Crocosphaera as a Major Consumer of Fixed Nitrogen
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35770981
PubMed Central
PMC9431459
DOI
10.1128/spectrum.02177-21
Knihovny.cz E-zdroje
- Klíčová slova
- Crocosphaera watsonii, combined nitrogen, ecological model, marine N2 fixer,
- MeSH
- amoniové sloučeniny * MeSH
- dusík MeSH
- ekosystém MeSH
- mořská voda MeSH
- sinice * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniové sloučeniny * MeSH
- dusík MeSH
Crocosphaera watsonii (hereafter referred to as Crocosphaera) is a key nitrogen (N) fixer in the ocean, but its ability to consume combined-N sources is still unclear. Using in situ microcosm incubations with an ecological model, we show that Crocosphaera has high competitive capability both under low and moderately high combined-N concentrations. In field incubations, Crocosphaera accounted for the highest consumption of ammonium and nitrate, followed by picoeukaryotes. The model analysis shows that cells have a high ammonium uptake rate (~7 mol N [mol N]-1 d-1 at the maximum), which allows them to compete against picoeukaryotes and nondiazotrophic cyanobacteria when combined N is sufficiently available. Even when combined N is depleted, their capability of nitrogen fixation allows higher growth rates compared to potential competitors. These results suggest the high fitness of Crocosphaera in combined-N limiting, oligotrophic oceans heightening its potential significance in its ecosystem and in biogeochemical cycling. IMPORTANCE Crocosphaera watsonii is as a key nitrogen (N) supplier in marine ecosystems, and it has been estimated to contribute up to half of oceanic N2 fixation. Conversely, a recent study reported that Crocosphaera can assimilate combined N and proposed that unicellular diazotrophs can be competitors with non-N2 fixing phytoplankton for combined N. Despite its importance in nitrogen cycling, the methods by which Crocosphaera compete are not currently fully understood. Here, we present a new role of Crocosphaera as a combined-N consumer: a competitor against nondiazotrophic phytoplankton for combined N. In this study, we combined in situ microcosm experiments and an ecosystem model to quantitatively evaluate the combined-N consumption by Crocosphaera and other non-N2 fixing phytoplankton. Our results suggest the high fitness of Crocosphaera in combined-N limiting, oligotrophic oceans and, thus, heightens its potential significance in its ecosystem and in biogeochemical cycling.
Department of Aquatic Bioscience The University of Tokyo Tokyo Japan
Graduate School of Oceanography University of Rhode Island Narragansett Rhode Island USA
Institute of Microbiology The Czech Academy of Sciences Třeboň Czech Republic
Zobrazit více v PubMed
Field C, Behrenfeld M, Randerson J, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240. doi:10.1126/science.281.5374.237. PubMed DOI
Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the southern ocean. Science 283:365–367. doi:10.1126/science.283.5400.365. PubMed DOI
Richardson TL, Jackson GA. 2007. Small phytoplankton and carbon export from the surface ocean. Science 315:838–840. doi:10.1126/science.1133471. PubMed DOI
Thomas MK, Kremer CT, Klausmeier CA, Litchman E. 2012. A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–1088. doi:10.1126/science.1224836. PubMed DOI
Le Quéré C, Harrison SP, Prentice IC, Buitenhuis ET, Aumont O, Bopp L, Claustre H, Da Cunha LC, Geider R, Giraud X, Klaas C, Kohfeld KE, Legendre L, Manizza M, Platt T, Rivkin RB, Sathyendranath S, Uitz J, Watson AJ, Wolf-Gladrow D. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob Change Biol 11:2016–2040.
Raven JA, Giordano M. 2016. Combined nitrogen, p 143–154. In Borowitzka MA, Beardall J, Raven JA (ed), The physiology of microalgae. Springer, New York, NY.
Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL, Jickells TD, La Roche J, Lenton TM, Mahowald NM, Marañón E, Marinov I, Moore JK, Nakatsuka T, Oschlies A, Saito MA, Thingstad TF, Tsuda A, Ulloa O. 2013. Processes and patterns of oceanic nutrient limitation. Nature Geosci 6:701–710. doi:10.1038/ngeo1765. DOI
Moore JK, Doney SC, Lindsay K. 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cycles 18:GB4028.
