Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients

. 2016 Dec 29 ; 128 (26) : 3113-3124. [epub] 20161101

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27802968
Odkazy

PubMed 27802968
PubMed Central PMC5201098
DOI 10.1182/blood-2016-08-731737
PII: S0006-4971(20)33855-6
Knihovny.cz E-zdroje

Cancer cell death can be perceived as immunogenic by the host only when malignant cells emit immunostimulatory signals (so-called "damage-associated molecular patterns," DAMPs), as they die in the context of failing adaptive responses to stress. Accumulating preclinical and clinical evidence indicates that the capacity of immunogenic cell death to (re-)activate an anticancer immune response is key to the success of various chemo- and radiotherapeutic regimens. Malignant blasts from patients with acute myeloid leukemia (AML) exposed multiple DAMPs, including calreticulin (CRT), heat-shock protein 70 (HSP70), and HSP90 on their plasma membrane irrespective of treatment. In these patients, high levels of surface-exposed CRT correlated with an increased proportion of natural killer cells and effector memory CD4+ and CD8+ T cells in the periphery. Moreover, CRT exposure on the plasma membrane of malignant blasts positively correlated with the frequency of circulating T cells specific for leukemia-associated antigens, indicating that ecto-CRT favors the initiation of anticancer immunity in patients with AML. Finally, although the levels of ecto-HSP70, ecto-HSP90, and ecto-CRT were all associated with improved relapse-free survival, only CRT exposure significantly correlated with superior overall survival. Thus, CRT exposure represents a novel powerful prognostic biomarker for patients with AML, reflecting the activation of a clinically relevant AML-specific immune response.

Zobrazit více v PubMed

Kroemer G, Senovilla L, Galluzzi L, André F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015;21(10):1128-1138. PubMed

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565-1570. PubMed

Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235-271. PubMed

Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28(6):690-714. PubMed

Garg AD, Dudek-Peric AM, Romano E, Agostinis P. Immunogenic cell death. Int J Dev Biol. 2015;59(1-3):131-140. PubMed

Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51-72. PubMed

Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860-875. PubMed

Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 2013;24(4):319-333. PubMed

Fucikova J, Kralikova P, Fialova A, et al. . Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res. 2011;71(14):4821-4833. PubMed

Fucikova J, Moserova I, Truxova I, et al. . High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int J Cancer. 2014;135(5):1165-1177. PubMed

Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. OncoImmunology. 2014;3:e28518. PubMed PMC

Bezu L, Gomes-de-Silva LC, Dewitte H, et al. . Combinatorial strategies for the induction of immunogenic cell death. Front Immunol. 2015;6:187 doi:10.3389/fimmu.2015.00187. PubMed PMC

Garg AD, Galluzzi L, Apetoh L, et al. . Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588 doi:10.3389/fimmu.2015.00588. PubMed PMC

Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol. 2015;33:445-474. PubMed

Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood. 2007;109(11):4839-4845. PubMed PMC

Chao MP, Jaiswal S, Weissman-Tsukamoto R, et al. . Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med. 2010;2(63):63ra94. PubMed PMC

Michaud M, Martins I, Sukkurwala AQ, et al. . Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334(6062):1573-1577. PubMed

Vacchelli E, Ma Y, Baracco EE, et al. . Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science. 2015;350(6263):972-978. PubMed

Sistigu A, Yamazaki T, Vacchelli E, et al. . Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20(11):1301-1309. PubMed

Linkermann A, Stockwell BR, Krautwald S, Anders HJ. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol. 2014;14(11):759-767. PubMed

Fucikova J, Moserova I, Urbanova L, et al. . Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol. 2015;6:402 doi:10.3389/fimmu.2015.00402. PubMed PMC

Fucikova J, Becht E, Iribarren K, et al. . Calreticulin expression in human non-small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Cancer Res. 2016;76(7):1746-1756. PubMed

Hsu WM, Hsieh FJ, Jeng YM, et al. . Calreticulin expression in neuroblastoma--a novel independent prognostic factor. Ann Oncol. 2005;16(2):314-321. PubMed

Peng RQ, Chen YB, Ding Y, et al. . Expression of calreticulin is associated with infiltration of T-cells in stage IIIB colon cancer. World J Gastroenterol. 2010;16(19):2428-2434. PubMed PMC

Vaksman O, Davidson B, Tropé C, Reich R. Calreticulin expression is reduced in high-grade ovarian serous carcinoma effusions compared with primary tumors and solid metastases. Hum Pathol. 2013;44(12):2677-2683. PubMed

Wemeau M, Kepp O, Tesnière A, et al. . Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis. 2010;1:e104. PubMed PMC

Kepp O, Senovilla L, Vitale I, et al. . Consensus guidelines for the detection of immunogenic cell death. OncoImmunology. 2014;3(9):e955691. PubMed PMC

Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G. Cell death assays for drug discovery. Nat Rev Drug Discov. 2011;10(3):221-237. PubMed

Galluzzi L, Bravo-San Pedro JM, Kroemer G. Organelle-specific initiation of cell death. Nat Cell Biol. 2014;16(8):728-736. PubMed

Greiner J, Schmitt M, Li L, et al. . Expression of tumor-associated antigens in acute myeloid leukemia: Implications for specific immunotherapeutic approaches. Blood. 2006;108(13):4109-4117. PubMed

Zhang L, Greiner J. Leukemia-associated antigens are immunogenic and have prognostic value in acute myeloid leukemia. Immunotherapy. 2011;3(6):697-699. PubMed

Anguille S, Van Tendeloo VF, Berneman ZN. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia. 2012;26(10):2186-2196. PubMed

Garg AD, Elsen S, Krysko DV, Vandenabeele P, de Witte P, Agostinis P. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget. 2015;6(29):26841-26860. PubMed PMC

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. PubMed

Elsner L, Flügge PF, Lozano J, et al. . The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells. J Cell Mol Med. 2010;14(4):992-1002. PubMed PMC

Stringaris K, Sekine T, Khoder A, et al. . Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica. 2014;99(5):836-847. PubMed PMC

Erić A, Juranić Z, Milovanović Z, et al. . Effects of humoral immunity and calreticulin overexpression on postoperative course in breast cancer. Pathol Oncol Res. 2009;15(1):89-90. PubMed

Suzuki Y, Mimura K, Yoshimoto Y, et al. . Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res. 2012;72(16):3967-3976. PubMed

Rashidi A, Walter RB. Antigen-specific immunotherapy for acute myeloid leukemia: where are we now, and where do we go from here? Expert Rev Hematol. 2016;9(4):335-350. PubMed

Grimwade D, Hills RK, Moorman AV, et al. , National Cancer Research Institute Adult Leukaemia Working Group. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116(3):354-365. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace