Promises and Challenges of Immunogenic Chemotherapy in Multiple Myeloma
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R25 CA174650
NCI NIH HHS - United States
P01 CA155258
NCI NIH HHS - United States
R01 CA050947
NCI NIH HHS - United States
R01 CA207237
NCI NIH HHS - United States
P50 CA100707
NCI NIH HHS - United States
PubMed
36010596
PubMed Central
PMC9406519
DOI
10.3390/cells11162519
PII: cells11162519
Knihovny.cz E-zdroje
- Klíčová slova
- DAMPs, ICD, immunogenic chemotherapy, microenvironment, myeloma,
- MeSH
- imunoterapie MeSH
- lidé MeSH
- mnohočetný myelom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
Immunological tolerance of myeloma cells represents a critical obstacle in achieving long-term disease-free survival for multiple myeloma (MM) patients. Over the past two decades, remarkable preclinical efforts to understand MM biology have led to the clinical approval of several targeted and immunotherapeutic agents. Among them, it is now clear that chemotherapy can also make cancer cells "visible" to the immune system and thus reactivate anti-tumor immunity. This knowledge represents an important resource in the treatment paradigm of MM, whereas immune dysfunction constitutes a clear obstacle to the cure of the disease. In this review, we highlight the importance of defining the immunological effects of chemotherapy in MM with the goal of enhancing the clinical management of patients. This area of investigation will open new avenues of research to identify novel immunogenic anti-MM agents and inform the optimal integration of chemotherapy with immunotherapy.
Department of Hematooncology University Hospital Ostrava 70800 Ostrava Czech Republic
Faculty of Medicine University of Ostrava 70300 Ostrava Czech Republic
Faculty of Science University of Ostrava 70100 Ostrava Czech Republic
Zobrazit více v PubMed
Gulla A., Anderson K.C. Multiple myeloma: The (r)evolution of current therapy and a glance into future. Haematologica. 2020;105:2358–2367. doi: 10.3324/haematol.2020.247015. PubMed DOI PMC
Yamamoto L., Amodio N., Gulla A., Anderson K.C. Harnessing the Immune System Against Multiple Myeloma: Challenges and Opportunities. Front. Oncol. 2020;10:606368. doi: 10.3389/fonc.2020.606368. PubMed DOI PMC
Zitvogel L., Apetoh L., Ghiringhelli F., Kroemer G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008;8:59–73. doi: 10.1038/nri2216. PubMed DOI
Kroemer G., Galluzzi L., Kepp O., Zitvogel L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013;31:51–72. doi: 10.1146/annurev-immunol-032712-100008. PubMed DOI
Gulla A., Morelli E., Samur M.K., Botta C., Hideshima T., Bianchi G., Fulciniti M., Malvestiti S., Prabhala R.H., Talluri S., et al. Bortezomib induces anti-multiple myeloma immune response mediated by cGAS/STING pathway activation. Blood Cancer Discov. 2021;2:468–483. doi: 10.1158/2643-3230.BCD-21-0047. PubMed DOI PMC
Kroemer G., Galassi C., Zitvogel L., Galluzzi L. Immunogenic cell stress and death. Nat. Immunol. 2022;23:487–500. doi: 10.1038/s41590-022-01132-2. PubMed DOI
Galluzzi L., Humeau J., Buque A., Zitvogel L., Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2020;17:725–741. doi: 10.1038/s41571-020-0413-z. PubMed DOI
Matzinger P. The danger model: A renewed sense of self. Science. 2002;296:301–305. doi: 10.1126/science.1071059. PubMed DOI
Legrand A.J., Konstantinou M., Goode E.F., Meier P. The Diversification of Cell Death and Immunity: Memento Mori. Mol. Cell. 2019;76:232–242. doi: 10.1016/j.molcel.2019.09.006. PubMed DOI