Monteiro FM, Dutkiewicz S, Follows MJ. 2011. Biogeographical controls on the marine nitrogen fixers. Global Biogeochem Cycles 25. doi:10.1029/2010GB003902. DOI
Stukel MR, Coles VJ, Brooks MT, Hood RR. 2014. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon River plume. Biogeosciences 11:3259–3278. doi:10.5194/bg-11-3259-2014. DOI
Falkowski PG. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275. doi:10.1038/387272a0. DOI
Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531. doi:10.1038/22941. DOI
Monteiro FM, Follows MJ, Dutkiewicz S. 2010. Distribution of diverse nitrogen fixers in the global ocean. Global Biogeochem Cycles 24:GB3017.
Saito MA, Bertrand EM, Dutkiewicz S, Bulygin VV, Moran DM, Monteiro FM, Follows MJ, Valois FW, Waterbury JB. 2011. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc Natl Acad Sci USA 108:2184–2189. doi:10.1073/pnas.1006943108. PubMed DOI PMC
Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, Steward GF, Hansen A, Karl DM. 2001. Unicellular cyanobacteria fix N2 in the subtropical North Pacifc Ocean. Nature 412:635–638. doi:10.1038/35088063. PubMed DOI
Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, Montoya JP, Zehr JP. 2010. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1512–1514. doi:10.1126/science.1185468. PubMed DOI
Waterbury JB, Watson SW, Guillard RRL, Brand LE. 1979. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293–294. doi:10.1038/277293a0. DOI
Platt T, Rao DVS, Irwin B. 1983. Photosynthesis of picoplanton in the oligotrophic ocean. Nature 301:702–704. doi:10.1038/301702a0. DOI
Buitenhuis ET, Li WKW, Vaulot D, Lomas MW, Landry MR, Partensky F, Karl DM, Ulloa O, Campbell L, Jacquet S, Lantoine F, Chavez F, Macias D, Gosselin M, McManus GB. 2012. Picophytoplankton biomass distribution in the global ocean. Earth Syst Sci Data 4:37–46. doi:10.5194/essd-4-37-2012. DOI
Dekaezemacker J, Bonnet S. 2011. Sensitivity of N2 fixation to combined nitrogen forms (NO3− and NH4+) in two strains of the marine diazotroph Crocosphaera watsonii (Cyanobacteria). Mar Ecol Prog Ser 438:33–46. doi:10.3354/meps09297. DOI
Masuda T, Furuya K, Kodama T, Takeda S, Harrison PJ. 2013. Ammonium uptake and dinitrogen fixation by the unicellular nanocyanobacterium Crocosphaera watsoniiin nitrogen-limited continuous cultures. Limnol Oceanogr 58:2029–2036. doi:10.4319/lo.2013.58.6.2029. DOI
Holl CM, Montoya JP. 2005. Interactions between nitrate uptake and nitrogen fixation in continuous cultures of the marine diazotroph Trichodesmium (Cyanobacteria). J Phycology 41:1178–1183. doi:10.1111/j.1529-8817.2005.00146.x. DOI
Inomura K, Masuda T, Gauglitz JM. 2019. Active nitrogen fixation by Crocosphaera expands their niche despite the presence of ammonium - a case study. Sci Rep 9:15064. doi:10.1038/s41598-019-51378-4. PubMed DOI PMC
Inomura K, Deutsch C, Masuda T, Prášil O, Follows MJ. 2020. Quantitative models of nitrogen-fixing organisms. Comput Struct Biotechnol J 18:3905–3924. doi:10.1016/j.csbj.2020.11.022. PubMed DOI PMC
Shiozaki T, Kodama T, Kitajima S, Sato M, Furuya K. 2013. Advective transport of diazotrophs and importance of their nitrogen fixation on new and primary production in the western Pacific warm pool. Limnol Oceanogr 58:49–60. doi:10.4319/lo.2013.58.1.0049. DOI
Glover HE, Garside C, Trees CC. 2007. Physiological responses of Sargasso Sea picoplankton to nanomolar nitrate perturbations. J Plankton Res 29:263–274. doi:10.1093/plankt/fbm013. DOI
Droop MR. 1974. The nutrient status of algal cells in continuous culture. J Mar Biol Ass 54:825–855. doi:10.1017/S002531540005760X. DOI
Vallina SM, Ward BA, Dutkiewicz S, Follows MJ. 2014. Maximal feeding with active prey-switching: a kill-the-winner functional response and its effect on global diversity and biogeography. Prog Oceanogr 120:93–109. doi:10.1016/j.pocean.2013.08.001. DOI
