Active nitrogen fixation by Crocosphaera expands their niche despite the presence of ammonium - A case study

. 2019 Oct 21 ; 9 (1) : 15064. [epub] 20191021

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31636357
Odkazy

PubMed 31636357
PubMed Central PMC6803696
DOI 10.1038/s41598-019-51378-4
PII: 10.1038/s41598-019-51378-4
Knihovny.cz E-zdroje

Unicellular nitrogen fixer Crocosphaera contributes substantially to nitrogen fixation in oligotrophic subtropical gyres. They fix nitrogen even when significant amounts of ammonium are available. This has been puzzling since fixing nitrogen is energetically inefficient compared with using available ammonium. Here we show that by fixing nitrogen, Crocosphaera can increase their population and expand their niche despite the presence of ammonium. We have developed a simple but mechanistic model of Crocosphaera based on their growth in steady state culture. The model shows that the growth of Crocosphaera can become nitrogen limited despite their capability to fix nitrogen. When they fix nitrogen, the population increases by up to 78% relative to the case without nitrogen fixation. When we simulate a simple ecological situation where Crocosphaera exists with non-nitrogen-fixing phytoplankton, the relative abundance of Crocosphaera increases with nitrogen fixation, while the population of non-nitrogen-fixing phytoplankton decreases since a larger fraction of fixed nitrogen is consumed by Crocosphaera. Our study quantitatively supports the benefit of nitrogen fixation despite the high electron/energy costs, even when an energetically efficient alternative is available. It demonstrates a competitive aspect of Crocosphaera, permitting them to be regionally significant nitrogen fixers.

Zobrazit více v PubMed

Zehr JP, et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature. 2001;412:635–638. doi: 10.1038/35088063. PubMed DOI

Montoya JP, et al. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature. 2004;430:1027–1031. doi: 10.1038/nature02824. PubMed DOI

Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 2011;19:162–173. doi: 10.1016/j.tim.2010.12.004. PubMed DOI

Mohr W, Intermaggio MP, LaRoche J. Diel rhythm of nitrogen and carbon metabolism in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ. Microbiol. 2010;12:412–421. doi: 10.1111/j.1462-2920.2009.02078.x. PubMed DOI

Saito MA, et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc. Natl. Acad. Sci. USA. 2011;108:2184–2189. doi: 10.1073/pnas.1006943108. PubMed DOI PMC

Dron A, et al. Light:dark (12:12 h) quantification of carbohydrate fluxes in Crocosphaera watsonii. Aquat. Microb. Ecol. 2012;68:43–55. doi: 10.3354/ame01600. DOI

Jacq, V., Ridame, C., L’Helguen, S., Kaczmar, F. & Saliot, A. Response of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii to iron limitation. PLoS ONE9, e86749 (2014). PubMed PMC

Masuda T, et al. Diel regulation of photosynthetic activity in the oceanic unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ. Microbiol. 2018;20:546–560. doi: 10.1111/1462-2920.13963. PubMed DOI

Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature. 2008;451:293–296. doi: 10.1038/nature06592. PubMed DOI

Weber T, Deutsch C. Local versus basin-scale limitation of marine nitrogen fixation. Proc. Natl. Acad. Sci. USA. 2014;111:8741–8746. doi: 10.1073/pnas.1317193111. PubMed DOI PMC

Dekaezemacker J, Bonnet S. Sensitivity of N2 fixation to combined nitrogen forms (NO3− and NH4+) in two strains of the marine diazotroph Crocosphaera watsonii (Cyanobacteria) Mar. Ecol. Prog. Ser. 2011;438:33–46. doi: 10.3354/meps09297. DOI

Knapp AN, Dekaezemacker J, Bonnet S, Sohm JA, Capone DG. Sensitivity of Trichodesmium erythraeum and Crocosphaera watsonii abundance and N2 fixation rates to varying NO3− and PO43− concentrations in batch cultures. Aquat. Microb. Ecol. 2012;66:223–236. doi: 10.3354/ame01577. DOI

Knapp, A. N. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front. Microbiol. 3, 374 (2012). PubMed PMC

Masuda T, Furuya K, Kodama T, Takeda S, Harrison PJ. Ammonium uptake and dinitrogen fixation by the unicellular nanocyanobacterium Crocosphaera watsonii in nitrogen-limited continuous cultures. Limnol. Oceanogr. 2013;58:2029–2036. doi: 10.4319/lo.2013.58.6.2029. DOI

Capone, D. G. Benthic nitrogen fixation. In: Nitrogen Cycling in Coastal Marine Environments. 85–123 (1988).