Bianchi G., Oliva L., Cascio P., Pengo N., Fontana F., Cerruti F., Orsi A., Pasqualetto E., Mezghrani A., Calbi V., et al. The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition. Blood. 2009;113:3040–3049. doi: 10.1182/blood-2008-08-172734. PubMed DOI
Pakos-Zebrucka K., Koryga I., Mnich K., Ljujic M., Samali A., Gorman A.M. The integrated stress response. EMBO Rep. 2016;17:1374–1395. doi: 10.15252/embr.201642195. PubMed DOI PMC
Fucikova J., Spisek R., Kroemer G., Galluzzi L. Calreticulin and cancer. Cell Res. 2021;31:5–16. doi: 10.1038/s41422-020-0383-9. PubMed DOI PMC
Bezu L., Sauvat A., Humeau J., Gomes-da-Silva L.C., Iribarren K., Forveille S., Garcia P., Zhao L., Liu P., Zitvogel L., et al. eIF2alpha phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ. 2018;25:1375–1393. doi: 10.1038/s41418-017-0044-9. PubMed DOI PMC
Obeid M., Tesniere A., Ghiringhelli F., Fimia G.M., Apetoh L., Perfettini J.L., Castedo M., Mignot G., Panaretakis T., Casares N., et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007;13:54–61. doi: 10.1038/nm1523. PubMed DOI
Spisek R., Charalambous A., Mazumder A., Vesole D.H., Jagannath S., Dhodapkar M.V. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: Therapeutic implications. Blood. 2007;109:4839–4845. doi: 10.1182/blood-2006-10-054221. PubMed DOI PMC
Montes de Oca R., Alavi A.S., Vitali N., Bhattacharya S., Blackwell C., Patel K., Seestaller-Wehr L., Kaczynski H., Shi H., Dobrzynski E., et al. Belantamab Mafodotin (GSK2857916) Drives Immunogenic Cell Death and Immune-mediated Antitumor Responses In Vivo. Mol. Cancer Ther. 2021;20:1941–1955. doi: 10.1158/1535-7163.MCT-21-0035. PubMed DOI PMC
De Beck L., Melhaoui S., De Veirman K., Menu E., De Bruyne E., Vanderkerken K., Breckpot K., Maes K. Epigenetic treatment of multiple myeloma mediates tumor intrinsic and extrinsic immunomodulatory effects. Oncoimmunology. 2018;7:e1484981. doi: 10.1080/2162402X.2018.1484981. PubMed DOI PMC
Galluzzi L., Vitale I., Warren S., Adjemian S., Agostinis P., Martinez A.B., Chan T.A., Coukos G., Demaria S., Deutsch E., et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer. 2020;8:e000337. doi: 10.1136/jitc-2019-000337. PubMed DOI PMC
Klionsky D.J., Petroni G., Amaravadi R.K., Baehrecke E.H., Ballabio A., Boya P., Bravo-San Pedro J.M., Cadwell K., Cecconi F., Choi A.M.K., et al. Autophagy in major human diseases. EMBO J. 2021;40:e108863. doi: 10.15252/embj.2021108863. PubMed DOI PMC
Li Y., Wang L.X., Yang G., Hao F., Urba W.J., Hu H.M. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 2008;68:6889–6895. doi: 10.1158/0008-5472.CAN-08-0161. PubMed DOI PMC
Yamazaki T., Bravo-San Pedro J.M., Galluzzi L., Kroemer G., Pietrocola F. Autophagy in the cancer-immunity dialogue. Adv. Drug Deliv. Rev. 2021;169:40–50. doi: 10.1016/j.addr.2020.12.003. PubMed DOI
Xia H., Green D.R., Zou W. Autophagy in tumour immunity and therapy. Nat. Rev. Cancer. 2021;21:281–297. doi: 10.1038/s41568-021-00344-2. PubMed DOI PMC
Amaravadi R.K., Kimmelman A.C., Debnath J. Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov. 2019;9:1167–1181. doi: 10.1158/2159-8290.CD-19-0292. PubMed DOI PMC
Zhou J., Wang G., Chen Y., Wang H., Hua Y., Cai Z. Immunogenic cell death in cancer therapy: Present and emerging inducers. J. Cell Mol. Med. 2019;23:4854–4865. doi: 10.1111/jcmm.14356. PubMed DOI PMC
Michaud M., Martins I., Sukkurwala A.Q., Adjemian S., Ma Y., Pellegatti P., Shen S., Kepp O., Scoazec M., Mignot G., et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334:1573–1577. doi: 10.1126/science.1208347. PubMed DOI
Kepp O., Bezu L., Yamazaki T., Di Virgilio F., Smyth M.J., Kroemer G., Galluzzi L. ATP and cancer immunosurveillance. EMBO J. 2021;40:e108130. doi: 10.15252/embj.2021108130. PubMed DOI PMC
Lazarowski E.R., Sesma J.I., Seminario-Vidal L., Kreda S.M. Molecular mechanisms of purine and pyrimidine nucleotide release. Adv. Pharmacol. 2011;61:221–261. doi: 10.1016/B978-0-12-385526-8.00008-4. PubMed DOI
Ghiringhelli F., Apetoh L., Tesniere A., Aymeric L., Ma Y., Ortiz C., Vermaelen K., Panaretakis T., Mignot G., Ullrich E., et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med. 2009;15:1170–1178. doi: 10.1038/nm.2028. PubMed DOI
Zitvogel L., Kepp O., Galluzzi L., Kroemer G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat. Immunol. 2012;13:343–351. doi: 10.1038/ni.2224. PubMed DOI
Ladoire S., Enot D., Senovilla L., Ghiringhelli F., Poirier-Colame V., Chaba K., Semeraro M., Chaix M., Penault-Llorca F., Arnould L., et al. The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy. 2016;12:864–875. doi: 10.1080/15548627.2016.1154244. PubMed DOI PMC
Pietrocola F., Pol J., Vacchelli E., Rao S., Enot D.P., Baracco E.E., Levesque S., Castoldi F., Jacquelot N., Yamazaki T., et al. Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance. Cancer Cell. 2016;30:147–160. doi: 10.1016/j.ccell.2016.05.016. PubMed DOI PMC
Ferrere G., Tidjani Alou M., Liu P., Goubet A.G., Fidelle M., Kepp O., Durand S., Iebba V., Fluckiger A., Daillere R., et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight. 2021;6:e145207. doi: 10.1172/jci.insight.145207. PubMed DOI PMC
Xu X., Araki K., Li S., Han J.H., Ye L., Tan W.G., Konieczny B.T., Bruinsma M.W., Martinez J., Pearce E.L., et al. Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat. Immunol. 2014;15:1152–1161. doi: 10.1038/ni.3025. PubMed DOI PMC
Yun Z., Zhichao J., Hao Y., Ou J., Ran Y., Wen D., Qun S. Targeting autophagy in multiple myeloma. Leuk. Res. 2017;59:97–104. doi: 10.1016/j.leukres.2017.06.002. PubMed DOI
Sistigu A., Yamazaki T., Vacchelli E., Chaba K., Enot D.P., Adam J., Vitale I., Goubar A., Baracco E.E., Remedios C., et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 2014;20:1301–1309. doi: 10.1038/nm.3708. PubMed DOI
Harding S.M., Benci J.L., Irianto J., Discher D.E., Minn A.J., Greenberg R.A. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548:466–470. doi: 10.1038/nature23470. PubMed DOI PMC
Yamazaki T., Kirchmair A., Sato A., Buque A., Rybstein M., Petroni G., Bloy N., Finotello F., Stafford L., Navarro Manzano E., et al. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nat. Immunol. 2020;21:1160–1171. doi: 10.1038/s41590-020-0751-0. PubMed DOI
Zitvogel L., Galluzzi L., Kepp O., Smyth M.J., Kroemer G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 2015;15:405–414. doi: 10.1038/nri3845. PubMed DOI
Papewalis C., Jacobs B., Wuttke M., Ullrich E., Baehring T., Fenk R., Willenberg H.S., Schinner S., Cohnen M., Seissler J., et al. IFN-alpha skews monocytes into CD56+-expressing dendritic cells with potent functional activities in vitro and in vivo. J. Immunol. 2008;180:1462–1470. doi: 10.4049/jimmunol.180.3.1462. PubMed DOI
Guillot B., Portales P., Thanh A.D., Merlet S., Dereure O., Clot J., Corbeau P. The expression of cytotoxic mediators is altered in mononuclear cells of patients with melanoma and increased by interferon-alpha treatment. Br. J. Dermatol. 2005;152:690–696. doi: 10.1111/j.1365-2133.2005.06512.x. PubMed DOI
