Crocosphaera as a Major Consumer of Fixed Nitrogen

. 2022 Aug 31 ; 10 (4) : e0217721. [epub] 20220630

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35770981

Crocosphaera watsonii (hereafter referred to as Crocosphaera) is a key nitrogen (N) fixer in the ocean, but its ability to consume combined-N sources is still unclear. Using in situ microcosm incubations with an ecological model, we show that Crocosphaera has high competitive capability both under low and moderately high combined-N concentrations. In field incubations, Crocosphaera accounted for the highest consumption of ammonium and nitrate, followed by picoeukaryotes. The model analysis shows that cells have a high ammonium uptake rate (~7 mol N [mol N]-1 d-1 at the maximum), which allows them to compete against picoeukaryotes and nondiazotrophic cyanobacteria when combined N is sufficiently available. Even when combined N is depleted, their capability of nitrogen fixation allows higher growth rates compared to potential competitors. These results suggest the high fitness of Crocosphaera in combined-N limiting, oligotrophic oceans heightening its potential significance in its ecosystem and in biogeochemical cycling. IMPORTANCE Crocosphaera watsonii is as a key nitrogen (N) supplier in marine ecosystems, and it has been estimated to contribute up to half of oceanic N2 fixation. Conversely, a recent study reported that Crocosphaera can assimilate combined N and proposed that unicellular diazotrophs can be competitors with non-N2 fixing phytoplankton for combined N. Despite its importance in nitrogen cycling, the methods by which Crocosphaera compete are not currently fully understood. Here, we present a new role of Crocosphaera as a combined-N consumer: a competitor against nondiazotrophic phytoplankton for combined N. In this study, we combined in situ microcosm experiments and an ecosystem model to quantitatively evaluate the combined-N consumption by Crocosphaera and other non-N2 fixing phytoplankton. Our results suggest the high fitness of Crocosphaera in combined-N limiting, oligotrophic oceans and, thus, heightens its potential significance in its ecosystem and in biogeochemical cycling.

Zobrazit více v PubMed

Field C, Behrenfeld M, Randerson J, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240. doi:10.1126/science.281.5374.237. PubMed DOI

Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the southern ocean. Science 283:365–367. doi:10.1126/science.283.5400.365. PubMed DOI

Richardson TL, Jackson GA. 2007. Small phytoplankton and carbon export from the surface ocean. Science 315:838–840. doi:10.1126/science.1133471. PubMed DOI

Thomas MK, Kremer CT, Klausmeier CA, Litchman E. 2012. A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–1088. doi:10.1126/science.1224836. PubMed DOI

Le Quéré C, Harrison SP, Prentice IC, Buitenhuis ET, Aumont O, Bopp L, Claustre H, Da Cunha LC, Geider R, Giraud X, Klaas C, Kohfeld KE, Legendre L, Manizza M, Platt T, Rivkin RB, Sathyendranath S, Uitz J, Watson AJ, Wolf-Gladrow D. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob Change Biol 11:2016–2040.

Raven JA, Giordano M. 2016. Combined nitrogen, p 143–154. In Borowitzka MA, Beardall J, Raven JA (ed), The physiology of microalgae. Springer, New York, NY.

Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL, Jickells TD, La Roche J, Lenton TM, Mahowald NM, Marañón E, Marinov I, Moore JK, Nakatsuka T, Oschlies A, Saito MA, Thingstad TF, Tsuda A, Ulloa O. 2013. Processes and patterns of oceanic nutrient limitation. Nature Geosci 6:701–710. doi:10.1038/ngeo1765. DOI

Moore JK, Doney SC, Lindsay K. 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cycles 18:GB4028.

Monteiro FM, Dutkiewicz S, Follows MJ. 2011. Biogeographical controls on the marine nitrogen fixers. Global Biogeochem Cycles 25. doi:10.1029/2010GB003902. DOI

Stukel MR, Coles VJ, Brooks MT, Hood RR. 2014. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon River plume. Biogeosciences 11:3259–3278. doi:10.5194/bg-11-3259-2014. DOI

Falkowski PG. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275. doi:10.1038/387272a0. DOI

Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531. doi:10.1038/22941. DOI

Monteiro FM, Follows MJ, Dutkiewicz S. 2010. Distribution of diverse nitrogen fixers in the global ocean. Global Biogeochem Cycles 24:GB3017.

Saito MA, Bertrand EM, Dutkiewicz S, Bulygin VV, Moran DM, Monteiro FM, Follows MJ, Valois FW, Waterbury JB. 2011. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc Natl Acad Sci USA 108:2184–2189. doi:10.1073/pnas.1006943108. PubMed DOI PMC

Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, Steward GF, Hansen A, Karl DM. 2001. Unicellular cyanobacteria fix N2 in the subtropical North Pacifc Ocean. Nature 412:635–638. doi:10.1038/35088063. PubMed DOI

Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, Montoya JP, Zehr JP. 2010. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1512–1514. doi:10.1126/science.1185468. PubMed DOI

Waterbury JB, Watson SW, Guillard RRL, Brand LE. 1979. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293–294. doi:10.1038/277293a0. DOI

Platt T, Rao DVS, Irwin B. 1983. Photosynthesis of picoplanton in the oligotrophic ocean. Nature 301:702–704. doi:10.1038/301702a0. DOI

Buitenhuis ET, Li WKW, Vaulot D, Lomas MW, Landry MR, Partensky F, Karl DM, Ulloa O, Campbell L, Jacquet S, Lantoine F, Chavez F, Macias D, Gosselin M, McManus GB. 2012. Picophytoplankton biomass distribution in the global ocean. Earth Syst Sci Data 4:37–46. doi:10.5194/essd-4-37-2012. DOI

Dekaezemacker J, Bonnet S. 2011. Sensitivity of N2 fixation to combined nitrogen forms (NO3− and NH4+) in two strains of the marine diazotroph Crocosphaera watsonii (Cyanobacteria). Mar Ecol Prog Ser 438:33–46. doi:10.3354/meps09297. DOI

Masuda T, Furuya K, Kodama T, Takeda S, Harrison PJ. 2013. Ammonium uptake and dinitrogen fixation by the unicellular nanocyanobacterium Crocosphaera watsoniiin nitrogen-limited continuous cultures. Limnol Oceanogr 58:2029–2036. doi:10.4319/lo.2013.58.6.2029. DOI

Holl CM, Montoya JP. 2005. Interactions between nitrate uptake and nitrogen fixation in continuous cultures of the marine diazotroph Trichodesmium (Cyanobacteria). J Phycology 41:1178–1183. doi:10.1111/j.1529-8817.2005.00146.x. DOI

Inomura K, Masuda T, Gauglitz JM. 2019. Active nitrogen fixation by Crocosphaera expands their niche despite the presence of ammonium - a case study. Sci Rep 9:15064. doi:10.1038/s41598-019-51378-4. PubMed DOI PMC

Inomura K, Deutsch C, Masuda T, Prášil O, Follows MJ. 2020. Quantitative models of nitrogen-fixing organisms. Comput Struct Biotechnol J 18:3905–3924. doi:10.1016/j.csbj.2020.11.022. PubMed DOI PMC

Shiozaki T, Kodama T, Kitajima S, Sato M, Furuya K. 2013. Advective transport of diazotrophs and importance of their nitrogen fixation on new and primary production in the western Pacific warm pool. Limnol Oceanogr 58:49–60. doi:10.4319/lo.2013.58.1.0049. DOI

Glover HE, Garside C, Trees CC. 2007. Physiological responses of Sargasso Sea picoplankton to nanomolar nitrate perturbations. J Plankton Res 29:263–274. doi:10.1093/plankt/fbm013. DOI

Droop MR. 1974. The nutrient status of algal cells in continuous culture. J Mar Biol Ass 54:825–855. doi:10.1017/S002531540005760X. DOI

Vallina SM, Ward BA, Dutkiewicz S, Follows MJ. 2014. Maximal feeding with active prey-switching: a kill-the-winner functional response and its effect on global diversity and biogeography. Prog Oceanogr 120:93–109. doi:10.1016/j.pocean.2013.08.001. DOI

Murdoch WW. 1969. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol Monogr 39:335–354. doi:10.2307/1942352. DOI

Kiørboe T, Saiz E, Viitasalo M. 1996. Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar Ecol Prog Ser 143:65–75. doi:10.3354/meps143065. DOI

Kalinkat G, Rall BC, Vucic-Pestic O, Brose U. 2011. The allometry of prey preferences. PLoS One 6:e25937. doi:10.1371/journal.pone.0025937. PubMed DOI PMC

Ackleson SG, Spinrad RW. 1988. Size and refractive index of individual marine particulates: a flow cytometric approach. Appl Opt 27:1270–1277. doi:10.1364/AO.27.001270. PubMed DOI

Zubkov MV, Sleigh MA, Tarran GA, Burkill PH, Leakey RJG. 1998. Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep Sea Res Part I Oceanogr Res Papers 45:1339–1355. doi:10.1016/S0967-0637(98)00015-6. DOI

Campbell L, Nolla HA, Vaulot D. 1994. The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceanogr 39:954–961. doi:10.4319/lo.1994.39.4.0954. DOI

Shalapyonok A, Olson RJ, Shalapyonok LS. 1998. Ultradian growth in Prochlorococcus spp. Appl Environ Microbiol 64:1066–1069. doi:10.1128/AEM.64.3.1066-1069.1998. PubMed DOI PMC

Thingstad TF, Krom MD, Mantoura RFC, Flaten GAF, Groom S, Herut B, Kress N, Law CS, Pasternak A, Pitta P, Psarra S, Rassoulzadegan F, Tanaka T, Tselepides A, Wassmann P, Woodward EMS, Riser CW, Zodiatis G, Zohary T. 2005. Nature of phosphorus limitation in the ultraoligotrophic Eastern Mediterranean. Science 309:1068–1071. doi:10.1126/science.1112632. PubMed DOI

Stockner JG, Klut ME, Cochlan WP. 1990. Leaky filters: a warning to aquatic ecologists. Can J Fish Aquat Sci 47:16–23. doi:10.1139/f90-002. DOI

Bombar D, Paerl RW, Anderson R, Riemann L. 2018. Filtration via conventional glass fiber filters in 15N2 tracer assays fails to capture all nitrogen-fixing prokaryotes. Front Mar Sci 5. doi:10.3389/fmars.2018.00006. DOI

Webb EA, Ehrenreich IM, Brown SL, Valois FW, Waterbury JB. 2009. Phenotypic and genotypic characterization of multiple strains of the diazotrophic cyanobacterium, Crocosphaera watsonii, isolated from the open ocean. Environ Microbiol 11:338–348. doi:10.1111/j.1462-2920.2008.01771.x. PubMed DOI

Dron A, Rabouille S, Claquin P, Chang P, Raimbault V, Talec A, Sciandra A. 2012. Light:dark (12:12 h) quantification of carbohydrate fluxes in Crocosphaera watsonii. Aquat Microb Ecol 68:43–55. doi:10.3354/ame01600. DOI

Shiozaki T, Bombar D, Riemann L, Sato M, Hashihama F, Kodama T, Tanita I, Takeda S, Saito H, Hamasaki K, Furuya K. 2018. Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean. Global Biogeochem Cycles 32:1028–1044. doi:10.1029/2017GB005869. DOI

Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, Kuypers MM, Zehr JP. 2012. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–1550. doi:10.1126/science.1222700. PubMed DOI

Hagino K, Onuma R, Kawachi M, Horiguchi T. 2013. Discovery of an endosymbiotic nitrogen-fixing cyanobacterium UCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae). PLoS One 8:e81749. doi:10.1371/journal.pone.0081749. PubMed DOI PMC

Zehr JP, Shilova IN, Farnelid HM, Munoz-Marin MD, Turk-Kubo KA. 2016. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol 2:16214. doi:10.1038/nmicrobiol.2016.214. PubMed DOI

Mills MM, Turk-Kubo KA, van Dijken GL, Henke BA, Harding K, Wilson ST, Arrigo KR, Zehr JP. 2020. Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME J 14:2395–2406. doi:10.1038/s41396-020-0691-6. PubMed DOI PMC

Shiozaki T, Fujiwara A, Inomura K, Hirose Y, Hashihama F, Harada N. 2020. Biological nitrogen fixation detected under Antarctic sea ice. Nat Geosci 13:729–732. doi:10.1038/s41561-020-00651-7. DOI

Wilson ST, Aylward FO, Ribalet F, Barone B, Casey JR, Connell PE, Eppley JM, Ferron S, Fitzsimmons JN, Hayes CT, Romano AE, Turk-Kubo KA, Vislova A, Armbrust EV, Caron DA, Church MJ, Zehr JP, Karl DM, DeLong EF. 2017. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat Microbiol 2:17118. doi:10.1038/nmicrobiol.2017.118. PubMed DOI

Dugenne M, Henderikx Freitas F, Wilson ST, Karl DM, White AE. 2020. Life and death of Crocosphaera sp. in the Pacific Ocean: fine scale predator–prey dynamics. Limnol Oceanogr 65:2603–2617. doi:10.1002/lno.11473. DOI

Hawser SP, O'Neil JM, Roman MR, Codd GA. 1992. Toxicity of blooms of the cyanobacterium Trichodesmium to zooplankton. J Appl Phycol 4:79–86. doi:10.1007/BF00003963. DOI

Proença L, Tamanaha M, Fonseca R. 2009. Screening the toxicity and toxin content of blooms of the cyanobacterium Trichodesmium erythraeum (EHRENBERG) in northeast Brazil. J Venom Anim Toxins Incl Trop Dis 15:204–215. doi:10.1590/S1678-91992009000200004. DOI

Kerbrat AS, Darius HT, Pauillac S, Chinain M, Laurent D. 2010. Detection of ciguatoxin-like and paralysing toxins in Trichodesmium spp. from New Caledonia lagoon. Mar Pollut Bull 61:360–366. doi:10.1016/j.marpolbul.2010.06.017. PubMed DOI

LaRoche J, Breitbarth E. 2005. Importance of the diazotrophs as a source of new nitrogen in the ocean. J Sea Res 53:67–91. doi:10.1016/j.seares.2004.05.005. DOI

Pereira N, Shilova IN, Zehr JP. 2019. Use of the high-affinity phosphate transporter gene, pstS, as an indicator for phosphorus stress in the marine diazotroph Crocosphaera watsonii (Chroococcales, Cyanobacteria). J Phycol 55:752–761. doi:10.1111/jpy.12863. PubMed DOI

Rabouille S, Tournier L, Duhamel S, Claquin P, Crispi O, Talec A, Landolfi A, Oschlies A. 2022. Organic phosphorus scavenging supports efficient growth of diazotrophic Cyanobacteria under phosphate depletion. Front Microbiol 13:848647. doi:10.3389/fmicb.2022.848647. PubMed DOI PMC

Yamaguchi T, Sato M, Gonda N, Takahashi K, Furuya K. 2020. Phosphate diester utilization by marine diazotrophs Trichodesmium erythraeum and Crocosphaera watsonii. Aquat Microb Ecol 85:211–218. doi:10.3354/ame01951. DOI

Dyhrman ST, Haley ST. 2006. Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl Environ Microbiol 72:1452–1458. doi:10.1128/AEM.72.2.1452-1458.2006. PubMed DOI PMC

Jacq V, Ridame C, L'Helguen S, Kaczmar F, Saliot A. 2014. Response of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii to iron limitation. PLoS One 9:e86749. doi:10.1371/journal.pone.0086749. PubMed DOI PMC

Van Mooy BA, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblizek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappe MS, Webb EA. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72. doi:10.1038/nature07659. PubMed DOI

Pereira N, Shilova IN, Zehr JP. 2016. Molecular markers define progressing stages of phosphorus limitation in the nitrogen-fixing cyanobacterium, Crocosphaera. J Phycol 52:274–282. doi:10.1111/jpy.12396. PubMed DOI

Montoya JP, Holl CMZJP, Hansen A, Villareal TA, Capone DG. 2004. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430:1027–1031. doi:10.1038/nature02824. PubMed DOI

Sato M, Hashihama F, Kitajima S, Takeda S, Furuya K. 2010. Distribution of nano-sized Cyanobacteria in the western and central Pacific Ocean. Aquat Microb Ecol 59:273–282. doi:10.3354/ame01397. DOI

Sohm JA, Subramaniam A, Gunderson TE, Carpenter EJ, Capone DG. 2011. Nitrogen fixation by Trichodesmium spp. and unicellular diazotrophs in the North Pacific subtropical gyre. J Geophys Res 116. doi:10.1029/2010JG001513. DOI

Sargent EC, Hitchcock A, Johansson SA, Langlois R, Moore CM, LaRoche J, Poulton AJ, Bibby TS. 2016. Evidence for polyploidy in the globally important diazotroph Trichodesmium. FEMS Microbiol Lett 363:fnw244. doi:10.1093/femsle/fnw244. PubMed DOI

Pierella Karlusich JJ, Pelletier E, Lombard F, Carsique M, Dvorak E, Colin S, Picheral M, Cornejo-Castillo FM, Acinas SG, Pepperkok R, Karsenti E, de Vargas C, Wincker P, Bowler C, Foster RA. 2021. Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nat Commun 12:4160. doi:10.1038/s41467-021-24299-y. PubMed DOI PMC