Dixon R, Kahn D. Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol. 2004;2:621–631. doi: 10.1038/nrmicro954. PubMed DOI

Falkowski. ‘Enzymology of Nitrogen Assimilation’ in Nitrogen in the Marine Environment, eds Carpenter, E. J. and Capone, D. G. Academic Press, New York, NY. 839–868 (1983).

Inomura K, Bragg J, Follows MJ. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME J. 2017;11:166–175. doi: 10.1038/ismej.2016.97. PubMed DOI PMC

Inomura K, Bragg J, Riemann L, Follows MJ. A quantitative model of nitrogen fixation in the presence of ammonium. PLOS ONE. 2018;13:e0208282. doi: 10.1371/journal. PubMed DOI PMC

Bühler T, et al. Control of dinitrogen fixation in ammonium-assimilating cultures of Azotobacter vinelandii. Arch. Microbiol. 1987;148:247–251. doi: 10.1007/BF00414820. DOI

Schuster, S. & Fell, D. Modeling and simulating metabolic networks. In: Lengauer, T. (Ed.), Bioinformatics: From Genomes to Therapies. Wiley-VCH: Weinheim 2, 755–805 (2007).

Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat. Biotechnol. 2010;28:245–248. doi: 10.1038/nbt.1614. PubMed DOI PMC

Geider RJ, Macintyre HL, Kana TM. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 1998;43:679–694. doi: 10.4319/lo.1998.43.4.0679. DOI

Pahlow M, Dietze H, Oschlies A. Optimality-based model of phytoplankton growth and diazotrophy. Mar. Ecol. Prog. Ser. 2013;489:1–16. doi: 10.3354/meps10449. DOI

Nicholson DP, Stanley RHR, Doney SC. A phytoplankton model for the allocation of gross photosynthetic energy including the trade-offs of diazotroophy. J. Geophys. Res. Biogeosciences. 2018;123:1796–1816. doi: 10.1029/2017JG004263. DOI

Tilman D. Resource competition between plankton algae: An experimental and theoretical approach. Ecology. 1977;2:338–348. doi: 10.2307/1935608. DOI

Dutkiewicz S, Ward BA, Monteiro F, Follows MJ. Interconnection of nitrogen fixers and iron in the Pacific Ocean: Theory and numerical simulations. Global Biogeochem. Cycles. 2012;26:GB1012. doi: 10.1029/2011GB004039. DOI

Ward BA, Dutkiewicz S, Moore CM, Follows MJ. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol. Oceanogr. 2013;58:2059–2075. doi: 10.4319/lo.2013.58.6.2059. DOI

Dutkiewicz S, Ward BA, Scott JR, Follows MJ. Understanding predicted shifts in diazotroph biogeography using resource competition theory. Biogeosciences Discuss. 2014;11:7113–7149. doi: 10.5194/bgd-11-7113-2014. DOI

Yoshikawa C, Coles VJ, Hood RR, Capone DG, Yoshida N. Modeling how surface nitrogen fi xation in fl uences subsurface nutrient patterns in the North Atlantic. J. Geophys. Res. 2013;118:2520–2534. doi: 10.1002/jgrc.20165. DOI

Stukel MR, Coles VJ, Brooks MT, Hood RR. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon River plume. Biogeosciences. 2014;11:3259–3278. doi: 10.5194/bg-11-3259-2014. DOI

Follett, C. L., Dutkiewicz, S., Karl, D. M., Inomura, K. & Follows, M. J. Seasonal resource conditions favor a summertime increase in North Pacific diatom–diazotroph associations. ISME J. 12, 1543–1557 (2018). PubMed PMC

Moore LR, Goericke R, Chisholm SW. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 1995;116:259–276. doi: 10.3354/meps116259. DOI