Ilander M., Kreutzman A., Rohon P., Melo T., Faber E., Porkka K., Vakkila J., Mustjoki S. Enlarged memory T-cell pool and enhanced Th1-type responses in chronic myeloid leukemia patients who have successfully discontinued IFN-alpha monotherapy. PLoS ONE. 2014;9:e87794. doi: 10.1371/journal.pone.0087794. PubMed DOI PMC
Crouse J., Bedenikovic G., Wiesel M., Ibberson M., Xenarios I., Von Laer D., Kalinke U., Vivier E., Jonjic S., Oxenius A. Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. Immunity. 2014;40:961–973. doi: 10.1016/j.immuni.2014.05.003. PubMed DOI
Xu H.C., Grusdat M., Pandyra A.A., Polz R., Huang J., Sharma P., Deenen R., Kohrer K., Rahbar R., Diefenbach A., et al. Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity. 2014;40:949–960. doi: 10.1016/j.immuni.2014.05.004. PubMed DOI
Bacher N., Raker V., Hofmann C., Graulich E., Schwenk M., Baumgrass R., Bopp T., Zechner U., Merten L., Becker C., et al. Interferon-alpha suppresses cAMP to disarm human regulatory T cells. Cancer Res. 2013;73:5647–5656. doi: 10.1158/0008-5472.CAN-12-3788. PubMed DOI
Zhang L., Tai Y.T., Ho M.Z.G., Qiu L., Anderson K.C. Interferon-alpha-based immunotherapies in the treatment of B cell-derived hematologic neoplasms in today’s treat-to-target era. Exp. Hematol. Oncol. 2017;6:20. doi: 10.1186/s40164-017-0081-6. PubMed DOI PMC
Zitvogel L., Kepp O., Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010;140:798–804. doi: 10.1016/j.cell.2010.02.015. PubMed DOI
Yang H., Wang H., Chavan S.S., Andersson U. High Mobility Group Box Protein 1 (HMGB1): The Prototypical Endogenous Danger Molecule. Mol. Med. 2015;21((Suppl. 1)):S6–S12. doi: 10.2119/molmed.2015.00087. PubMed DOI PMC
Scaffidi P., Misteli T., Bianchi M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–195. doi: 10.1038/nature00858. PubMed DOI
Apetoh L., Ghiringhelli F., Tesniere A., Obeid M., Ortiz C., Criollo A., Mignot G., Maiuri M.C., Ullrich E., Saulnier P., et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 2007;13:1050–1059. doi: 10.1038/nm1622. PubMed DOI
Vacchelli E., Ma Y., Baracco E.E., Sistigu A., Enot D.P., Pietrocola F., Yang H., Adjemian S., Chaba K., Semeraro M., et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science. 2015;350:972–978. doi: 10.1126/science.aad0779. PubMed DOI
Lee C.H., Yelensky R., Jooss K., Chan T.A. Update on Tumor Neoantigens and Their Utility: Why It Is Good to Be Different. Trends Immunol. 2018;39:536–548. doi: 10.1016/j.it.2018.04.005. PubMed DOI PMC
Matsushita H., Vesely M.D., Koboldt D.C., Rickert C.G., Uppaluri R., Magrini V.J., Arthur C.D., White J.M., Chen Y.S., Shea L.K., et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482:400–404. doi: 10.1038/nature10755. PubMed DOI PMC
Tureci O., Vormehr M., Diken M., Kreiter S., Huber C., Sahin U. Targeting the Heterogeneity of Cancer with Individualized Neoepitope Vaccines. Clin. Cancer Res. 2016;22:1885–1896. doi: 10.1158/1078-0432.CCR-15-1509. PubMed DOI
Perumal D., Imai N., Lagana A., Finnigan J., Melnekoff D., Leshchenko V.V., Solovyov A., Madduri D., Chari A., Cho H.J., et al. Mutation-derived Neoantigen-specific T-cell Responses in Multiple Myeloma. Clin. Cancer Res. 2020;26:450–464. doi: 10.1158/1078-0432.CCR-19-2309. PubMed DOI PMC
Bolli N., Avet-Loiseau H., Wedge D.C., Van Loo P., Alexandrov L.B., Martincorena I., Dawson K.J., Iorio F., Nik-Zainal S., Bignell G.R., et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat. Commun. 2014;5:2997. doi: 10.1038/ncomms3997. PubMed DOI PMC
