cell CLL/lymphoma 2 protein, CALR, calreticulin, CTL, cytotoxic T lymphocyte, DAMP, damage-associated molecular pattern, DAPI, 4′,6-diamidino-2-phenylindole, DiOC6(3), 3,3′-dihexyloxacarbocyanine iodide, EIF2A, eukaryotic translation initiation factor 2A, ER, endoplasmic reticulum, FLT3LG, fms-related tyrosine kinase 3 ligand, G3BP1, GTPase activating protein (SH3 domain) binding protein 1, GFP, green fluorescent protein, H2B, histone 2B, HMGB1, HMGB1, high mobility group box 1, HSP, heat shock protein, HSV-1, herpes simplex virus type I, ICD, immunogenic cell death, IFN, interferon, IL, interleukin, MOMP, mitochondrial outer membrane permeabilization, PDIA3, protein disulfide isomerase family A, PI, propidium iodide, RFP, red fluorescent protein, TLR, Toll-like receptor, XBP1, X-box binding protein 1, autophagy, calreticulin, endoplasmic reticulum stress, immunotherapy, member 3, Δψm, mitochondrial transmembrane potential,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.
British Columbia Cancer Agency ; Vancouver Canada
Cellular and Molecular Immunology and Endocrinology Oniris; Nantes France
Comprehensive Cancer Center; Medical University of Vienna ; Vienna Austria
Department of Ecological and Biological Sciences Tuscia University ; Viterbo Italy
Department of Experimental Medicine; University of Rome La Sapienza ; Rome Italy
Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità ; Rome Italy
Department of Internal Medicine 3; University of Erlangen Nuremberg ; Erlangen Germany
Department of Molecular Genetics and Microbiology; Stony Brook University ; Stony Brook NY USA
Department of Oncology Pathology; Karolinska Institute ; Stockholm Sweden
Department of Pathology; New York University School of Medicine ; New York NY USA
Department of Pharmacology; University of Colorado School of Medicine ; Aurora CO USA
Department of Surgery; University of Pittsburgh ; Pittsburgh PA USA
European Pancreas Center; Department of Surgery; University Hospital Heidelberg ; Heidelberg Germany
Faculty of Life Sciences; University of Manchester ; Manchester UK
Institute of Clinical Chemistry and Clinical Pharmacology; University Hospital Bonn ; Bonn Germany
Institute of Molecular Biosciences; University of Graz ; Graz Austria
Laboratory of Molecular and Cellular Therapy ; Jette Belgium
Regina Elena National Cancer Institute ; Rome Italy
Zobrazit více v PubMed
Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G. Cell death modalities: classification and pathophysiological implications. Cell Death Differ 2007; 14:1237-43; PMID:; http://dx.doi.org/10.1038/sj.cdd.4402148 PubMed DOI
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, et al. . Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 2009; 16:3-11; PMID:; http://dx.doi.org/10.1038/cdd.2008.150 PubMed DOI PMC
Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deir WS, Fulda S, et al. . Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 2012; 19:107-20; PMID:; http://dx.doi.org/10.1038/cdd.2011.96 PubMed DOI PMC
Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010; 11:700-14; PMID:; http://dx.doi.org/10.1038/nrm2970 PubMed DOI
Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 2014; 15:135-47; PMID:; http://dx.doi.org/10.1038/nrm3737 PubMed DOI
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:; http://dx.doi.org/10.1146/annurev-immunol-032712-100008 PubMed DOI
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12:860-75; PMID:; http://dx.doi.org/10.1038/nrc3380 PubMed DOI
Vogt CI. Untersuchungen über die Entwicklungsgeschichte der Geburtshelferkröte (Alytes obstetricans). Jent, 1842.
Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C, et al. . Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 2009; 16:1093-107; PMID:; http://dx.doi.org/10.1038/cdd.2009.44 PubMed DOI PMC
Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 2014; 5:e1257; PMID:; http://dx.doi.org/10.1038/cddis.2013.428 PubMed DOI PMC
Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26:239-57; PMID:; http://dx.doi.org/10.1038/bjc.1972.33 PubMed DOI PMC
Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest 2005; 115:2679-88; PMID:; http://dx.doi.org/10.1172/JCI26390 PubMed DOI PMC
Ericsson JL. Studies on induced cellular autophagy. I. Electron microscopy of cells with in vivo labelled lysosomes. Exp Cell Res 1969; 55:95-106; PMID:; http://dx.doi.org/10.1016/0014-4827(69)90462-5 PubMed DOI
Maximow AA. Studies on the Changes Produced by Roentgen Rays in Inflamed Connective Tissue. J Exp Med 1923; 37:319-40; PMID:; http://dx.doi.org/10.1084/jem.37.3.319 PubMed DOI PMC
Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, et al. . Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4:151-75; PMID:; http://dx.doi.org/10.4161/auto.5338 PubMed DOI PMC
Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 1995; 182:1545-56; PMID:; http://dx.doi.org/10.1084/jem.182.5.1545 PubMed DOI PMC
Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010; 11:621-32; PMID:; http://dx.doi.org/10.1038/nrm2952 PubMed DOI
Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87:99-163; PMID:; http://dx.doi.org/10.1152/physrev.00013.2006 PubMed DOI
Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008; 9:231-41; PMID:; http://dx.doi.org/10.1038/nrm2312 PubMed DOI
Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005; 6:328-40; PMID:; http://dx.doi.org/10.1038/nrm1619 PubMed DOI
Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A. Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 2014; 35C:24-32; PMID 24582829; http://dx.doi:10.1016/j.semcdb.2014.02.006. PubMed DOI
Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, et al. . Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 2005; 202:1691-701; PMID:; http://dx.doi.org/10.1084/jem.20050915 PubMed DOI PMC
Cirone M, Di Renzo L, Lotti LV, Conte V, Trivedi P, Santarelli R, Gonnella R, Frati L, Faggioni A. Activation of dendritic cells by tumor cell death. Oncoimmunology 2012; 1:1218-9; PMID:; http://dx.doi.org/10.4161/onci.20428 PubMed DOI PMC
Henson PM, Hume DA. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 2006; 27:244-50; PMID:; http://dx.doi.org/10.1016/j.it.2006.03.005 PubMed DOI
Abud HE. Shaping developing tissues by apoptosis. Cell Death Differ 2004; 11:797-9; PMID:; http://dx.doi.org/10.1038/sj.cdd.4401455 PubMed DOI
Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U, Neuhuber WL, Kirchner T, Kalden JR, Herrmann M. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum 2002; 46:191-201; PMID:; http://dx.doi.org/10.1002/1529-0131(200201)46:1<191::AID-ART10027>3.0.CO;2-K PubMed DOI
Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 2010; 6:280-9; PMID:; http://dx.doi.org/10.1038/nrrheum.2010.46 PubMed DOI
Vacchelli E, Galluzzi L, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Kroemer G. Trial watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology 2012; 1:179-88; PMID:; http://dx.doi.org/10.4161/onci.1.2.19026 PubMed DOI PMC
Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2013; 2:e23510; PMID:; http://dx.doi.org/10.4161/onci.23510 PubMed DOI PMC
Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014; 3:e27878; PMID:; http://dx.doi.org/10.4161/onci.27878 PubMed DOI PMC
Mattarollo SR, Loi S, Duret H, Ma Y, Zitvogel L, Smyth MJ. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res 2011; 71:4809-20; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-11-0753 PubMed DOI
Cirone M, Garufi A, Di Renzo L, Granato M, Faggioni A, D’Orazi G. Zinc supplementation is required for the cytotoxic and immunogenic effects of chemotherapy in chemoresistant p53-functionally deficient cells. Oncoimmunology 2013; 2:e26198; http://dx.doi.org/10.4161/onci.26198 PubMed DOI PMC
Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 2014; 21:15-25; PMID:; http://dx.doi.org/10.1038/cdd.2013.67 PubMed DOI PMC
Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, et al. . Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13:54-61; PMID:; http://dx.doi.org/10.1038/nm1523 PubMed DOI
Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova J, Spísek R. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 2011; 71:4821-33; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-11-0950 PubMed DOI
Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, Durchschlag M, Joza N, Pierron G, van Endert P, et al. . Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 2009; 28:578-90; PMID:; http://dx.doi.org/10.1038/emboj.2009.1 PubMed DOI PMC
Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I, Durchschlag M, Fimia GM, Kepp O, Piacentini M, Froehlich KU, et al. . The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 2008; 15:1499-509; PMID:; http://dx.doi.org/10.1038/emboj.2009.1x PubMed DOI
Bugaut H, Bruchard M, Berger H, Derangere V, Odoul L, Euvrard R, Ladoire S, Chalmin F, Végran F, Rébé C, et al. . Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells. PLoS One 2013; 8:e65181; PMID:; http://dx.doi.org/10.1371/journal.pone.0065181 PubMed DOI PMC
Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L, Michaud M, Apetoh L, Barault L, et al. . Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010; 29:482-91; PMID:; http://dx.doi.org/10.1038/onc.2009.356 PubMed DOI
Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M, Shen S, Michaud M, Menger L, Gdoura A, Tajeddine N, et al. . Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 2011; 30:1147-58; PMID:; http://dx.doi.org/10.1038/onc.2010.500 PubMed DOI
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, et al. . Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13:1050-9; PMID:; http://dx.doi.org/10.1038/nm1622 PubMed DOI
Gou HF, Huang J, Shi HS, Chen XC, Wang YS. Chemo-immunotherapy with oxaliplatin and interleukin-7 inhibits colon cancer metastasis in mice. PLoS One 2014; 9:e85789; http://dx.doi.org/10.1371/journal.pone.0085789 PubMed DOI PMC
Tongu M, Harashima N, Yamada T, Harada T, Harada M. Immunogenic chemotherapy with cyclophosphamide and doxorubicin against established murine carcinoma. Cancer Immunol Immunother 2010; 59:769-77; PMID:; http://dx.doi.org/10.1007/s00262-009-0797-1 PubMed DOI PMC
Schiavoni G, Sistigu A, Valentini M, Mattei F, Sestili P, Spadaro F, Sanchez M, Lorenzi S, D'Urso MT, Belardelli F, et al. . Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res 2011; 71:768-78; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-10-2788 PubMed DOI
Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol 2011; 33:369-83; PMID:; http://dx.doi.org/10.1007/s00281-011-0245-0 PubMed DOI
Stoetzer OJ, Fersching DM, Salat C, Steinkohl O, Gabka CJ, Hamann U, Braun M, Feller AM, Heinemann V, Siegele B, et al. . Circulating immunogenic cell death biomarkers HMGB1 and RAGE in breast cancer patients during neoadjuvant chemotherapy. Tumour Biol 2013; 34:81-90; PMID:; http://dx.doi.org/10.1007/s13277-012-0513-1 PubMed DOI
Chen X, Yang Y, Zhou Q, Weiss JM, Howard OZ, McPherson JM, Wakefield LM, Oppenheim JJ. Effective chemoimmunotherapy with anti-TGFbeta antibody and cyclophosphamide in a mouse model of breast cancer. PLoS One 2014; 9:e85398; PMID:; http://dx.doi.org/10.1371/journal.pone.0085398 PubMed DOI PMC
Guerriero JL, Ditsworth D, Fan Y, Zhao F, Crawford HC, Zong WX. Chemotherapy induces tumor clearance independent of apoptosis. Cancer Res 2008; 68:9595-600; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-08-2452 PubMed DOI PMC
Beneteau M, Zunino B, Jacquin MA, Meynet O, Chiche J, Pradelli LA, Marchetti S, Cornille A, Carles M, Ricci JE. Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response. Proc Natl Acad Sci U S A 2012; 109:20071-6; PMID:; http://dx.doi.org/10.1073/pnas.1206360109 PubMed DOI PMC
Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov 2013; 12:829-46; PMID:; http://dx.doi.org/10.1038/nrd4145 PubMed DOI
Hoffmann J, Vitale I, Buchmann B, Galluzzi L, Schwede W, Senovilla L, Skuballa W, Vivet S, Lichtner RB, Vicencio JM, et al. . Improved cellular pharmacokinetics and pharmacodynamics underlie the wide anticancer activity of sagopilone. Cancer Res 2008; 68:5301-8; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-08-0237 PubMed DOI
Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, Galluzzi L, Adjemian S, Kepp O, Niso-Santano M, et al. . An immunosurveillance mechanism controls cancer cell ploidy. Science 2012; 337:1678-84; PMID:; http://dx.doi.org/10.1126/science.1224922 PubMed DOI
Pellicciotta I, Yang CP, Goldberg GL, Shahabi S. Epothilone B enhances Class I HLA and HLA-A2 surface molecule expression in ovarian cancer cells. Gynecol Oncol 2011; 122:625-31; PMID:; http://dx.doi.org/10.1016/j.ygyno.2011.05.007 PubMed DOI
Dutcher JD, Vonsaltza MH, Pansy FE. Septacidin, a new antitumor and antifungal antibiotic produced by streptomyces fibriatus. Antimicrob Agents Chemother (Bethesda) 1963; 161:83-8; PMID: PubMed
Sukkurwala AQ, Martins I, Wang Y, Schlemmer F, Ruckenstuhl C, Durchschlag M, Michaud M, Senovilla L, Sistigu A, Ma Y, et al. . Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ 2014; 21:59-68; PMID:; http://dx.doi.org/10.1038/cdd.2013.73 PubMed DOI PMC
Perez CA, Fu A, Onishko H, Hallahan DE, Geng L. Radiation induces an antitumour immune response to mouse melanoma. Int J Radiat Biol 2009; 85:1126-36; PMID:; http://dx.doi.org/10.3109/09553000903242099 PubMed DOI
Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595; PMID:; http://dx.doi.org/10.4161/onci.25595 PubMed DOI PMC
Galluzzi L, Kepp O, Kroemer G. Immunogenic cell death in radiation therapy. Oncoimmunology 2013; 2:e26536; PMID:; http://dx.doi.org/10.4161/onci.26536 PubMed DOI PMC
Suzuki Y, Mimura K, Yoshimoto Y, Watanabe M, Ohkubo Y, Izawa S, Murata K, Fujii H, Nakano T, Kono K. Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res 2012; 72:3967-76; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-12-0851 PubMed DOI
Ko A, Kanehisa A, Martins I, Senovilla L, Chargari C, Dugue D, Mariño G, Kepp O, Michaud M, Perfettini JL, et al. . Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ 2014; 21:92-9; PMID:; http://dx.doi.org/10.1038/cdd.2013.124 PubMed DOI PMC
Formenti SC, Demaria S. Radiation therapy to convert the tumor into an in situ vaccine. Int J Radiat Oncol Biol Phys 2012; 84:879-80; PMID:; http://dx.doi.org/10.1016/j.ijrobp.2012.06.020 PubMed DOI PMC
Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 2014; 5:403-16; PMID: PubMed PMC
Schildkopf P, Frey B, Ott OJ, Rubner Y, Multhoff G, Sauer R, Fietkau R, Gaipl US. Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiother Oncol 2011; 101:109-15; PMID:; http://dx.doi.org/10.1016/j.radonc.2011.05.056 PubMed DOI
Gorin JB, Menager J, Gouard S, Maurel C, Guilloux Y, Faivre-Chauvet A, Morgenstern A, Bruchertseifer F, Chérel M, Davodeau F, et al. . Antitumor immunity induced after alpha irradiation. Neoplasia 2014; 16:319-28; PMID:; http://dx.doi.org/10.1016/j.neo.2014.04.002 PubMed DOI PMC
Garg AD, Krysko DV, Vandenabeele P, Agostinis P. Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunol Immunother 2012; 61:215-21; PMID:; http://dx.doi.org/10.1007/s00262-011-1184-2 PubMed DOI PMC
Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJ, et al. . A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012; 31:1062-79; PMID:; http://dx.doi.org/10.1038/emboj.2011.497 PubMed DOI PMC
Galluzzi L, Kepp O, Kroemer G. Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. EMBO J 2012; 31:1055-7; PMID:; http://dx.doi.org/10.1038/emboj.2012.2 PubMed DOI PMC
Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, Mathieu C, Agostinis P. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 2013; 9:1292-307; PMID:; http://dx.doi.org/10.4161/auto.25399 PubMed DOI
Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem Photobiol Sci 2014; 13:474-87; PMID:; http://dx.doi.org/10.1039/c3pp50333j PubMed DOI
Garg AD, Dudek AM, Agostinis P. Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity. Oncoimmunology 2013; 2:e26260; http://dx.doi.org/10.4161/onci.26260 PubMed DOI PMC
Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res 2005; 65:1018-26; PMID: PubMed
Panzarini E, Inguscio V, Dini L. Immunogenic cell death: can it be exploited in PhotoDynamic Therapy for cancer? Biomed Res Int 2013; 2013:482160; PMID:; http://dx.doi.org/10.1155/2013/482160 PubMed DOI PMC
Yu P, Fu YX. Targeting tumors with LIGHT to generate metastasis-clearing immunity. Cytokine Growth Factor Rev 2008; 19:285-94; PMID:; http://dx.doi.org/10.1016/j.cytogfr.2008.04.004 PubMed DOI PMC
Fucikova J, Moserova I, Truxova I, Hermanova I, Vancurova I, Partlova S, Fialova A, Sojka L, Cartron PF, Houska M, et al. . High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int J Cancer 2014; 135:1165-77; PMID:; http://dx.doi.org/10.1002/ijc.28766 PubMed DOI
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, et al. . Trial watch: oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:28694; PMID:; http://dx.doi.org/10.4161/onci.28694 PubMed DOI PMC
Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: oncolytic viruses for cancer therapy. Oncoimmunology 2013; 2:e24612; PMID:; http://dx.doi.org/10.4161/onci.24612 PubMed DOI PMC
Angelova AL, Grekova SP, Heller A, Kuhlmann O, Soyka E, Giese T, Aprahamian M, Bour G, Rüffer S, Cziepluch C, et al. . Complementary induction of immunogenic cell death by oncolytic parvovirus H-1PV and gemcitabine in pancreatic cancer. J Virol 2014; 88:5263-76; PMID:; http://dx.doi.org/10.1128/JVI.03688-13 PubMed DOI PMC
Workenhe ST, Mossman KL. Rewiring cancer cell death to enhance oncolytic viro-immunotherapy. Oncoimmunology 2013; 2:e27138; http://dx.doi.org/10.4161/onci.27138 PubMed DOI PMC
Workenhe ST, Pol JG, Lichty BD, Cummings DT, Mossman KL. Combining oncolytic HSV-1 with immunogenic cell death-inducing drug mitoxantrone breaks cancer immune tolerance and improves therapeutic efficacy. Cancer Immunol Res 2013; 1:309-19; PMID:; http://dx.doi.org/10.1158/2326-6066.CIR-13-0059-T PubMed DOI
Bartlett DL, Liu Z, Sathaiah M, Ravindranathan R, Guo Z, He Y, Guo ZS. Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer 2013; 12:103; PMID:; http://dx.doi.org/10.1186/1476-4598-12-103 PubMed DOI PMC
Guo ZS, Liu Z, Bartlett DL. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol 2014; 4:74; PMID:; http://dx.doi.org/10.3389/fonc.2014.00074 PubMed DOI PMC
Huang B, Sikorski R, Kirn DH, Thorne SH. Synergistic anti-tumor effects between oncolytic vaccinia virus and paclitaxel are mediated by the IFN response and HMGB1. Gene Ther 2011; 18:164-72; PMID:; http://dx.doi.org/10.1038/gt.2010.121 PubMed DOI
Liikanen I, Ahtiainen L, Hirvinen ML, Bramante S, Cerullo V, Nokisalmi P, Hemminki O, Diaconu I, Pesonen S, Koski A, et al. . Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol Ther 2013; 21:1212-23; PMID:; http://dx.doi.org/10.1038/mt.2013.51 PubMed DOI PMC
Mineharu Y, King GD, Muhammad AK, Bannykh S, Kroeger KM, Liu C, Lowenstein PR, Castro MG. Engineering the brain tumor microenvironment enhances the efficacy of dendritic cell vaccination: implications for clinical trial design. Clin Cancer Res 2011; 17:4705-18; PMID:; http://dx.doi.org/10.1158/1078-0432.CCR-11-0915 PubMed DOI PMC
Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 2007; 109:4839-45; PMID:; http://dx.doi.org/10.1182/blood-2006-10-054221 PubMed DOI PMC
Demaria S, Santori FR, Ng B, Liebes L, Formenti SC, Vukmanovic S. Select forms of tumor cell apoptosis induce dendritic cell maturation. J Leukoc Biol 2005; 77:361-8; PMID:; http://dx.doi.org/10.1189/jlb.0804478 PubMed DOI
Cirone M, Di Renzo L, Lotti LV, Conte V, Trivedi P, Santarelli R, Gonnella R, Frati L, Faggioni A. Primary effusion lymphoma cell death induced by bortezomib and AG 490 activates dendritic cells through CD91. PLoS One 2012; 7:e31732; PMID:; http://dx.doi.org/10.1371/journal.pone.0031732 PubMed DOI PMC
Chen HM, Wang PH, Chen SS, Wen CC, Chen YH, Yang WC, Yang NS. Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine. Cancer Immunol Immunother 2012; 61:1989-2002; PMID:; http://dx.doi.org/10.1007/s00262-012-1258-9 PubMed DOI PMC
Garrido G, Rabasa A, Sanchez B, Lopez MV, Blanco R, Lopez A, Hernández DR, Pérez R, Fernández LE. Induction of immunogenic apoptosis by blockade of epidermal growth factor receptor activation with a specific antibody. J Immunol 2011; 187:4954-66; PMID:; http://dx.doi.org/10.4049/jimmunol.1003477 PubMed DOI
D’Eliseo D, Manzi L, Velotti F. Capsaicin as an inducer of damage-associated molecular patterns (DAMPs) of immunogenic cell death (ICD) in human bladder cancer cells. Cell Stress Chaperones 2013; 18:801-8; http://dx.doi.org/10.1007/s12192-013-0422-2 PubMed DOI PMC
Gilardini Montani MS, D’Eliseo D, Cirone M, Di Renzo L, Faggioni A, Santoni A, et al. . Capsaicin-mediated apoptosis of human bladder cancer cells activates dendritic cells via CD91. Nutrition 2014; In Press; PMID 25220876; http://dx.doi:10.1016/j.nut.2014.05.005 PubMed DOI
Molinari R, D’Eliseo D, Manzi L, Zolla L, Velotti F, Merendino N. The n3-polyunsaturated fatty acid docosahexaenoic acid induces immunogenic cell death in human cancer cell lines via pre-apoptotic calreticulin exposure. Cancer Immunol Immunother 2011; 60:1503-7; PMID:; http://dx.doi.org/10.1007/s00262-011-1074-7 PubMed DOI PMC
Emeagi PU, Van Lint S, Goyvaerts C, Maenhout S, Cauwels A, McNeish IA, Bos T, Heirman C, Thielemans K, Aerts JL, et al. . Proinflammatory characteristics of SMACDIABLO-induced cell death in antitumor therapy. Cancer Res 2012; 72:1342-52; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-11-2400 PubMed DOI
Emeagi PU, Thielemans K, Breckpot K. The role of SMAC mimetics in regulation of tumor cell death and immunity. Oncoimmunology 2012; 1:965-7; PMID:; http://dx.doi.org/10.4161/onci.20369 PubMed DOI PMC
Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S, Yamazaki T, Sukkurwala AQ, Michaud M, Mignot G, et al. . Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med 2012; 4:143ra99; PMID:; http://dx.doi.org/10.1126/scitranslmed.3003807 PubMed DOI
Kepp O, Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Sukkurwala AQ, Michaud M, Galluzzi L, Zitvogel L, et al. . Anticancer activity of cardiac glycosides: at the frontier between cell-autonomous and immunological effects. Oncoimmunology 2012; 1:1640-2; PMID:; http://dx.doi.org/10.4161/onci.21684 PubMed DOI PMC
Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Cardiac glycosides and cancer therapy. Oncoimmunology 2013; 2:e23082; PMID:; http://dx.doi.org/10.4161/onci.23082 PubMed DOI PMC
Riganti C, Castella B, Kopecka J, Campia I, Coscia M, Pescarmona G, Bosia A, Ghigo D, Massaia M. Zoledronic acid restores doxorubicin chemosensitivity and immunogenic cell death in multidrug-resistant human cancer cells. PLoS One 2013; 8:e60975; PMID:; http://dx.doi.org/10.1371/journal.pone.0060975 PubMed DOI PMC
Riganti C, Massaia M. Inhibition of the mevalonate pathway to override chemoresistance and promote the immunogenic demise of cancer cells: Killing two birds with one stone. Oncoimmunology 2013; 2:e25770; http://dx.doi.org/10.4161/onci.25770 PubMed DOI PMC
Liljenfeldt L, Gkirtzimanaki K, Vyrla D, Svensson E, Loskog AS, Eliopoulos AG. Enhanced therapeutic anti-tumor immunity induced by co-administration of 5-fluorouracil and adenovirus expressing CD40 ligand. Cancer Immunol Immunother 2014; 63:273-82; PMID:; http://dx.doi.org/10.1007/s00262-013-1507-6 PubMed DOI PMC
Palombo F, Focaccetti C, Barnaba V. Therapeutic implications of immunogenic cell death in human cancer. Front Immunol 2014; 4:503; PMID:; http://dx.doi.org/10.3389/fimmu.2013.00503 PubMed DOI PMC
Olsson L, Ebbesen P. Experimental induction of tumor growth control by immune adjuvants: current status and some theories to be explored. Biomedicine 1978; 28:88-91; PMID: PubMed
Matzinger P. The danger model: a renewed sense of self. Science 2002; 296:301-5; PMID:; http://dx.doi.org/10.1126/science.1071059 PubMed DOI
Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88; PMID:; http://dx.doi.org/10.1016/j.immuni.2013.06.014 PubMed DOI
Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33; PMID:; http://dx.doi.org/10.1038/nrd3626 PubMed DOI
Ghiringhelli F, Apetoh L. The interplay between the immune system and chemotherapy: emerging methods for optimizing therapy. Expert Rev Clin Immunol 2014; 10:19-30; PMID:; http://dx.doi.org/10.1586/1744666X.2014.865520 PubMed DOI
Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, et al. . Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313:1960-4; PMID:; http://dx.doi.org/10.1126/science.1129139 PubMed DOI
Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12:298-306; PMID:; http://dx.doi.org/10.1038/nrc3245 PubMed DOI
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, et al. . Trial watch: prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323-43; PMID:; http://dx.doi.org/10.4161/onci.22009 PubMed DOI PMC
Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, Lugli A, Zlobec I, Hartmann A, Bifulco C, et al. . Towards the introduction of the ‘immunoscore’ in the classification of malignant tumours. J Pathol 2014; 232:199-209; PMID:; http://dx.doi.org/10.1002/path.4287 PubMed DOI PMC
Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, et al. . Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013; 39:782-95; PMID:; http://dx.doi.org/10.1016/j.immuni.2013.10.003 PubMed DOI
Anitei MG, Zeitoun G, Mlecnik B, Marliot F, Haicheur N, Todosi AM, Kirilovsky A, Lagorce C, Bindea G, Ferariu D, et al. . Prognostic and predictive values of the immunoscore in patients with rectal cancer. Clin Cancer Res 2014; 20:1891-9; PMID:; http://dx.doi.org/10.1158/1078-0432.CCR-13-2830 PubMed DOI
Bindea G, Mlecnik B, Angell HK, Galon J. The immune landscape of human tumors: implications for cancer immunotherapy. Oncoimmunology 2014; 3:e27456; PMID:; http://dx.doi.org/10.4161/onci.27456 PubMed DOI PMC
Paroli M, Bellati F, Videtta M, Focaccetti C, Mancone C, Donato T, Antonilli M, Perniola G, Accapezzato D, Napoletano C, et al. . Discovery of chemotherapy-associated ovarian cancer antigens by interrogating memory T cells. Int J Cancer 2014; 134:1823-34; PMID:; http://dx.doi.org/10.1002/ijc.28515 PubMed DOI
Kohles N, Nagel D, Jungst D, Stieber P, Holdenrieder S. Predictive value of immunogenic cell death biomarkers HMGB1, sRAGE, and DNase in liver cancer patients receiving transarterial chemoembolization therapy. Tumour Biol 2012; 33:2401-9; PMID:; http://dx.doi.org/10.1007/s13277-012-0504-2 PubMed DOI
Stoetzer OJ, Wittwer C, Lehner J, Fahmueller YN, Kohles N, Fersching DM, Leszinski G, Roessner J, Holdenrieder S. Circulating nucleosomes and biomarkers of immunogenic cell death as predictive and prognostic markers in cancer patients undergoing cytotoxic therapy. Expert Opin Biol Ther 2012; 12 Suppl 1:S217-24; PMID:; http://dx.doi.org/10.1517/14712598.2012.689280 PubMed DOI
Wittwer C, Boeck S, Heinemann V, Haas M, Stieber P, Nagel D, Holdenrieder S. Circulating nucleosomes and immunogenic cell death markers HMGB1, sRAGE and DNAse in patients with advanced pancreatic cancer undergoing chemotherapy. Int J Cancer 2013; 133:2619-30; PMID:; http://dx.doi.org/10.1002/ijc.28294 PubMed DOI
Stoll G, Enot D, Mlecnik B, Galon J, Zitvogel L, Kroemer G. Immune-related gene signatures predict the outcome of neoadjuvant chemotherapy. Oncoimmunology 2014; 3:e27884; http://dx.doi.org/10.4161/onci.27884 PubMed DOI PMC
Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T,Mignot G, Ullrich E, et al. . Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15:1170-8; PMID:; http://dx.doi.org/10.1038/nm.2028 PubMed DOI
Ladoire S, Mignot G, Dabakuyo S, Arnould L, Apetoh L, Rebe C, Coudert B, Martin F, Bizollon MH, Vanoli A, et al. . In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J Pathol 2011; 224:389-400; PMID:; http://dx.doi.org/10.1002/path.2866 PubMed DOI
Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell 2010; 140:798-804; PMID:; http://dx.doi.org/10.1016/j.cell.2010.02.015 PubMed DOI
Krysko O, Love Aaes T, Bachert C, Vandenabeele P, Krysko DV. Many faces of DAMPs in cancer therapy. Cell Death Dis 2013; 4:e631; PMID:; http://dx.doi.org/10.1038/cddis.2013.156 PubMed DOI PMC
Garg AD, Dudek AM, Agostinis P. Cancer immunogenicity, danger signals, and DAMPs: what, when, and how? Biofactors 2013; 39:355-67; PMID:; http://dx.doi.org/10.1002/biof.1125 PubMed DOI
Hou W, Zhang Q, Yan Z, Chen R, Zeh HJ, Iii, Kang R, Lotze MT, Tang D. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 2013; 4:e966; PMID:; http://dx.doi.org/10.1038/cddis.2013.493 PubMed DOI PMC
Garg AD, Martin S, Golab J, Agostinis P. Danger signalling during cancer cell death: origins, plasticity and regulation. Cell Death Differ 2014; 21:26-38; PMID:; http://dx.doi.org/10.1038/cdd.2013.48 PubMed DOI PMC
Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta 2010; 1805:53-71; PMID:; http://dx.doi.org/10.1016/j.bbcan.2009.08.003 PubMed DOI
Honeychurch J, Dive C, Illidge TM. Synchronous apoptosis in established tumors leads to the induction of adaptive immunity. Oncoimmunology 2013; 2:e24501; http://dx.doi.org/10.4161/onci.24501 PubMed DOI PMC
Inoue H, Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ 2014; 21:39-49; http://dx.doi.org/10.1038/cdd.2013.84 PubMed DOI PMC
Melis MH, Simpson KL, Dovedi SJ, Welman A, MacFarlane M, Dive C, Honeychurch J, Illidge TM. Sustained tumour eradication after induced caspase-3 activation and synchronous tumour apoptosis requires an intact host immune response. Cell Death Differ 2013; 20:765-73; PMID:; http://dx.doi.org/10.1038/cdd.2013.8 PubMed DOI PMC
Matzinger P. An innate sense of danger. Ann N Y Acad Sci 2002; 961:341-2; PMID:; http://dx.doi.org/10.1111/j.1749-6632.2002.tb03118.x PubMed DOI
Lotze MT, Deisseroth A, Rubartelli A. Damage associated molecular pattern molecules. Clin Immunol 2007; 124:1-4; PMID:; http://dx.doi.org/10.1016/j.clim.2007.02.006 PubMed DOI PMC
Pouwels SD, Heijink IH, ten Hacken NH, Vandenabeele P, Krysko DV, Nawijn MC, van Oosterhout AJ. DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol 2014; 7:215-26; PMID:; http://dx.doi.org/10.1038/mi.2013.77 PubMed DOI
Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 2004; 4:469-78; PMID:; http://dx.doi.org/10.1038/nri1372 PubMed DOI
Obeid M, Panaretakis T, Tesniere A, Joza N, Tufi R, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G. Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic. Cancer Res 2007; 67:7941-4; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-07-1622 PubMed DOI
Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, Sukkurwala AQ, Menger L, Zitvogel L, Kroemer G. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 2011; 30:61-9; PMID:; http://dx.doi.org/10.1007/s10555-011-9273-4 PubMed DOI
Kepp O, Menger L, Vacchelli E, Locher C, Adjemian S, Yamazaki T, Martins I, Sukkurwala AQ, Michaud M, Senovilla L, et al. . Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev 2013; 24:311-8; PMID:; http://dx.doi.org/10.1016/j.cytogfr.2013.05.001 PubMed DOI
Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L, Séror C, Métivier D, Perfettini JL, Zitvogel L, et al. . Chemotherapy induces ATP release from tumor cells. Cell Cycle 2009; 8:3723-8; PMID:; http://dx.doi.org/10.4161/cc.8.22.10026 PubMed DOI
Martins I, Michaud M, Sukkurwala AQ, Adjemian S, Ma Y, Shen S, Kepp O, Menger L, Vacchelli E, Galluzzi L, et al. . Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy 2012; 8:413-5; PMID:; http://dx.doi.org/10.4161/auto.19009 PubMed DOI
Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, et al. . Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573-7; PMID:; http://dx.doi.org/10.1126/science.1208347 PubMed DOI
Wang Y, Martins I, Ma Y, Kepp O, Galluzzi L, Kroemer G. Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. Autophagy 2013; 9:1624-5; PMID:; http://dx.doi.org/10.4161/auto.25873 PubMed DOI
Ma Y, Adjemian S, Yang H, Catani JP, Hannani D, Martins I, Michaud M, Kepp O, Sukkurwala AQ, Vacchelli E, et al. . ATP-dependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy. Oncoimmunology 2013; 2:e24568; PMID:; http://dx.doi.org/10.4161/onci.24568 PubMed DOI PMC
Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S, Kepp O, Métivier D, Galluzzi L, Perfettini JL, et al. . Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 2014; 21:79-91; PMID:; http://dx.doi.org/10.1038/cdd.2013.75 PubMed DOI PMC
Lavieri R, Piccioli P, Carta S, Delfino L, Castellani P, Rubartelli A. TLR costimulation causes oxidative stress with unbalance of proinflammatory and anti-inflammatory cytokine production. J Immunol 2014; 192:5373-81; PMID:; http://dx.doi.org/10.4049/jimmunol.1303480 PubMed DOI
Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Müller S, Iannacone M, Traversari C, et al. . HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 2004; 5:825-30; PMID:; http://dx.doi.org/10.1038/sj.embor.7400205 PubMed DOI PMC
Brusa D, Migliore E, Garetto S, Simone M, Matera L. Immunogenicity of 56 degrees C and UVC-treated prostate cancer is associated with release of HSP70 and HMGB1 from necrotic cells. Prostate 2009; 69:1343-52; PMID:; http://dx.doi.org/10.1002/pros.20981 PubMed DOI
Arnold T, Michlmayr A, Baumann S, Burghuber C, Pluschnig U, Bartsch R, Steger G, Gnant M, Bergmann M, Bachleitner-Hofmann T, et al. . Plasma HMGB-1 after the initial dose of epirubicindocetaxel in cancer. Eur J Clin Invest 2013; 43:286-91; PMID:; http://dx.doi.org/10.1111/eci.12043 PubMed DOI
Candolfi M, Yagiz K, Foulad D, Alzadeh GE, Tesarfreund M, Muhammad AK, Puntel M, Kroeger KM, Liu C, Lee S, et al. . Release of HMGB1 in response to proapoptotic glioma killing strategies: efficacy and neurotoxicity. Clin Cancer Res 2009; 15:4401-14; PMID:; http://dx.doi.org/10.1158/1078-0432.CCR-09-0155 PubMed DOI PMC
Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med 1999; 5:1249-55; PMID:; http://dx.doi.org/10.1038/15200 PubMed DOI
Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol 2001; 13:114-9; PMID:; http://dx.doi.org/10.1016/S0952-7915(00)00191-6 PubMed DOI
Fredly H, Ersvaer E, Gjertsen BT, Bruserud O. Immunogenic apoptosis in human acute myeloid leukemia (AML): primary human AML cells expose calreticulin and release heat shock protein (HSP) 70 and HSP90 during apoptosis. Oncol Rep 2011; 25:1549-56; PMID: PubMed
Aguilera R, Saffie C, Tittarelli A, Gonzalez FE, Ramirez M, Reyes D, Pereda C, Hevia D, García T, Salazar L, et al. . Heat-shock induction of tumor-derived danger signals mediates rapid monocyte differentiation into clinically effective dendritic cells. Clin Cancer Res 2011; 17:2474-83; PMID:; http://dx.doi.org/10.1158/1078-0432.CCR-10-2384 PubMed DOI
Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, Lin HM, Shang CZ, Chen YJ, Min J. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 2012; 287:15874-85; PMID:; http://dx.doi.org/10.1074/jbc.M112.340588 PubMed DOI PMC
Vega VL, Rodriguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, Multhoff G, Arispe N, De Maio A. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 2008; 180:4299-307; PMID:; http://dx.doi.org/10.4049/jimmunol.180.6.4299 PubMed DOI
Korbelik M, Banath J, Sun J, Canals D, Hannun YA, Separovic D. Ceramide and sphingosine-1-phosphate act as photodynamic therapy-elicited damage-associated molecular patterns: cell surface exposure. Int Immunopharmacol 2014; 20:359-65; PMID:; http://dx.doi.org/10.1016/j.intimp.2014.03.016 PubMed DOI PMC
Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780-8; PMID:; http://dx.doi.org/10.1038/nrm3479 PubMed DOI
Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht BN, Vandenabeele P. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 2011; 32:157-64; PMID:; http://dx.doi.org/10.1016/j.it.2011.01.005 PubMed DOI
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464:104-7; PMID:; http://dx.doi.org/10.1038/nature08780 PubMed DOI PMC
Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440:237-41; PMID:; http://dx.doi.org/10.1038/nature04516 PubMed DOI
Shi Y, Mucsi AD, Ng G. Monosodium urate crystals in inflammation and immunity. Immunol Rev 2010; 233:203-17; PMID:; http://dx.doi.org/10.1111/j.0105-2896.2009.00851.x PubMed DOI
Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009; 10:241-7; PMID:; http://dx.doi.org/10.1038/ni.1703 PubMed DOI PMC
Ahrens S, Zelenay S, Sancho D, Hanc P, Kjaer S, Feest C, Fletcher G, Durkin C, Postigo A, Skehel M, et al. . F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 2012; 36:635-45; PMID:; http://dx.doi.org/10.1016/j.immuni.2012.03.008 PubMed DOI
Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, Gallo RL. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem 2004; 279:17079-84; PMID:; http://dx.doi.org/10.1074/jbc.M310859200 PubMed DOI
Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol 2006; 177:1272-81; PMID:; http://dx.doi.org/10.4049/jimmunol.177.2.1272 PubMed DOI
Tesniere A, Apetoh L, Ghiringhelli F, Joza N, Panaretakis T, Kepp O, Schlemmer F, Zitvogel L, Kroemer G. Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol 2008; 20:504-11; PMID:; http://dx.doi.org/10.1016/j.coi.2008.05.007 PubMed DOI
Sonnemann J, Gressmann S, Becker S, Wittig S, Schmudde M, Beck JF. The histone deacetylase inhibitor vorinostat induces calreticulin exposure in childhood brain tumour cells in vitro. Cancer Chemother Pharmacol 2010; 66:611-6; PMID:; http://dx.doi.org/10.1007/s00280-010-1302-4 PubMed DOI
Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J, Weiskopf K, Willingham SB, Raveh T, Park CY, et al. . Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2010; 2:63ra94; PMID:; http://dx.doi.org/10.1126/scitranslmed.3001375 PubMed DOI PMC
Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001; 14:303-13; PMID:; http://dx.doi.org/10.1016/S1074-7613(01)00111-X PubMed DOI
Lauber K, Ernst A, Orth M, Herrmann M, Belka C. Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front Oncol 2012; 2:116; PMID:; http://dx.doi.org/10.3389/fonc.2012.00116 PubMed DOI PMC
Krysko DV, Vandenabeele P. Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases. Apoptosis 2010; 15:995-7; PMID:; http://dx.doi.org/10.1007/s10495-010-0524-6 PubMed DOI
Krysko DV, Vanden Berghe T, Parthoens E, D’Herde K, Vandenabeele P. Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. Methods Enzymol 2008; 442:307-41; PMID:; http://dx.doi.org/10.1016/S0076-6879(08)01416-X PubMed DOI
Krysko DV, Vandenabeele P. From regulation of dying cell engulfment to development of anti-cancer therapy. Cell Death Differ 2008; 15:29-38; PMID:; http://dx.doi.org/10.1038/sj.cdd.4402271 PubMed DOI
Krysko DV, D’Herde K, Vandenabeele P. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 2006; 11:1709-26; PMID:; http://dx.doi.org/10.1007/s10495-006-9527-8 PubMed DOI
Weiss EM, Frey B, Rodel F, Herrmann M, Schlucker E, Voll RE, Fietkau R, Gaipl US. Ex vivo- and in vivo-induced dead tumor cells as modulators of antitumor responses. Ann N Y Acad Sci 2010; 1209:109-17; PMID:; http://dx.doi.org/10.1111/j.1749-6632.2010.05743.x PubMed DOI
Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, et al. . Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 2010; 467:863-7; PMID:; http://dx.doi.org/10.1038/nature09413 PubMed DOI PMC
Ayna G, Krysko DV, Kaczmarek A, Petrovski G, Vandenabeele P, Fesus L. ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PLoS One 2012; 7:e40069; PMID:; http://dx.doi.org/10.1371/journal.pone.0040069 PubMed DOI PMC
Garg AD, Krysko DV, Vandenabeele P, Agostinis P. The emergence of phox-ER stress induced immunogenic apoptosis. Oncoimmunology 2012; 1:786-8; PMID:; http://dx.doi.org/10.4161/onci.19750 PubMed DOI PMC
Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, et al. . Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009; 461:282-6; PMID:; http://dx.doi.org/10.1038/nature08296 PubMed DOI PMC
Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, Portela Catani JP, Hannani D, Duret H, Steegh K, et al. . Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013; 38:729-41; PMID:; http://dx.doi.org/10.1016/j.immuni.2013.03.003 PubMed DOI
McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, Beck PL, Muruve DA, Kubes P. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 2010; 330:362-6; PMID:; http://dx.doi.org/10.1126/science.1195491 PubMed DOI
Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, Smyth MJ, Zitvogel L. Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res 2010; 70:855-8; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-09-3566 PubMed DOI
Di Virgilio F. Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol Sci 2007; 28:465-72; PMID:; http://dx.doi.org/10.1016/j.tips.2007.07.002 PubMed DOI
Riteau N, Gasse P, Fauconnier L, Gombault A, Couegnat M, Fick L, Kanellopoulos J, Quesniaux VF, Marchand-Adam S, Crestani B, et al. . Extracellular ATP is a danger signal activating P2´7 receptor in lung inflammation and fibrosis. Am J Respir Crit Care Med 2010; 182:774-83; PMID:; http://dx.doi.org/10.1164/rccm.201003-0359OC PubMed DOI
Cauwels A, Rogge E, Vandendriessche B, Shiva S, Brouckaert P. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis 2014; 5:e1102; http://dx.doi.org/10.1038/cddis.2014.70 PubMed DOI PMC
Xiang Y, Wang X, Yan C, Gao Q, Li SA, Liu J, Zhou K, Guo X, Lee W, Zhang Y. Adenosine-5′-triphosphate (ATP) protects mice against bacterial infection by activation of the NLRP3 inflammasome. PLoS One 2013; 8:e63759; PMID:; http://dx.doi.org/10.1371/journal.pone.0063759 PubMed DOI PMC
Gombault A, Baron L, Couillin I. ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol 2012; 3:414; PMID:; http://dx.doi.org/10.3389/fimmu.2012.00414 PubMed DOI PMC
Riteau N, Baron L, Villeret B, Guillou N, Savigny F, Ryffel B, Rassendren F, Le Bert M, Gombault A, Couillin I. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis 2012; 3:e403; PMID:; http://dx.doi.org/10.1038/cddis.2012.144 PubMed DOI PMC
Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, et al. . Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A 2009; 106:20388-93; PMID:; http://dx.doi.org/10.1073/pnas.0908698106 PubMed DOI PMC
England H, Summersgill HR, Edye ME, Rothwell NJ, Brough D. Release of interleukin-1alpha or interleukin-1beta depends on mechanism of cell death. J Biol Chem 2014; 289:15942-50; PMID:; http://dx.doi.org/10.1074/jbc.M114.557561 PubMed DOI PMC
Steer SA, Scarim AL, Chambers KT, Corbett JA. Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med 2006; 3:e17; http://dx.doi.org/10.1371/journal.pmed.0030017 PubMed DOI PMC
Michaud M, Sukkurwala AQ, Martins I, Shen S, Zitvogel L, Kroemer G. Subversion of the chemotherapy-induced anticancer immune response by the ecto-ATPase CD39. Oncoimmunology 2012; 1:393-5; PMID:; http://dx.doi.org/10.4161/onci.19070 PubMed DOI PMC
Aliagas E, Vidal A, Texido L, Ponce J, Condom E, Martin-Satue M. High expression of ecto-nucleotidases CD39 and CD73 in human endometrial tumors. Mediators Inflamm 2014; 2014:509027; PMID:; http://dx.doi.org/10.1155/2014/509027 PubMed DOI PMC
Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, Stagg J. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A 2013; 110:11091-6; PMID:; http://dx.doi.org/10.1073/pnas.1222251110 PubMed DOI PMC
Antonioli L, Pacher P, Vizi ES, Hasko G. CD39 and CD73 in immunity and inflammation. Trends Mol Med 2013; 19:355-67; PMID:; http://dx.doi.org/10.1016/j.molmed.2013.03.005 PubMed DOI PMC
Ghiringhelli F, Bruchard M, Chalmin F, Rebe C. Production of adenosine by ectonucleotidases: a key factor in tumor immunoescape. J Biomed Biotechnol 2012; 2012:473712; PMID:; http://dx.doi.org/10.1155/2012/473712 PubMed DOI PMC
Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A. ENTPD1CD39 is a promising therapeutic target in oncology. Oncogene 2013; 32:1743-51; PMID:; http://dx.doi.org/10.1038/onc.2012.269 PubMed DOI
Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 2011; 187:676-83; PMID:; http://dx.doi.org/10.4049/jimmunol.1003884 PubMed DOI
Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R, Sykacek P, Frank L, Schramek D, Komnenovic V, et al. . A dual role for autophagy in a murine model of lung cancer. Nat Commun 2014; 5:3056; PMID:; http://dx.doi.org/10.1038/ncomms4056 PubMed DOI
Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol 2014; 30C:24-31; PMID:; http://dx.doi.org/10.1016/j.coi.2014.05.009 PubMed DOI
Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity 2013; 39:211-27; PMID:; http://dx.doi.org/10.1016/j.immuni.2013.07.017 PubMed DOI
Li H, Li Y, Jiao J, Hu HM. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol 2011; 6:645-50; PMID:; http://dx.doi.org/10.1038/nnano.2011.153 PubMed DOI PMC
Thorburn J, Horita H, Redzic J, Hansen K, Frankel AE, Thorburn A. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 2009; 16:175-83; PMID:; http://dx.doi.org/10.1038/cdd.2008.143 PubMed DOI PMC
Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418:191-5; PMID:; http://dx.doi.org/10.1038/nature00858 PubMed DOI
Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, et al. . High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 2006; 290:C917-24; PMID:; http://dx.doi.org/10.1152/ajpcell.00401.2005 PubMed DOI
Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 2006; 26:174-9; PMID:; http://dx.doi.org/10.1097/01.shk.0000225404.51320.82 PubMed DOI
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5:331-42; PMID:; http://dx.doi.org/10.1038/nri1594 PubMed DOI
Kokkola R, Andersson A, Mullins G, Ostberg T, Treutiger CJ, Arnold B, Nawroth P, Andersson U, Harris RA, Harris HE. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand J Immunol 2005; 61:1-9; PMID:; http://dx.doi.org/10.1111/j.0300-9475.2005.01534.x PubMed DOI
Dong Xda E, Ito N, Lotze MT, Demarco RA, Popovic P, Shand SH, Watkins S, Winikoff S, Brown CK, Bartlett DL, et al. . High mobility group box I (HMGB1) release from tumor cells after treatment: implications for development of targeted chemoimmunotherapy. J Immunother 2007; 30:596-606; PMID:; http://dx.doi.org/10.1097/CJI.0b013e31804efc76 PubMed DOI
Pathak SK, Skold AE, Mohanram V, Persson C, Johansson U, Spetz AL. Activated apoptotic cells induce dendritic cell maturation via engagement of Toll-like receptor 4 (TLR4), dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN), and beta2 integrins. J Biol Chem 2012; 287:13731-42; PMID:; http://dx.doi.org/10.1074/jbc.M111.336545 PubMed DOI PMC
Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007; 220:35-46; PMID:; http://dx.doi.org/10.1111/j.1600-065X.2007.00574.x PubMed DOI
Curtin JF, Liu N, Candolfi M, Xiong W, Assi H, Yagiz K, Edwards MR, Michelsen KS, Kroeger KM, Liu C, et al. . HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 2009; 6:e10; http://dx.doi.org/10.1371/journal.pmed.1000010 PubMed DOI PMC
Schiraldi M, Raucci A, Munoz LM, Livoti E, Celona B, Venereau E, Apuzzo T, De Marchis F, Pedotti M, Bachi A, et al. . HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 2012; 209:551-63; PMID:; http://dx.doi.org/10.1084/jem.20111739 PubMed DOI PMC
Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, et al. . Endogenous HMGB1 regulates autophagy. J Cell Biol 2010; 190:881-92; PMID:; http://dx.doi.org/10.1083/jcb.200911078 PubMed DOI PMC
Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18:571-80; PMID:; http://dx.doi.org/10.1038/cdd.2010.191 PubMed DOI PMC
Kang R, Livesey KM, Zeh HJ, 3rd, Lotze MT, Tang D. HMGB1 as an autophagy sensor in oxidative stress. Autophagy 2011; 7:904-6; PMID:; http://dx.doi.org/10.4161/auto.7.8.15704 PubMed DOI
Yang H, Lundback P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, Al-Abed Y, Andersson U, Tracey KJ, Antoine DJ, et al. . Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med 2012; 18:250-9; PMID:; http://dx.doi.org/10.2119/molmed.2011.00389 PubMed DOI PMC
Tang D, Billiar TR, Lotze MT. A Janus tale of two active high mobility group box 1 (HMGB1) redox states. Mol Med 2012; 18:1360-2; PMID:; http://dx.doi.org/10.2119/molmed.2012.00314 PubMed DOI PMC
Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De Marchis F, Liu J, Antonelli A, Preti A, Raeli L, et al. . Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 2012; 209:1519-28; PMID:; http://dx.doi.org/10.1084/jem.20120189 PubMed DOI PMC
Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, Benschop R, Sparvero LJ, Amoscato AA, Tracey KJ, et al. . HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 2010; 29:5299-310; PMID:; http://dx.doi.org/10.1038/onc.2010.261 PubMed DOI PMC
Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 2008; 29:21-32; PMID:; http://dx.doi.org/10.1016/j.immuni.2008.05.013 PubMed DOI PMC
Rubartelli A, Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 2007; 28:429-36; PMID:; http://dx.doi.org/10.1016/j.it.2007.08.004 PubMed DOI
Urbonaviciute V, Meister S, Furnrohr BG, Frey B, Guckel E, Schett G, Herrmann M, Voll RE. Oxidation of the alarmin high-mobility group box 1 protein (HMGB1) during apoptosis. Autoimmunity 2009; 42:305-7; PMID:; http://dx.doi.org/10.1080/08916930902831803 PubMed DOI
Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan JD, et al. . Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012; 13:832-42; PMID:; http://dx.doi.org/10.1038/ni.2376 PubMed DOI PMC
Tang D, Lotze MT. Tumor immunity times out: TIM-3 and HMGB1. Nat Immunol 2012; 13:808-10; PMID:; http://dx.doi.org/10.1038/ni.2396 PubMed DOI PMC
Patel J, Bozeman EN, Selvaraj P. Taming dendritic cells with TIM-3: another immunosuppressive strategy used by tumors. Immunotherapy 2012; 4:1795-8; PMID:; http://dx.doi.org/10.2217/imt.12.126 PubMed DOI PMC
Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:894-907; PMID:; http://dx.doi.org/10.4161/onci.20931 PubMed DOI PMC
Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, lluzzi L. Trial watch: toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2:e25238; http://dx.doi.org/10.4161/onci.25238 PubMed DOI PMC
Yamazaki T, Hannani D, Poirier-Colame V, Ladoire S, Locher C, Sistigu A, Prada N, Adjemian S, Catani JP, Freudenberg M, et al. . Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 2014; 21:69-78; PMID:; http://dx.doi.org/10.1038/cdd.2013.72 PubMed DOI PMC
Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Henrik Ter Meulen J, Zitvogel L, Kroemer G, et al. . Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179; http://dx.doi.org/10.4161/onci.29179 PubMed DOI PMC
Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R, Mariette C, Chaput N, Mira JP, Delaloge S, et al. . The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007; 220:47-59; PMID:; http://dx.doi.org/10.1111/j.1600-065X.2007.00573.x PubMed DOI
Ma Y, Aymeric L, Locher C, Mattarollo SR, Delahaye NF, Pereira P, Boucontet L, Apetoh L, Ghiringhelli F, Casares N, et al. . Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. J Exp Med 2011; 208:491-503; PMID:; http://dx.doi.org/10.1084/jem.20100269 PubMed DOI PMC
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al. . Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8:445-544; PMID:; http://dx.doi.org/10.4161/auto.19496 PubMed DOI PMC
Sukkurwala AQ, Adjemian S, Senovilla L, Michaud M, Spaggiari S, Vacchelli E, Baracco EE, Galluzzi L, Zitvogel L, Kepp O, et al. . Screening of novel immunogenic cell death inducers within the NCI mechanistic diversity set. Oncoimmunology 2014; 3:e28473; http://dx.doi.org/10.4161/onci.28473 PubMed DOI PMC
Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011; 29:235-71; PMID:; http://dx.doi.org/10.1146/annurev-immunol-031210-101324 PubMed DOI
Zirger JM, Puntel M, Bergeron J, Wibowo M, Moridzadeh R, Bondale N, Barcia C, Kroeger KM, Liu C, Castro MG, et al. . Immune-mediated loss of transgene expression from virally transduced brain cells is irreversible, mediated by IFNgamma, perforin, and TNFalpha, and due to the elimination of transduced cells. Mol Ther 2012; 20:808-19; PMID:; http://dx.doi.org/10.1038/mt.2011.243 PubMed DOI PMC
Tailler M, Senovilla L, Lainey E, Thepot S, Metivier D, Sebert M, Baud V, Billot K, Fenaux P, Galluzzi L, et al. . Antineoplastic activity of ouabain and pyrithione zinc in acute myeloid leukemia. Oncogene 2012; 31:3536-46; PMID:; http://dx.doi.org/10.1038/onc.2011.521 PubMed DOI
Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G. Cell death assays for drug discovery. Nat Rev Drug Discov 2011; 10:221-37; PMID:; http://dx.doi.org/10.1038/nrd3373 PubMed DOI
Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods 1995; 184:39-51; PMID:; http://dx.doi.org/10.1016/0022-1759(95)00072-I PubMed DOI
Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994; 84:1415-20; PMID: PubMed
Galluzzi L, Vitale I, Kepp O, Seror C, Hangen E, Perfettini JL, Modjtahedi N, Kroemer G. Methods to dissect mitochondrial membrane permeabilization in the course of apoptosis. Methods Enzymol 2008; 442:355-74; PMID:; http://dx.doi.org/10.1016/S0076-6879(08)01418-3 PubMed DOI
Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G. Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 2007; 12:803-13; PMID:; http://dx.doi.org/10.1007/s10495-007-0720-1 PubMed DOI
Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX, Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995; 181:1661-72; PMID:; http://dx.doi.org/10.1084/jem.181.5.1661 PubMed DOI PMC
Mellen MA, de la Rosa EJ, Boya P. Autophagy is not universally required for phosphatidyl-serine exposure and apoptotic cell engulfment during neural development. Autophagy 2009; 5:964-72; PMID:; http://dx.doi.org/10.4161/auto.5.7.9292 PubMed DOI
Mellen MA, de la Rosa EJ, Boya P. The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium. Cell Death Differ 2008; 15:1279-90; PMID:; http://dx.doi.org/10.1038/cdd.2008.40 PubMed DOI
Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 2014; 344:1164-8; PMID:; http://dx.doi.org/10.1126/science.1252809 PubMed DOI
Kenis H, Zandbergen HR, Hofstra L, Petrov AD, Dumont EA, Blankenberg FD, Haider N, Bitsch N, Gijbels M, Verjans JW, et al. . Annexin A5 uptake in ischemic myocardium: demonstration of reversible phosphatidylserine externalization and feasibility of radionuclide imaging. J Nucl Med 2010; 51:259-67; PMID:; http://dx.doi.org/10.2967/jnumed.109.068429 PubMed DOI
Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Mitochondrial control of cellular life, stress, and death. Circ Res 2012; 111:1198-207; PMID:; http://dx.doi.org/10.1161/CIRCRESAHA.112.268946 PubMed DOI
Galluzzi L, Blomgren K, Kroemer G. Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 2009; 10:481-94; PMID:; http://dx.doi.org/10.1038/nrn2665 PubMed DOI
Metivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, Marzo I, Kroemer G. Cytofluorometric detection of mitochondrial alterations in early CD95FasAPO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 1998; 61:157-63; PMID:; http://dx.doi.org/10.1016/S0165-2478(98)00013-3 PubMed DOI
Komoriya A, Packard BZ, Brown MJ, Wu ML, Henkart PA. Assessment of caspase activities in intact apoptotic thymocytes using cell-permeable fluorogenic caspase substrates. J Exp Med 2000; 191:1819-28; PMID:; http://dx.doi.org/10.1084/jem.191.11.1819 PubMed DOI PMC
Kepp O, Rajalingam K, Kimmig S, Rudel T. Bak and Bax are non-redundant during infection- and DNA damage-induced apoptosis. EMBO J 2007; 26:825-34; PMID:; http://dx.doi.org/10.1038/sj.emboj.7601533 PubMed DOI PMC
Tajeddine N, Galluzzi L, Kepp O, Hangen E, Morselli E, Senovilla L, Araujo N, Pinna G, Larochette N, Zamzami N, et al. . Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene 2008; 27:4221-32; PMID:; http://dx.doi.org/10.1038/onc.2008.63 PubMed DOI
Pauleau AL, Larochette N, Giordanetto F, Scholz SR, Poncet D, Zamzami N, Goldmacher VS, Kroemer G. Structure-function analysis of the interaction between Bax and the cytomegalovirus-encoded protein vMIA. Oncogene 2007; 26:7067-80; PMID:; http://dx.doi.org/10.1038/sj.onc.1210511 PubMed DOI
Garg AD, Dudek AM, Agostinis P. Calreticulin surface exposure is abrogated in cells lacking, chaperone-mediated autophagy-essential gene, LAMP2A. Cell Death Dis 2013; 4:e826; http://dx.doi.org/10.1038/cddis.2013.372 PubMed DOI PMC
Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013; 12:703-19; PMID:; http://dx.doi.org/10.1038/nrd3976 PubMed DOI
Hetz C, Martinon F, Rodriguez D, Glimcher LH. The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 2011; 91:1219-43; PMID:; http://dx.doi.org/10.1152/physrev.00001.2011 PubMed DOI
Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 2008; 8:663-74; PMID:; http://dx.doi.org/10.1038/nri2359 PubMed DOI
Omasa T, Chen YG, Mantalaris A, Tsai YC, Wu JH. Molecular cloning and sequencing of the human heme-regulated eukaryotic initiation factor 2 alpha (eIF-2 alpha) kinase from bone marrow culture. DNA Seq 2002; 13:133-7; PMID: PubMed
Samuel CE. The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem 1993; 268:7603-6; PMID: PubMed
Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 1998; 18:7499-509; PMID: PubMed PMC
Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397:271-4; PMID: http://dx.doi.org/10.1038/16729 PubMed DOI
Yang Y, Li XJ, Chen Z, Zhu XX, Wang J, Zhang LB, Qiang L, Ma YJ, Li ZY, Guo QL, et al. . Wogonin induced calreticulinannexin A1 exposure dictates the immunogenicity of cancer cells in a PERKAKT dependent manner. PLoS One 2012; 7:e50811; http://dx.doi.org/10.1371/journal.pone.0050811 PubMed DOI PMC
van Schadewijk A, van't Wout EF, Stolk J, Hiemstra PS. A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress Chaperones 2012; 17:275-9; PMID:; http://dx.doi.org/10.1007/s12192-011-0306-2 PubMed DOI PMC
Hayashi A, Kasahara T, Iwamoto K, Ishiwata M, Kametani M, Kakiuchi C, Furuichi T, Kato T. The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J Biol Chem 2007; 282:34525-34; PMID:; http://dx.doi.org/10.1074/jbc.M704300200 PubMed DOI
Prischi F, Nowak PR, Carrara M, Ali MM. Phosphoregulation of Ire1 RNase splicing activity. Nat Commun 2014; 5:3554; PMID:; http://dx.doi.org/10.1038/ncomms4554 PubMed DOI PMC
Reineke LC, Dougherty JD, Pierre P, Lloyd RE. Large G3BP-induced granules trigger eIF2alpha phosphorylation. Mol Biol Cell 2012; 23:3499-510; PMID:; http://dx.doi.org/10.1091/mbc.E12-05-0385 PubMed DOI PMC
Lundin A, Thore A. Analytical information obtainable by evaluation of the time course of firefly bioluminescence in the assay of ATP. Anal Biochem 1975; 66:47-63; PMID:; http://dx.doi.org/10.1016/0003-2697(75)90723-X PubMed DOI
McElroy WD, DeLuca MA. Firefly and bacterial luminescence: basic science and applications. J Appl Biochem 1983; 5:197-209; PMID: PubMed
Sorensen CE, Novak I. Visualization of ATP release in pancreatic acini in response to cholinergic stimulus. Use of fluorescent probes and confocal microscopy. J Biol Chem 2001; 276:32925-32; PMID:; http://dx.doi.org/10.1074/jbc.M103313200 PubMed DOI
Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 2009; 106:15651-6; PMID:; http://dx.doi.org/10.1073/pnas.0904764106 PubMed DOI PMC
Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, Modjtahedi N, Kroemer G. Methods for assessing autophagy and autophagic cell death. Methods Mol Biol 2008; 445:29-76; PMID:; http://dx.doi.org/10.1007/978-1-59745-157-4_3 PubMed DOI
Klionsky DJ. A human autophagy interaction network. Autophagy 2012; 8:439-41; PMID:; http://dx.doi.org/10.4161/auto.19926 PubMed DOI
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19:5720-8; PMID:; http://dx.doi.org/10.1093/emboj/19.21.5720 PubMed DOI PMC
Klionsky DJ. Autophagy in mammalian systems, part B. Preface. Methods Enzymol 2009; 452:xxi-xxii. PubMed
Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001; 152:657-68; PMID:; http://dx.doi.org/10.1083/jcb.152.4.657 PubMed DOI PMC
Martins I, Kepp O, Menger L, Michaud M, Adjemian S, Sukkurwala AQ, Vacchelli E, Galluzzi L, Kroemer G. Fluorescent biosensors for the detection of HMGB1 release. Methods Mol Biol 2013; 1004:43-56; PMID:; http://dx.doi.org/10.1007/978-1-62703-383-1_4 PubMed DOI
Antoine DJ, Harris HE, Andersson U, Tracey KJ, Bianchi ME. A systematic nomenclature for the redox states of high mobility group box (HMGB) proteins. Mol Med 2014; 20:135-7; PMID:; http://dx.doi.org/10.2119/molmed.2014.00022 PubMed DOI PMC
Perne A, Muellner MK, Steinrueck M, Craig-Mueller N, Mayerhofer J, Schwarzinger I, Sloane M, Uras IZ, Hoermann G, Nijman SM, et al. . Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis. PLoS One 2009; 4:e8292; http://dx.doi.org/10.1371/journal.pone.0008292 PubMed DOI PMC
Vatakis DN, Koya RC, Nixon CC, Wei L, Kim SG, Avancena P, Bristol G, Baltimore D, Kohn DB, Ribas A, et al. . Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proc Natl Acad Sci U S A 2011; 108:E1408-16; PMID:; http://dx.doi.org/10.1073/pnas.1115050108 PubMed DOI PMC
Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012; 12:786-98; PMID:; http://dx.doi.org/10.1038/nri3311 PubMed DOI PMC
Payne KJ, Crooks GM. Immune-cell lineage commitment: translation from mice to humans. Immunity 2007; 26:674-7; PMID:; http://dx.doi.org/10.1016/j.immuni.2007.05.011 PubMed DOI
Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, Saito Y, Marches F, Halene S, Palucka AK, et al. . Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014; 32:364-72; PMID:; http://dx.doi.org/10.1038/nbt.2858 PubMed DOI PMC
Ladoire S, Chaba K, Martins I, Sukkurwala AQ, Adjemian S, Michaud M, Poirier-Colame V, Andreiuolo F, Galluzzi L, White E, et al. . Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens. Autophagy 2012; 8:1175-84; PMID:; http://dx.doi.org/10.4161/auto.20353 PubMed DOI PMC
Ladoire S, Hannani D, Vetizou M, Locher C, Aymeric L, Apetoh L, Kepp O, Kroemer G, Ghiringhelli F, Zitvogel L. Cell-death-associated molecular patterns as determinants of cancer immunogenicity. Antioxid Redox Signal 2014; 20:1098-116; PMID:; http://dx.doi.org/10.1089/ars.2012.5133 PubMed DOI
Zitvogel L, Tanchot C, Granier C, Tartour E. Following up tumor-specific regulatory T cells in cancer patients. Oncoimmunology 2013; 2:e25444; http://dx.doi.org/10.4161/onci.25444 PubMed DOI PMC
Popadic D, Anegon I, Baeten D, Eibel H, Giese T, Marits P, Martinez-Caceres E, Mascart F, Nestle F, Pujol-Borrell R, et al. . Predictive immunomonitoring – the COST ENTIRE initiative. Clin Immunol 2013; 147:23-6; PMID:; http://dx.doi.org/10.1016/j.clim.2013.01.013 PubMed DOI
Jager M, Schoberth A, Ruf P, Hess J, Hennig M, Schmalfeldt B, Wimberger P, Ströhlein M, Theissen B, Heiss MM, et al. . Immunomonitoring results of a phase IIIII study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Res 2012; 72:24-32; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-11-2235 PubMed DOI
Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000; 11:2389-401; PMID:; http://dx.doi.org/10.1089/104303400750038499 PubMed DOI
Fillat C, Carrio M, Cascante A, Sangro B. Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase geneGanciclovir system: fifteen years of application. Curr Gene Ther 2003; 3:13-26; PMID:; http://dx.doi.org/10.2174/1566523033347426 PubMed DOI
Critical Analysis of Non-Thermal Plasma-Driven Modulation of Immune Cells from Clinical Perspective
Consensus guidelines for the definition, detection and interpretation of immunogenic cell death
Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology
Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors
Treatment of Elderly Patients with Squamous Cell Carcinoma of the Head and Neck
Trial Watch: Immunotherapy plus radiation therapy for oncological indications
Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy
Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy
Trial Watch-Oncolytic viruses and cancer therapy
Trial Watch-Immunostimulation with cytokines in cancer therapy
Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death
Trial Watch: Adoptive cell transfer for oncological indications
Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer
Trial watch: Naked and vectored DNA-based anticancer vaccines
Combinatorial strategies for the induction of immunogenic cell death
Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy
Classification of current anticancer immunotherapies