Liu H, Landry MR, Vaulot D, Campbell L. Prochlorococcus growth rates in the central equatorial Pacific: An application of the fmax approach. J. Geophys. Res. 1999;104:3391–3399. doi: 10.1029/1998JC900011. DOI

Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria) J. Phycol. 2007;43:485–496. doi: 10.1111/j.1529-8817.2007.00355.x. DOI

Monteiro FM, Follows MJ, Dutkiewicz S. Distribution of diverse nitrogen fixers in the global ocean. Global Biogeochem. Cycles. 2010;24:GB3017. doi: 10.1029/2009GB003731. DOI

Dutkiewicz S, et al. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model. Biogeosciences. 2015;12:4447–4481. doi: 10.5194/bg-12-4447-2015. DOI

Pomeroy LP, Williams PL, Azam WF, Hobbie JE. The microbial loop. Oceanography. 2007;20:28–33. doi: 10.5670/oceanog.2007.45. DOI

Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ. Trichodesmium, a globally significant marine cyanobacterium. Science. 1997;276:1221–1229. doi: 10.1126/science.276.5316.1221. DOI

Rodriguez, I. B. & Ho, T.-Y. Diel nitrogen fixation pattern of Trichodesmium: the interactive control of light and Ni. Sci. Rep. 4, 4445 (2014). PubMed PMC

Karl D, et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature. 1997;388:533–538. doi: 10.1038/41474. DOI

Hutchins DA, et al. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr. 2007;52:1293–1304. doi: 10.4319/lo.2007.52.4.1293. DOI

Capone DG, Ferrier MD, Carpenter EJ. Amino acid cycling in colonies of the planktonic marine cyanobacterium Trichodesmium thiebautii. Appl. Environ. Microbiol. 1994;60:3989–3995. PubMed PMC

Shiozaki T, et al. Linkage Between Dinitrogen Fixation and Primary Production in the Oligotrophic South Pacific Ocean. Global Biogeochem. Cycles. 2018;32:1028–1044. doi: 10.1029/2017GB005869. DOI

Duce RA, et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science. 2008;320:893–897. doi: 10.1126/science.1150369. PubMed DOI

Kodama T, Furuya K, Hashihama F, Takeda S, Kanda J. Occurrence of rain-origin nitrate patches at the nutrient-depleted surface in the East China Sea and the Philippine Sea during summer. J. Geophys. Res. Ocean. 2011;116:1–14. doi: 10.1029/2010JC006814. DOI

Calil PHR, Richards KJ. Transient upwelling hot spots in the oligotrophic North Pacific. J. Geophys. Res. Ocean. 2010;115:1–20. doi: 10.1029/2009JC005360. DOI

LaRoche J, Breitbarth E. Importance of the diazotrophs as a source of new nitrogen in the ocean. J. Sea Res. 2005;53:67–91. doi: 10.1016/j.seares.2004.05.005. DOI

Moore JK, Doney SC, Lindsay K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles. 2004;18:GB4028. doi: 10.1029/2004GB002220. DOI

Villareal TA. Laboratory culture and preliminary characterization of the nitrogen-fixing Rhizosolenia-Richelia symbiosis. Mar. Ecol. 1990;11:117–132. doi: 10.1111/j.1439-0485.1990.tb00233.x. DOI

Julio-José C-O, Stal LJ. Diazotrophic growth of the unicellular cyanobacterium Gloeothece sp. PCC 6909 in continuous culture. J. Gen. Microbiol. 1991;137:1789–1797. doi: 10.1099/00221287-137-8-1789. DOI

Dron A, et al. Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle. Environ. Microbiol. 2012;14:967–81. doi: 10.1111/j.1462-2920.2011.02675.x. PubMed DOI

Fu F-X, et al. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol. Oceanogr. 2008;53:2472–2484. doi: 10.4319/lo.2008.53.6.2472. DOI

Lennert-Cody CE, Franks PJS. Plankton patchiness in high-frequency internal waves. Mar. Ecol. Prog. Ser. 1999;186:59–66. doi: 10.3354/meps186059. DOI

Martin, A. P., Richards, K. J., Bracco, A. & Provenzale, A. Patchy productivity in the open ocean. Global Biogeochem. Cycles16, 1025 (2002).