Walz S., Stickel J.S., Kowalewski D.J., Schuster H., Weisel K., Backert L., Kahn S., Nelde A., Stroh T., Handel M., et al. The antigenic landscape of multiple myeloma: Mass spectrometry (re)defines targets for T-cell-based immunotherapy. Blood. 2015;126:1203–1213. doi: 10.1182/blood-2015-04-640532. PubMed DOI PMC
Neri P., Bahlis N.J. Genomic instability in multiple myeloma: Mechanisms and therapeutic implications. Expert Opin. Biol. Ther. 2013;13((Suppl. 1)):S69–S82. doi: 10.1517/14712598.2013.814637. PubMed DOI
Shammas M.A., Shmookler Reis R.J., Koley H., Batchu R.B., Li C., Munshi N.C. Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood. 2009;113:2290–2297. doi: 10.1182/blood-2007-05-089193. PubMed DOI PMC
Samur M.K., Aktas Samur A., Fulciniti M., Szalat R., Han T., Shammas M., Richardson P., Magrangeas F., Minvielle S., Corre J., et al. Genome-Wide Somatic Alterations in Multiple Myeloma Reveal a Superior Outcome Group. J. Clin. Oncol. 2020;38:3107–3118. doi: 10.1200/JCO.20.00461. PubMed DOI PMC
Miller A., Asmann Y., Cattaneo L., Braggio E., Keats J., Auclair D., Lonial S., Network M.C., Russell S.J., Stewart A.K. High somatic mutation and neoantigen burden are correlated with decreased progression-free survival in multiple myeloma. Blood Cancer J. 2017;7:e612. doi: 10.1038/bcj.2017.94. PubMed DOI PMC
Jhunjhunwala S., Hammer C., Delamarre L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer. 2021;21:298–312. doi: 10.1038/s41568-021-00339-z. PubMed DOI
Paludan S.R., Pradeu T., Masters S.L., Mogensen T.H. Constitutive immune mechanisms: Mediators of host defence and immune regulation. Nat. Rev. Immunol. 2021;21:137–150. doi: 10.1038/s41577-020-0391-5. PubMed DOI PMC
Dudek-Peric A.M., Ferreira G.B., Muchowicz A., Wouters J., Prada N., Martin S., Kiviluoto S., Winiarska M., Boon L., Mathieu C., et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603–1614. doi: 10.1158/0008-5472.CAN-14-2089. PubMed DOI
Lu X., Ding Z.C., Cao Y., Liu C., Habtetsion T., Yu M., Lemos H., Salman H., Xu H., Mellor A.L., et al. Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells. J. Immunol. 2015;194:2011–2021. doi: 10.4049/jimmunol.1401894. PubMed DOI PMC
Cohen A.D., Raje N., Fowler J.A., Mezzi K., Scott E.C., Dhodapkar M.V. How to Train Your T Cells: Overcoming Immune Dysfunction in Multiple Myeloma. Clin. Cancer Res. 2020;26:1541–1554. doi: 10.1158/1078-0432.CCR-19-2111. PubMed DOI PMC
Zavidij O., Haradhvala N.J., Mouhieddine T.H., Sklavenitis-Pistofidis R., Cai S., Reidy M., Rahmat M., Flaifel A., Ferland B., Su N.K., et al. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat. Cancer. 2020;1:493–506. doi: 10.1038/s43018-020-0053-3. PubMed DOI PMC
McGranahan N., Rosenthal R., Hiley C.T., Rowan A.J., Watkins T.B.K., Wilson G.A., Birkbak N.J., Veeriah S., Van Loo P., Herrero J., et al. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell. 2017;171:1259–1271.e1211. doi: 10.1016/j.cell.2017.10.001. PubMed DOI PMC
Garrido F. HLA Class-I Expression and Cancer Immunotherapy. Adv. Exp. Med. Biol. 2019;1151:79–90. doi: 10.1007/978-3-030-17864-2_3. PubMed DOI
Carbone E., Neri P., Mesuraca M., Fulciniti M.T., Otsuki T., Pende D., Groh V., Spies T., Pollio G., Cosman D., et al. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood. 2005;105:251–258. doi: 10.1182/blood-2004-04-1422. PubMed DOI