Murdoch WW. 1969. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol Monogr 39:335–354. doi:10.2307/1942352. DOI
Kiørboe T, Saiz E, Viitasalo M. 1996. Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar Ecol Prog Ser 143:65–75. doi:10.3354/meps143065. DOI
Kalinkat G, Rall BC, Vucic-Pestic O, Brose U. 2011. The allometry of prey preferences. PLoS One 6:e25937. doi:10.1371/journal.pone.0025937. PubMed DOI PMC
Ackleson SG, Spinrad RW. 1988. Size and refractive index of individual marine particulates: a flow cytometric approach. Appl Opt 27:1270–1277. doi:10.1364/AO.27.001270. PubMed DOI
Zubkov MV, Sleigh MA, Tarran GA, Burkill PH, Leakey RJG. 1998. Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep Sea Res Part I Oceanogr Res Papers 45:1339–1355. doi:10.1016/S0967-0637(98)00015-6. DOI
Campbell L, Nolla HA, Vaulot D. 1994. The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceanogr 39:954–961. doi:10.4319/lo.1994.39.4.0954. DOI
Shalapyonok A, Olson RJ, Shalapyonok LS. 1998. Ultradian growth in Prochlorococcus spp. Appl Environ Microbiol 64:1066–1069. doi:10.1128/AEM.64.3.1066-1069.1998. PubMed DOI PMC
Thingstad TF, Krom MD, Mantoura RFC, Flaten GAF, Groom S, Herut B, Kress N, Law CS, Pasternak A, Pitta P, Psarra S, Rassoulzadegan F, Tanaka T, Tselepides A, Wassmann P, Woodward EMS, Riser CW, Zodiatis G, Zohary T. 2005. Nature of phosphorus limitation in the ultraoligotrophic Eastern Mediterranean. Science 309:1068–1071. doi:10.1126/science.1112632. PubMed DOI
Stockner JG, Klut ME, Cochlan WP. 1990. Leaky filters: a warning to aquatic ecologists. Can J Fish Aquat Sci 47:16–23. doi:10.1139/f90-002. DOI
Bombar D, Paerl RW, Anderson R, Riemann L. 2018. Filtration via conventional glass fiber filters in 15N2 tracer assays fails to capture all nitrogen-fixing prokaryotes. Front Mar Sci 5. doi:10.3389/fmars.2018.00006. DOI
Webb EA, Ehrenreich IM, Brown SL, Valois FW, Waterbury JB. 2009. Phenotypic and genotypic characterization of multiple strains of the diazotrophic cyanobacterium, Crocosphaera watsonii, isolated from the open ocean. Environ Microbiol 11:338–348. doi:10.1111/j.1462-2920.2008.01771.x. PubMed DOI
Dron A, Rabouille S, Claquin P, Chang P, Raimbault V, Talec A, Sciandra A. 2012. Light:dark (12:12 h) quantification of carbohydrate fluxes in Crocosphaera watsonii. Aquat Microb Ecol 68:43–55. doi:10.3354/ame01600. DOI
Shiozaki T, Bombar D, Riemann L, Sato M, Hashihama F, Kodama T, Tanita I, Takeda S, Saito H, Hamasaki K, Furuya K. 2018. Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean. Global Biogeochem Cycles 32:1028–1044. doi:10.1029/2017GB005869. DOI
Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, Kuypers MM, Zehr JP. 2012. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–1550. doi:10.1126/science.1222700. PubMed DOI
Hagino K, Onuma R, Kawachi M, Horiguchi T. 2013. Discovery of an endosymbiotic nitrogen-fixing cyanobacterium UCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae). PLoS One 8:e81749. doi:10.1371/journal.pone.0081749. PubMed DOI PMC
Zehr JP, Shilova IN, Farnelid HM, Munoz-Marin MD, Turk-Kubo KA. 2016. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol 2:16214. doi:10.1038/nmicrobiol.2016.214. PubMed DOI
Mills MM, Turk-Kubo KA, van Dijken GL, Henke BA, Harding K, Wilson ST, Arrigo KR, Zehr JP. 2020. Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME J 14:2395–2406. doi:10.1038/s41396-020-0691-6. PubMed DOI PMC
Shiozaki T, Fujiwara A, Inomura K, Hirose Y, Hashihama F, Harada N. 2020. Biological nitrogen fixation detected under Antarctic sea ice. Nat Geosci 13:729–732. doi:10.1038/s41561-020-00651-7. DOI