Hashihama F, et al. Macro-scale exhaustion of surface phosphate by dinitrogen fixation in the western North Pacific. Geophys. Res. Lett. 2009;36:2–6. doi: 10.1029/2008GL036866. DOI

Gruber N. Elusive marine nitrogen fixation. Proc. Natl. Acad. Sci. USA. 2016;113:4246–4248. doi: 10.1073/pnas.1603646113. PubMed DOI PMC

Clayton S, et al. Biogeochemical versus ecological consequences of modeled ocean physics. Biogeosciences. 2017;14:2877–2889. doi: 10.5194/bg-14-2877-2017. DOI

Dyhrman ST, Haley ST. Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl. Environ. Microbiol. 2006;72:1452–1458. doi: 10.1128/AEM.72.2.1452-1458.2006. PubMed DOI PMC

Pereira, N., Shilova, I. N. & Zehr, J. P. Use of the high affinity phosphate transporter gene, pstS, as an indicator for phosphorus stress in the marine diazotroph Crocosphaera watsonii (Chroococcales, Cyanobacteria). J. Phycol. 55, 752–761 (2019). PubMed

Elrifi IR, Turpin DH. Steady-state luxury consumption and the concept of optimum nutrient ratios: A study with phosphate nitrate limited Selenastrum minutum (Chlorophyta) J. Phycol. 1985;21:592–602. doi: 10.1111/j.0022-3646.1985.00592.x. DOI

Healey FP. Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (Cyanophyceae) J. Phycol. 1985;21:134–146. doi: 10.1111/j.0022-3646.1985.00134.x. DOI

Rhee G-Y. A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 1973;9:495–506.

Lin S, Litaker RW, Sunda WG. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J. Phycol. 2016;52:10–36. doi: 10.1111/jpy.12365. PubMed DOI

Wang, W.-L., Moore, J. K., Martiny, A. C. & Primeau, F. W. Convergent estimates of marine nitrogen fixation. Nature566, 205–211 (2019). PubMed

Daines SJ, Clark JR, Lenton TM. Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N:P ratio. Ecol. Lett. 2014;17:414–425. doi: 10.1111/ele.12239. PubMed DOI

Pahlow M, Oschlies A. Chain model of phytoplankton P, N and light colimitation. Mar. Ecol. Prog. Ser. 2009;376:69–83. doi: 10.3354/meps07748. DOI

Taniguchi DAA, Franks PJS, Poulin FJ. Planktonic biomass size spectra: An emergent property of size-dependent physiological rates, food web dynamics, and nutrient regimes. Mar. Ecol. Prog. Ser. 2014;514:13–33. doi: 10.3354/meps10968. DOI

Pahlow M. Linking chlorophyll-nutrietn dynamics to the Redfield N:C ratio with a model of optimal phytoplankton growth. Mar. Ecol. Prog. Ser. 2005;287:33–43. doi: 10.3354/meps287033. DOI

Pahlow M, Oschlies A. Optimal allocation backs droop’s cell-quota model. Mar. Ecol. Prog. Ser. 2013;473:1–5. doi: 10.3354/meps10181. DOI

Scott M, Klumpp S, Mateescu EM, Hwa T. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Mol. Syst. Biol. 2014;10:747–747. doi: 10.15252/msb.20145379. PubMed DOI PMC

Jahn M, et al. Growth of Cyanobacteria Is Constrained by the Abundance of Light and Carbon Assimilation Proteins. Cell Rep. 2018;25:478–486.e8. doi: 10.1016/j.celrep.2018.09.040. PubMed DOI

Zavřel, T. et al. Quantitative insights into the cyanobacterial cell economy. Elife8 (2019). PubMed PMC

Christie-oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph-heterotroph interactions. Nat. Microbiol. 2 (2017). PubMed PMC

Klausmeier CA, Litchman E, Daufresne T, Levin SA. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature. 2004;429:171–174. doi: 10.1038/nature02454. PubMed DOI

Burnap, R. L. Systems and photosystems: cellular limits of autotrophic productivity in cyanobacteria. Front. Bioeng. Biotechnol. 3 (2015). PubMed PMC

