BACKGROUND: Lightless caves can harbour a wide range of living organisms. Cave animals have evolved a set of morphological, physiological, and behavioural adaptations known as troglomorphisms, enabling their survival in the perpetual darkness, narrow temperature and humidity ranges, and nutrient scarcity of the subterranean environment. In this study, we focused on adaptations of skull shape and sensory systems in the blind cave salamander, Proteus anguinus, also known as olm or simply proteus-the largest cave tetrapod and the only European amphibian living exclusively in subterranean environments. This extraordinary amphibian compensates for the loss of sight by enhanced non-visual sensory systems including mechanoreceptors, electroreceptors, and chemoreceptors. We compared developmental stages of P. anguinus with Ambystoma mexicanum, also known as axolotl, to make an exemplary comparison between cave- and surface-dwelling paedomorphic salamanders. FINDINGS: We used contrast-enhanced X-ray computed microtomography for the 3D segmentation of the soft tissues in the head of P. anguinus and A. mexicanum. Sensory organs were visualized to elucidate how the animal is adapted to living in complete darkness. X-ray microCT datasets were provided along with 3D models for larval, juvenile, and adult specimens, showing the cartilage of the chondrocranium and the position, shape, and size of the brain, eyes, and olfactory epithelium. CONCLUSIONS: P. anguinus still keeps some of its secrets. Our high-resolution X-ray microCT scans together with 3D models of the anatomical structures in the head may help to elucidate the nature and origin of the mechanisms behind its adaptations to the subterranean environment, which led to a series of troglomorphisms.
Sensitivity to magnetic fields is dependent on the intensity and color of light in several animal species. The light-dependent magnetoreception working model points to cryptochrome (Cry) as a protein cooperating with its co-factor flavin, which possibly becomes magnetically susceptible upon excitation by light. The type of Cry involved and what pair of magnetosensitive radicals are responsible is still elusive. Therefore, we developed a conditioning assay for the firebug Pyrrhocoris apterus, an insect species that possesses only the mammalian cryptochrome (Cry II). Here, using the engineered Cry II null mutant, we show that: (i) vertebrate-like Cry II is an essential component of the magnetoreception response, and (ii) magnetic conditioning continues even after 25 h in darkness. The light-dependent and dark-persisting magnetoreception based on Cry II may inspire new perspectives in magnetoreception and cryptochrome research.
- MeSH
- Sensation MeSH
- Insecta MeSH
- Cryptochromes * genetics MeSH
- Magnetic Fields * MeSH
- Darkness MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The transition from vegetative to reproductive phases is the most fundamental and tightly controlled switch in the life of flowering plants. The short-day plant Chenopodium rubrum is a fast cycling annual plant lacking a juvenile phase. It can be induced to flowering at the seedling stage by exposure to a single period of darkness. This floral induction may then be cancelled by a short pulse of red light at midnight called night break (NB), which also inhibits the floral activator FLOWERING LOCUS T LIKE 1 (CrFTL1). We performed a comparative transcriptomic study between C. rubrum seedlings treated by NB and ones growing through uninterrupted night, and found about six hundred differentially expressed genes, including the B-BOX DOMAIN (BBX) genes. We focused on the CrBBX19 and BOLTING TIME CONTROL 1 (BTC1) genes, homologous to the upstream regulators of the BvFT2, a floral inducer in sugar beet. The transcription patterns of the two genes were compatible with their putative role as a sensor of the dark period length optimal for flowering (CrBBX19), and a signal of lights-on (CrBTC1), but the participation of other genes cannot be excluded. The expression profiles of CrBBX19 and the homolog of the core endogenous clock gene LATE ELONGATED HYPOCOTYL (LHY) were highly similar, which suggested their co-regulation.
Circadian clocks are time-measuring devices found in a majority of organisms synchronizing their behavior and metabolism with the day-light cycle. What happens in extreme latitudes, where the environmental conditions can be harsh at any time of day?
- MeSH
- Circadian Clocks * MeSH
- Circadian Rhythm MeSH
- Photoperiod MeSH
- Darkness MeSH
- Publication type
- Journal Article MeSH
- Comment MeSH
Nearly all organisms evolved endogenous self-sustained timekeeping mechanisms to track and anticipate cyclic changes in the environment. Circadian clocks, with a periodicity of about 24 h, allow animals to adapt to day-night cycles. Biological clocks are highly adaptive, but strong behavioral rhythms might be a disadvantage for adaptation to weakly rhythmic environments such as polar areas [1, 2]. Several high-latitude species, including Drosophila species, were found to be highly arrhythmic under constant conditions [3-6]. Furthermore, Drosophila species from subarctic regions can extend evening activity until dusk under long days. These traits depend on the clock network neurochemistry, and we previously proposed that high-latitude Drosophila species evolved specific clock adaptations to colonize polar regions [5, 7, 8]. We broadened our analysis to 3 species of the Chymomyza genus, which diverged circa 5 million years before the Drosophila radiation [9] and colonized both low and high latitudes [10, 11]. C. costata, pararufithorax, and procnemis, independently of their latitude of origin, possess the clock neuronal network of low-latitude Drosophila species, and their locomotor activity does not track dusk under long photoperiods. Nevertheless, the high-latitude C. costata becomes arrhythmic under constant darkness (DD), whereas the two low-latitude species remain rhythmic. Different mechanisms are behind the arrhythmicity in DD of C. costata and the high-latitude Drosophila ezoana, suggesting that the ability to maintain behavioral rhythms has been lost more than once during drosophilids' evolution and that it might indeed be an evolutionary adaptation for life at high latitudes.