Samur M.K., Fulciniti M., Aktas Samur A., Bazarbachi A.H., Tai Y.T., Prabhala R., Alonso A., Sperling A.S., Campbell T., Petrocca F., et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat. Commun. 2021;12:868. doi: 10.1038/s41467-021-21177-5. PubMed DOI PMC
van de Donk N., Usmani S.Z. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. Front. Immunol. 2018;9:2134. doi: 10.3389/fimmu.2018.02134. PubMed DOI PMC
Song X., Zhou Z., Li H., Xue Y., Lu X., Bahar I., Kepp O., Hung M.C., Kroemer G., Wan Y. Pharmacologic Suppression of B7-H4 Glycosylation Restores Antitumor Immunity in Immune-Cold Breast Cancers. Cancer Discov. 2020;10:1872–1893. doi: 10.1158/2159-8290.CD-20-0402. PubMed DOI PMC
Fucikova J., Truxova I., Hensler M., Becht E., Kasikova L., Moserova I., Vosahlikova S., Klouckova J., Church S.E., Cremer I., et al. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood. 2016;128:3113–3124. doi: 10.1182/blood-2016-08-731737. PubMed DOI PMC
Liu P., Zhao L., Loos F., Marty C., Xie W., Martins I., Lachkar S., Qu B., Waeckel-Enee E., Plo I., et al. Immunosuppression by Mutated Calreticulin Released from Malignant Cells. Mol. Cell. 2020;77:748–760.e749. doi: 10.1016/j.molcel.2019.11.004. PubMed DOI
Lin H., Kryczek I., Li S., Green M.D., Ali A., Hamasha R., Wei S., Vatan L., Szeliga W., Grove S., et al. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. Cancer Cell. 2021;39:480–493.e486. doi: 10.1016/j.ccell.2020.12.023. PubMed DOI PMC
Feng M., Marjon K.D., Zhu F., Weissman-Tsukamoto R., Levett A., Sullivan K., Kao K.S., Markovic M., Bump P.A., Jackson H.M., et al. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat. Commun. 2018;9:3194. doi: 10.1038/s41467-018-05211-7. PubMed DOI PMC
Sun J., Muz B., Alhallak K., Markovic M., Gurley S., Wang Z., Guenthner N., Wasden K., Fiala M., King J., et al. Targeting CD47 as a Novel Immunotherapy for Multiple Myeloma. Cancers. 2020;12:305. doi: 10.3390/cancers12020305. PubMed DOI PMC
Rybstein M.D., Bravo-San Pedro J.M., Kroemer G., Galluzzi L. The autophagic network and cancer. Nat. Cell Biol. 2018;20:243–251. doi: 10.1038/s41556-018-0042-2. PubMed DOI
Allard B., Allard D., Buisseret L., Stagg J. The adenosine pathway in immuno-oncology. Nat. Rev. Clin. Oncol. 2020;17:611–629. doi: 10.1038/s41571-020-0382-2. PubMed DOI
Moesta A.K., Li X.Y., Smyth M.J. Targeting CD39 in cancer. Nat. Rev. Immunol. 2020;20:739–755. doi: 10.1038/s41577-020-0376-4. PubMed DOI
Baracco E.E., Stoll G., Van Endert P., Zitvogel L., Vacchelli E., Kroemer G. Contribution of annexin A1 to anticancer immunosurveillance. Oncoimmunology. 2019;8:e1647760. doi: 10.1080/2162402X.2019.1647760. PubMed DOI PMC
Bailur J.K., McCachren S.S., Doxie D.B., Shrestha M., Pendleton K., Nooka A.K., Neparidze N., Parker T.L., Bar N., Kaufman J.L., et al. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy. JCI Insight. 2019;5:e127807. doi: 10.1172/jci.insight.127807. PubMed DOI PMC
Prabhala R.H., Neri P., Bae J.E., Tassone P., Shammas M.A., Allam C.K., Daley J.F., Chauhan D., Blanchard E., Thatte H.S., et al. Dysfunctional T regulatory cells in multiple myeloma. Blood. 2006;107:301–304. doi: 10.1182/blood-2005-08-3101. PubMed DOI PMC
Dhodapkar K.M., Barbuto S., Matthews P., Kukreja A., Mazumder A., Vesole D., Jagannath S., Dhodapkar M.V. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood. 2008;112:2878–2885. doi: 10.1182/blood-2008-03-143222. PubMed DOI PMC
Prabhala R.H., Pelluru D., Fulciniti M., Prabhala H.K., Nanjappa P., Song W., Pai C., Amin S., Tai Y.T., Richardson P.G., et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood. 2010;115:5385–5392. doi: 10.1182/blood-2009-10-246660. PubMed DOI PMC