Smith SL, et al. Flexible phytoplankton functional type (FlexPFT) model: Size-scaling of traits and optimal growth. J. Plankton Res. 2016;38:977–992. doi: 10.1093/plankt/fbv038. DOI

Garcia, N. S., Bonachela, J. A. & Martiny, A. C. Growth-dependent cell size controls interactions between nutrient supply and cellular elemental stoichiometry of marine Synechococcus. ISME J10, 2715–2724 (2016). PubMed PMC

Liu H, et al. Cell cycle and physiological characteristics Synechococcus (WH7803) in chemostat cultu. Mar. Ecol. Prog. Ser. 1999;189:17–25. doi: 10.3354/meps189017. DOI

Claquin P, Martin-Jézéquel V, Kromkamp JC, Veldhuis MJW, Kraay GW. Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen, and phosphorus control. J. Phycol. 2002;38:922–930. doi: 10.1046/j.1529-8817.2002.t01-1-01220.x. DOI

Caperon J, Meyer J. Nitrogen-limited growth of marine phytoplankton-I. Changes in population characteristics with steady-state growth rate. Deep Sea Res. 1972;19:601–618.

Sterner RW, Chrzanowski TH, Elser JJ, George NB. Sources of nitrogen and phosphorus Sources of nitrogen the growth supporting of in an oligotrophic and phytoplankton Canadian shield lake. Limnol. Ocean. 1995;40:242–249. doi: 10.4319/lo.1995.40.2.0242. DOI

Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press: Princeton, NJ. (2002).

Hall SR, Smith VH, Lytle DA, Leibold MA. Constraints on primary producer N: P stoichiometry along N: P supply ratio gradients. Ecology. 2005;86:1894–1904. doi: 10.1890/04-1045. DOI

Li H, Sherman DM, Bao S, Sherman LA. Pattern of cyanophycin accumulation in nitrogen-fixing and non-nitrogen-fixing cyanobacteria. Arch. Microbiol. 2001;176:9–18. doi: 10.1007/s002030100281. PubMed DOI

Bremer, H. & Dennis, P. Modulation of chemical composition and other parameters of the cell by growth rate. In: Neidhardt, F. (eds). Escherichia coli and Salmonella typhimurium. Am. Soc. Microbiol.: Washington, DC, 1996. 1553–1569 (1996).

Vallina SM, Ward BA, Dutkiewicz S, Follows MJ. Maximal ingestion with active prey-switching: a kill-the-winner functional response and its effect on global species richness and biogeography. Prog. Oceanogr. 2014;120:93–109. doi: 10.1016/j.pocean.2013.08.001. DOI

Monod J. The growth of bacterial cultures. Ann. Rev. Mar. Sci. 1949;3:371–394.

Murdoch WW. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Monogr. 1969;39:335–354. doi: 10.2307/1942352. DOI

Kiørboe T, Saiz E, Viitasalo M. Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 1996;143:65–75. doi: 10.3354/meps143065. DOI

Kalinkat, G., Rall, B. C., Vucic-Pestic, O. & Brose, U. The allometry of prey preferences. PLoS ONE6, e25937 (2011). PubMed PMC

Murdoch WW, Avery S, Smyth MEB. Switching in predatory fish. Ecology. 1975;56:1094–1105. doi: 10.2307/1936149. DOI

Morozov AY. Emergence of Holling type III zooplankton functional response: Bringing together field evidence and mathematical modelling. J. Theor. Biol. 2010;265:45–54. doi: 10.1016/j.jtbi.2010.04.016. PubMed DOI

Healey FP. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 1980;5:281–286. doi: 10.1007/BF02020335. PubMed DOI

Milligan AJ. Dynamics of Silicon Metabolism and Silicon Isotopic Discrimination in a Marine Diatom as a Function of pCO2. Limnol. Oceanogr. 2004;49:322–329. doi: 10.4319/lo.2004.49.2.0322. DOI

Follows MJ, Dutkiewicz S. Modeling diverse communities of marine microbes. Ann. Rev. Mar. Sci. 2011;3:427–451. doi: 10.1146/annurev-marine-120709-142848. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...