Diel regulation of photosynthetic activity in the oceanic unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29076633
DOI
10.1111/1462-2920.13963
Knihovny.cz E-zdroje
- MeSH
- chlorofyl a metabolismus MeSH
- chlorofyl metabolismus MeSH
- fixace dusíku MeSH
- fotosyntéza * MeSH
- fotosystém I - proteinový komplex metabolismus MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- fykobilizomy metabolismus MeSH
- oceány a moře MeSH
- sinice metabolismus MeSH
- tma MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- oceány a moře MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- fotosystém I - proteinový komplex MeSH
- fotosystém II - proteinový komplex MeSH
- fykobilizomy MeSH
The oceanic unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501 exhibits large diel changes in abundance of both Photosystem II (PSII) and Photosystem I (PSI). To understand the mechanisms underlying these dynamics, we assessed photosynthetic parameters, photosystem abundance and composition, and chlorophyll-protein biosynthesis over a diel cycle. Our data show that the decline in PSII activity and abundance observed during the dark period was related to a light-induced modification of PSII, which, in combination with the suppressed synthesis of membrane proteins, resulted in monomerization and gradual disassembly of a large portion of PSII core complexes. In the remaining population of assembled PSII monomeric complexes, we detected the non-functional version of the D1 protein, rD1, which was absent in PSII during the light phase. During the dark period, we also observed a significant decoupling of phycobilisomes from PSII and a decline in the chlorophyll a quota, which matched the complete loss of functional PSIIs and a substantial decrease in PSI abundance. However, the remaining PSI complexes maintained their photochemical activity. Thus, during the nocturnal period of nitrogen fixation C. watsonii operates a suite of regulatory mechanisms for efficient utilization/recycling of cellular resources and protection of the nitrogenase enzyme.
Citace poskytuje Crossref.org
Quantifying Cyanothece growth under DIC limitation
Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations
Quantitative models of nitrogen-fixing organisms
Chlorophyll f synthesis by a super-rogue photosystem II complex