- MeSH
- Circadian Clocks genetics physiology MeSH
- Circadian Rhythm physiology MeSH
- Drosophila physiology MeSH
- Drosophilidae genetics physiology MeSH
- Phenotype MeSH
- Photoperiod MeSH
- Adaptation, Physiological physiology MeSH
- Cryptochromes physiology MeSH
- Locomotion physiology MeSH
- Altitude MeSH
- Neurons physiology MeSH
- Motor Activity physiology MeSH
- Drosophila Proteins metabolism MeSH
- Darkness MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Monografie
1. vydání 423 stran : ilustrace, tabulky ; 22 cm
Kniha shrnuje výsledky kvalitativní analýzy katamnestického materiálu jednotlivých probandů, kteří podstoupili zkušenost s omezenou zevní stimulací ve variantě blížící se Chamber REST, která je v ČR označována jako terapie tmou. Nakladatelská anotace. Kráceno
- Keywords
- terapie tmou,
- MeSH
- Complementary Therapies methods MeSH
- Follow-Up Studies MeSH
- Self Concept MeSH
- Spiritual Therapies MeSH
- Darkness MeSH
- Conspectus
- Fyzioterapie. Psychoterapie. Alternativní lékařství
- NML Fields
- alternativní lékařství
- psychoterapie
- NML Publication type
- kolektivní monografie
The progression of the cell cycle in green algae dividing by multiple fission is, under otherwise unlimited conditions, affected by the growth rate, set by a combination of light intensity and temperature. In this study, we compared the cell cycle characteristics of Desmodesmus quadricauda at 20 °C or 30 °C and upon shifts between these two temperatures. The duration of the cell cycle in cells grown under continuous illumination at 20 °C was more than double that at 30 °C, suggesting that it was set directly by the growth rate. Similarly, the amounts of DNA, RNA, and bulk protein content per cell at 20 °C were approximately double those of cells grown at the higher temperature. For the shift experiments, cells grown at either 20 °C or 30 °C were transferred to darkness to prevent further growth, and then cultivated at the same or the other temperature. Upon transfer to the lower temperature, fewer nuclei and daughter cells were produced, and not all cells were able to finish the cell cycle by division, remaining multinuclear. Correspondingly, cells placed in the dark at the higher temperature divided faster into more daughter cells than the control cells. These differences correlated with shifts in the preceding cyclin-dependent kinase activity, suggesting that cell cycle progression was not related to growth rate or cell biomass but correlated with cyclin-dependent kinase activity.
- MeSH
- Algal Proteins genetics metabolism MeSH
- Cell Cycle * MeSH
- Chlorophyta cytology growth & development physiology MeSH
- Cyclin-Dependent Kinases genetics metabolism MeSH
- Cold Temperature MeSH
- Darkness MeSH
- Hot Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Plants have developed many ways to protect reaction centres of photosystems against overexcitation. One of the mechanisms involves reduction of the leaf absorption cross-section by light-induced chloroplast avoidance reaction. Decrease in the probability of photon absorption by the pigments bound within photosystem II (PSII) complexes leads to the increase in quantum yield of PSII photochemistry (ΦPSII). On the other hand, the decrease of PSII excitation probability causes reduction of chlorophyll a fluorescence intensity which is manifested as the apparent increase of determined quantum yield of regulated light-induced non-photochemical quenching (ΦNPQ). Absorption of different light intensity by phototropins led to the different chloroplast distribution within barley leaves, estimated by measurement of the leaf transmittance. Due to a weak blue light used for transmittance measurements, leaves exposed to actinic light with wavelengths longer than 520 nm undergo chloroplast accumulation reaction, in contrast with leaves exposed to light with shorter wavelengths, that showed a different extent of chloroplast avoidance reaction. Based on the ΦNPQ action spectra measured simultaneously with the transmittance, the influence of different chloroplast distribution on ΦNPQ was assessed. The analysis of results showed that decrease in the leaf absorption cross-section due to increasing part of chloroplasts reaching profile position significantly affected the partitioning of excitation energy within PSII and such rearrangement also distorted measured ΦNPQ and cannot be neglected in its interpretation. When the majority of chloroplasts reached profile position, the photoprotective effect appeared to be the most prominent for strong blue light that has the highest absorption in the upper leaf layers in comparison with green or red ones.
Arctic microalgae experience long periods of continuous darkness during the polar night, when they are unable to photosynthesize. Despite numerous studies on overwintering strategies, such as utilization of stored energy products, formation of resting stages, reduction of metabolic rates and heterotrophic lifestyles, there have been few attempts to assess the in situ physiological state and restoration of the photosynthetic apparatus upon re-illumination. In this study, we found diverse and active marine phytoplankton communities during the polar night at 78°N. Furthermore, we observed rapid changes (≤20 min) in the efficiency of photosynthetic electron transport upon re-illumination. High photosynthetic capacity and net primary production were established after 24 h of re-illumination. Our results suggest that some Arctic autotrophs maintain fully functional photosystem II and downstream electron acceptors during the polar night even though the low in situ net primary production levels measured in January prove that light was not sufficient to support any measurable primary production. Due to low temperatures resulting in low respiratory rates as well as the absence of photodamage during the polar night, maintenance of basic photosynthetic machinery may actually pose relatively low metabolic costs for algal cells. This could allow Arctic microalgae to endure the polar night without the formation of dormant stages, enabling them to recover and take advantage of light immediately upon the suns return during the winter-spring transition.
- MeSH
- Algal Proteins metabolism MeSH
- Photosynthesis physiology MeSH
- Photosystem II Protein Complex metabolism MeSH
- Phytoplankton physiology MeSH
- Microalgae physiology MeSH
- Seasons MeSH
- Darkness * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Arctic Regions MeSH
- Svalbard MeSH