Takeda S, Obata H. 1995. Response of equatorial Pacific phytoplankton to subnanomolar Fe enrichment. Mar Chem 50:219–227. doi:10.1016/0304-4203(95)00037-R. DOI

Obata H, Karatani H, Nakayama E. 1993. Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection. Anal Chem 65:1524–1528. doi:10.1021/ac00059a007. DOI

Wu J, Sunda W, Boyle EA, Karl DM. 2000. Phosphate depletion in the western North Atlantic Ocean. Science 289:759–762. doi:10.1126/science.289.5480.759. PubMed DOI

Karl DM, Björkman KM, Dore JE, Fujieki L, Hebel DV, Houlihan T, Letelier RM, Tupas LM. 2001. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Res II 48:1529–1566. doi:10.1016/S0967-0645(00)00152-1. DOI

Price NM, Harrison PJ. 1987. Comparison of methods for the analysis of dissolved urea in seawater. Mar Biol 94:307–317. doi:10.1007/BF00392945. DOI

Laglera LM, Santos-Echeandia J, Caprara S, Monticelli D. 2013. Quantification of iron in seawater at the low picomolar range based on optimization of bromate/ammonia/dihydroxynaphtalene system by catalytic adsorptive cathodic stripping voltammetry. Anal Chem 85:2486–2492. doi:10.1021/ac303621q. PubMed DOI

Short SM, Zehr JP. 2005. Quantitative analysis of nifH genes and transcripts from aquatic environments. Methods Enzymol 397:380–394. doi:10.1016/S0076-6879(05)97023-7. PubMed DOI

Church MJ, Jenkins BD, Karl DM, Zehr JP. 2005. Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean. Aquat Microb Ecol 38:3–14. doi:10.3354/ame038003. DOI

Capone DG, Montoya JP. 2001. Nitrogen fixation and denitrification. Methods Microbiol 30:501–515. doi:10.1016/S0580-9517(01)30060-0. DOI

Kitajima S, Furuya K, Hashihama F, Takeda S, Kanda J. 2009. Latitudinal distribution of diazotrophs and their nitrogen fixation in the tropical and subtropical western North Pacific. Limnol Oceanogr 54:537–547. doi:10.4319/lo.2009.54.2.0537. DOI

Montoya JP, Voss M, Kahler P, Capone DG. 1996. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl Environ Microbiol 62:986–993. doi:10.1128/aem.62.3.986-993.1996. PubMed DOI PMC

Shalapyonok A, Olson RJ, Shalapyonok LS. 2001. Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry. Deep Sea Res II 48:12231–12261.

Eppley RW, Reid FM, Strickland JDH. 1970. Estimates of phytoplankton crop size, growth rate and primary production off La Jolla, CA in the period April through September 1967, p 33–42. In Strickland JDH (ed), Bulletin of the Scripps Institution of Oceanography. Scripps Institution of Oceanography, San Diego, CA.

Heldal M, Scanlan DJ, Norland S, Thingstad F, Mann NH. 2003. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol Oceanogr 48:1732–1743. doi:10.4319/lo.2003.48.5.1732. DOI

Redfield AC. 1958. The biological control of chemical factors in the environment. Am Sci 45:205–221. PubMed

Monod J. 1949. The growth of bacterial cultures. Annu Rev Microbiol 3:371–394. doi:10.1146/annurev.mi.03.100149.002103. DOI

Follett CL, Dutkiewicz S, Karl DM, Inomura K, Follows MJ. 2018. Seasonal resource conditions favor a summertime increase in North Pacific diatom-diazotroph associations. ISME J 12:1543–1557. doi:10.1038/s41396-017-0012-x. PubMed DOI PMC

Murdoch WW, Avery S, Smyth MEB. 1975. Switching in predatory fish. Ecology 56:1094–1105. doi:10.2307/1936149. DOI

Morozov AY. 2010. Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling. J Theor Biol 265:45–54. doi:10.1016/j.jtbi.2010.04.016. PubMed DOI

Vallina SM, Follows MJ, Dutkiewicz S, Montoya JM, Cermeno P, Loreau M. 2014. Global relationship between phytoplankton diversity and productivity in the ocean. Nat Commun 5:4299. doi:10.1038/ncomms5299. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Coexistence of Dominant Marine Phytoplankton Sustained by Nutrient Specialization

. 2023 Aug 17 ; 11 (4) : e0400022. [epub] 20230717

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...