Kumar S.K., Rajkumar V., Kyle R.A., van Duin M., Sonneveld P., Mateos M.V., Gay F., Anderson K.C. Multiple myeloma. Nat. Rev. Dis. Primers. 2017;3:17046. doi: 10.1038/nrdp.2017.46. PubMed DOI
Burwick N., Sharma S. Glucocorticoids in multiple myeloma: Past, present, and future. Ann. Hematol. 2019;98:19–28. doi: 10.1007/s00277-018-3465-8. PubMed DOI
Yang H., Xia L., Chen J., Zhang S., Martin V., Li Q., Lin S., Chen J., Calmette J., Lu M., et al. Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat. Med. 2019;25:1428–1441. doi: 10.1038/s41591-019-0566-4. PubMed DOI
Rozkova D., Horvath R., Bartunkova J., Spisek R. Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin. Immunol. 2006;120:260–271. doi: 10.1016/j.clim.2006.04.567. PubMed DOI
Chiossone L., Vitale C., Cottalasso F., Moretti S., Azzarone B., Moretta L., Mingari M.C. Molecular analysis of the methylprednisolone-mediated inhibition of NK-cell function: Evidence for different susceptibility of IL-2- versus IL-15-activated NK cells. Blood. 2007;109:3767–3775. doi: 10.1182/blood-2006-07-037846. PubMed DOI
Franco L.M., Gadkari M., Howe K.N., Sun J., Kardava L., Kumar P., Kumari S., Hu Z., Fraser I.D.C., Moir S., et al. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses. J. Exp. Med. 2019;216:384–406. doi: 10.1084/jem.20180595. PubMed DOI PMC
Hideshima T., Ogiya D., Liu J., Harada T., Kurata K., Bae J., Massefski W., Anderson K.C. Immunomodulatory drugs activate NK cells via both Zap-70 and cereblon-dependent pathways. Leukemia. 2021;35:177–188. doi: 10.1038/s41375-020-0809-x. PubMed DOI PMC
Bae J., Hideshima T., Tai Y.T., Song Y., Richardson P., Raje N., Munshi N.C., Anderson K.C. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia. 2018;32:1932–1947. doi: 10.1038/s41375-018-0062-8. PubMed DOI PMC
Gandolfi S., Laubach J.P., Hideshima T., Chauhan D., Anderson K.C., Richardson P.G. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017;36:561–584. doi: 10.1007/s10555-017-9707-8. PubMed DOI
Martins I., Kepp O., Schlemmer F., Adjemian S., Tailler M., Shen S., Michaud M., Menger L., Gdoura A., Tajeddine N., et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene. 2011;30:1147–1158. doi: 10.1038/onc.2010.500. PubMed DOI
.Kepp O., Galluzzi L., Giordanetto F., Tesniere A., Vitale I., Martins I., Schlemmer F., Adjemian S., Zitvogel L., Kroemer G. Disruption of the PP1/GADD34 complex induces calreticulin exposure. Cell Cycle. 2009;8:3971–3977. doi: 10.4161/cc.8.23.10191. PubMed DOI
Le Naour J., Liu P., Zhao L., Adjemian S., Sztupinszki Z., Taieb J., Mulot C., Silvin A., Dutertre C.A., Ginhoux F., et al. A TLR3 Ligand Reestablishes Chemotherapeutic Responses in the Context of FPR1 Deficiency. Cancer Discov. 2021;11:408–423. doi: 10.1158/2159-8290.CD-20-0465. PubMed DOI
Amouzegar A., Chelvanambi M., Filderman J.N., Storkus W.J., Luke J.J. STING Agonists as Cancer Therapeutics. Cancers. 2021;13:2695. doi: 10.3390/cancers13112695. PubMed DOI PMC
Lesokhin A.M., Ansell S.M., Armand P., Scott E.C., Halwani A., Gutierrez M., Millenson M.M., Cohen A.D., Schuster S.J., Lebovic D., et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J. Clin. Oncol. 2016;34:2698–2704. doi: 10.1200/JCO.2015.65.9789. PubMed DOI PMC
Costello C. The future of checkpoint inhibition in multiple myeloma? Lancet Haematol. 2019;6:e439–e440. doi: 10.1016/S2352-3026(19)30149-8. PubMed DOI