Wilson ST, Aylward FO, Ribalet F, Barone B, Casey JR, Connell PE, Eppley JM, Ferron S, Fitzsimmons JN, Hayes CT, Romano AE, Turk-Kubo KA, Vislova A, Armbrust EV, Caron DA, Church MJ, Zehr JP, Karl DM, DeLong EF. 2017. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat Microbiol 2:17118. doi:10.1038/nmicrobiol.2017.118. PubMed DOI
Dugenne M, Henderikx Freitas F, Wilson ST, Karl DM, White AE. 2020. Life and death of Crocosphaera sp. in the Pacific Ocean: fine scale predator–prey dynamics. Limnol Oceanogr 65:2603–2617. doi:10.1002/lno.11473. DOI
Hawser SP, O'Neil JM, Roman MR, Codd GA. 1992. Toxicity of blooms of the cyanobacterium Trichodesmium to zooplankton. J Appl Phycol 4:79–86. doi:10.1007/BF00003963. DOI
Proença L, Tamanaha M, Fonseca R. 2009. Screening the toxicity and toxin content of blooms of the cyanobacterium Trichodesmium erythraeum (EHRENBERG) in northeast Brazil. J Venom Anim Toxins Incl Trop Dis 15:204–215. doi:10.1590/S1678-91992009000200004. DOI
Kerbrat AS, Darius HT, Pauillac S, Chinain M, Laurent D. 2010. Detection of ciguatoxin-like and paralysing toxins in Trichodesmium spp. from New Caledonia lagoon. Mar Pollut Bull 61:360–366. doi:10.1016/j.marpolbul.2010.06.017. PubMed DOI
LaRoche J, Breitbarth E. 2005. Importance of the diazotrophs as a source of new nitrogen in the ocean. J Sea Res 53:67–91. doi:10.1016/j.seares.2004.05.005. DOI
Pereira N, Shilova IN, Zehr JP. 2019. Use of the high-affinity phosphate transporter gene, pstS, as an indicator for phosphorus stress in the marine diazotroph Crocosphaera watsonii (Chroococcales, Cyanobacteria). J Phycol 55:752–761. doi:10.1111/jpy.12863. PubMed DOI
Rabouille S, Tournier L, Duhamel S, Claquin P, Crispi O, Talec A, Landolfi A, Oschlies A. 2022. Organic phosphorus scavenging supports efficient growth of diazotrophic Cyanobacteria under phosphate depletion. Front Microbiol 13:848647. doi:10.3389/fmicb.2022.848647. PubMed DOI PMC
Yamaguchi T, Sato M, Gonda N, Takahashi K, Furuya K. 2020. Phosphate diester utilization by marine diazotrophs Trichodesmium erythraeum and Crocosphaera watsonii. Aquat Microb Ecol 85:211–218. doi:10.3354/ame01951. DOI
Dyhrman ST, Haley ST. 2006. Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl Environ Microbiol 72:1452–1458. doi:10.1128/AEM.72.2.1452-1458.2006. PubMed DOI PMC
Jacq V, Ridame C, L'Helguen S, Kaczmar F, Saliot A. 2014. Response of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii to iron limitation. PLoS One 9:e86749. doi:10.1371/journal.pone.0086749. PubMed DOI PMC
Van Mooy BA, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblizek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappe MS, Webb EA. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72. doi:10.1038/nature07659. PubMed DOI
Pereira N, Shilova IN, Zehr JP. 2016. Molecular markers define progressing stages of phosphorus limitation in the nitrogen-fixing cyanobacterium, Crocosphaera. J Phycol 52:274–282. doi:10.1111/jpy.12396. PubMed DOI
Montoya JP, Holl CMZJP, Hansen A, Villareal TA, Capone DG. 2004. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430:1027–1031. doi:10.1038/nature02824. PubMed DOI
Sato M, Hashihama F, Kitajima S, Takeda S, Furuya K. 2010. Distribution of nano-sized Cyanobacteria in the western and central Pacific Ocean. Aquat Microb Ecol 59:273–282. doi:10.3354/ame01397. DOI
Sohm JA, Subramaniam A, Gunderson TE, Carpenter EJ, Capone DG. 2011. Nitrogen fixation by Trichodesmium spp. and unicellular diazotrophs in the North Pacific subtropical gyre. J Geophys Res 116. doi:10.1029/2010JG001513. DOI
Sargent EC, Hitchcock A, Johansson SA, Langlois R, Moore CM, LaRoche J, Poulton AJ, Bibby TS. 2016. Evidence for polyploidy in the globally important diazotroph Trichodesmium. FEMS Microbiol Lett 363:fnw244. doi:10.1093/femsle/fnw244. PubMed DOI
Pierella Karlusich JJ, Pelletier E, Lombard F, Carsique M, Dvorak E, Colin S, Picheral M, Cornejo-Castillo FM, Acinas SG, Pepperkok R, Karsenti E, de Vargas C, Wincker P, Bowler C, Foster RA. 2021. Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nat Commun 12:4160. doi:10.1038/s41467-021-24299-y. PubMed DOI PMC
Takeda S, Obata H. 1995. Response of equatorial Pacific phytoplankton to subnanomolar Fe enrichment. Mar Chem 50:219–227. doi:10.1016/0304-4203(95)00037-R. DOI
Obata H, Karatani H, Nakayama E. 1993. Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection. Anal Chem 65:1524–1528. doi:10.1021/ac00059a007. DOI
Wu J, Sunda W, Boyle EA, Karl DM. 2000. Phosphate depletion in the western North Atlantic Ocean. Science 289:759–762. doi:10.1126/science.289.5480.759. PubMed DOI
Karl DM, Björkman KM, Dore JE, Fujieki L, Hebel DV, Houlihan T, Letelier RM, Tupas LM. 2001. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Res II 48:1529–1566. doi:10.1016/S0967-0645(00)00152-1. DOI
Price NM, Harrison PJ. 1987. Comparison of methods for the analysis of dissolved urea in seawater. Mar Biol 94:307–317. doi:10.1007/BF00392945. DOI
Laglera LM, Santos-Echeandia J, Caprara S, Monticelli D. 2013. Quantification of iron in seawater at the low picomolar range based on optimization of bromate/ammonia/dihydroxynaphtalene system by catalytic adsorptive cathodic stripping voltammetry. Anal Chem 85:2486–2492. doi:10.1021/ac303621q. PubMed DOI
Short SM, Zehr JP. 2005. Quantitative analysis of nifH genes and transcripts from aquatic environments. Methods Enzymol 397:380–394. doi:10.1016/S0076-6879(05)97023-7. PubMed DOI
Church MJ, Jenkins BD, Karl DM, Zehr JP. 2005. Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean. Aquat Microb Ecol 38:3–14. doi:10.3354/ame038003. DOI
Capone DG, Montoya JP. 2001. Nitrogen fixation and denitrification. Methods Microbiol 30:501–515. doi:10.1016/S0580-9517(01)30060-0. DOI
Kitajima S, Furuya K, Hashihama F, Takeda S, Kanda J. 2009. Latitudinal distribution of diazotrophs and their nitrogen fixation in the tropical and subtropical western North Pacific. Limnol Oceanogr 54:537–547. doi:10.4319/lo.2009.54.2.0537. DOI
Montoya JP, Voss M, Kahler P, Capone DG. 1996. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl Environ Microbiol 62:986–993. doi:10.1128/aem.62.3.986-993.1996. PubMed DOI PMC
Shalapyonok A, Olson RJ, Shalapyonok LS. 2001. Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry. Deep Sea Res II 48:12231–12261.
Eppley RW, Reid FM, Strickland JDH. 1970. Estimates of phytoplankton crop size, growth rate and primary production off La Jolla, CA in the period April through September 1967, p 33–42. In Strickland JDH (ed), Bulletin of the Scripps Institution of Oceanography. Scripps Institution of Oceanography, San Diego, CA.
Heldal M, Scanlan DJ, Norland S, Thingstad F, Mann NH. 2003. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol Oceanogr 48:1732–1743. doi:10.4319/lo.2003.48.5.1732. DOI
Redfield AC. 1958. The biological control of chemical factors in the environment. Am Sci 45:205–221. PubMed
Monod J. 1949. The growth of bacterial cultures. Annu Rev Microbiol 3:371–394. doi:10.1146/annurev.mi.03.100149.002103. DOI
Follett CL, Dutkiewicz S, Karl DM, Inomura K, Follows MJ. 2018. Seasonal resource conditions favor a summertime increase in North Pacific diatom-diazotroph associations. ISME J 12:1543–1557. doi:10.1038/s41396-017-0012-x. PubMed DOI PMC
Murdoch WW, Avery S, Smyth MEB. 1975. Switching in predatory fish. Ecology 56:1094–1105. doi:10.2307/1936149. DOI
Morozov AY. 2010. Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling. J Theor Biol 265:45–54. doi:10.1016/j.jtbi.2010.04.016. PubMed DOI
Vallina SM, Follows MJ, Dutkiewicz S, Montoya JM, Cermeno P, Loreau M. 2014. Global relationship between phytoplankton diversity and productivity in the ocean. Nat Commun 5:4299. doi:10.1038/ncomms5299. PubMed DOI PMC
Coexistence of Dominant Marine Phytoplankton Sustained by Nutrient Specialization