2-Formyl-dATP as Substrate for Polymerase Synthesis of Reactive DNA Bearing an Aldehyde Group in the Minor Groove
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32496002
DOI
10.1002/cplu.202000287
Knihovny.cz E-zdroje
- Klíčová slova
- DNA polymerases, bioconjugations, nucleotides, peptides, reductive amination,
- MeSH
- deoxyadeninnukleotidy chemická syntéza chemie MeSH
- DNA-dependentní DNA-polymerasy chemie MeSH
- DNA chemie MeSH
- konformace nukleové kyseliny MeSH
- reagencia zkříženě vázaná chemická syntéza chemie MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deoxyadeninnukleotidy MeSH
- DNA-dependentní DNA-polymerasy MeSH
- DNA MeSH
- reagencia zkříženě vázaná MeSH
2-Formyl-2'-deoxyadenosine triphosphate (dCHO ATP) was synthesized and tested as a substrate in enzymatic synthesis of DNA modified in the minor groove with a reactive aldehyde group. The multistep synthesis of dCHO ATP was based on the preparation of protected 2-dihydroxyethyl-2'-deoxyadenosine intemediate, which was triphosphorylated and converted to aldehyde through oxidative cleavage. The dCHO ATP triphosphate was a moderate substrate for KOD XL DNA polymerase, and was used for enzymatic synthesis of some sequences using primer extension (PEX). On the other hand, longer sequences (31-mer) with higher number of modifications, or sequences with modifications at adjacent positions did not give full extension. Single-nucleotide extension followed by PEX was used for site-specific incorporation of one aldehyde-linked adenosine into a longer 49-mer sequence. The reactive formyl group was used for cross-linking with peptides and proteins using reductive amination and for fluorescent labelling through oxime formation with an AlexaFluor647-linked hydroxylamine.
Zobrazit více v PubMed
Reviews:
A. Hottin, A. Marx, Acc. Chem. Res., 2016, 49, 418-427;
M. Hollenstein, Molecules, 2012, 17, 13569-13591;
M. Hocek, J. Org. Chem., 2014, 79, 9914-9921;
M. Kuwahara, N. Sugimoto, Molecules 2010, 15, 5423-5444;
M. Hocek, Acc. Chem. Res. 2019, 52, 1730-1737.
S. Obeid, A. Baccaro, W. Welte, K. Diederichs, A. Marx, Proc. Natl. Acad. Sci. USA 2010, 107, 21327-21331;
K. Bergen, A. L. Steck, S. Strütt, A. Baccaro, W. Welte, K. Diederichs, A. Marx, J. Am. Chem. Soc. 2012, 134, 11840-11843;
P. Kielkowski, J. Fanfrlík, M. Hocek, Angew. Chem. Int. Ed. 2014, 53, 7552-7555;
Angew. Chem. 2014, 126, 7682-7685;
H. Cahová, A. Panattoni, P. Kielkowski, J. Fanfrlík, M. Hocek, ACS Chem. Biol. 2016, 11, 3165-3171;
A. Hottin, K. Betz, K. Diederichs, A. Marx, Chem. Eur. J. 2017, 23, 2109-2118;
H. M. Kropp, K. Diederichs, A. Marx, Angew. Chem. Int. Ed. 2019, 58, 5457-5461.
J. Matyašovský, P. Perlíková, V. Malnuit, R. Pohl, M. Hocek, Angew. Chem. Int. Ed. 2016, 55, 15856-5859;
Angew. Chem. 2016, 128, 16088-16091.
A. S. P. Gowda, M. Lee, T. E. Spratt, Angew. Chem. Int. Ed. 2017, 129, 2628-2631.
J. Matyašovský, R. Pohl, M. Hocek, Chem. Eur. J. 2018, 24, 14938-14941.
J. Matyašovský, M. Hocek, Org. Biomol. Chem. 2020, 18, 255-262.
Reviews:
I. Ivancová, D.-L. Leone, M. Hocek, Curr. Opin. Chem. Biol. 2019, 52, 136-144;
K. Krell, D. Harijan, D. Ganz, L. Doll, H.-A. Wagenknecht, Bioconjug. Chem. 2020, 10.1021/acs.bioconjchem.0c00072.
Recent examples:
M. Tera, N. W. Luedtke, Bioconjugate Chem. 2019, 30, 2991-2997;
I. Ivancová, R. Pohl, M. Hubálek, M. Hocek, Angew. Chem. Int. Ed. 2019, 58, 13345-13348;
U. Reisacher, D. Ploschik, F. Rönicke, G. B. Cserép, P. Kele, H.-A. Wagenknecht, Chem. Sci. 2019, 10, 4032-4037.
C. Liu, Y. Wang, X. Zhang, F. Wu, W. Yang, G. Zou, Q. Yao, J. Wang, Y. Chen, S. Wang, X. Zhou, Chem. Sci. 2017, 8, 4505-4510;
C. Liu, Y. Wang, W. Yang, F. Wu, W. Zeng, Z. Chen, J. Huang, G. Zou, X. Zhang, S. Wang, X. Weng, Z. Wu, Y. Zhou, X. Zhou, Chem. Sci. 2017, 8, 7443-7447;
P. Guo, S. Yan, J. Hu, X. Xing, C. Wang, X. Xu, X. Qiu, W. Ma, C. Lu, X. Weng, X. Zhou, Org. Lett. 2013, 15, 3266-3269;
B. Samanta, J. Seikowski, C. Höbartner, Angew. Chem. Int. Ed. 2016, 55, 1912-1916;
Angew. Chem. 2016, 128, 1946-1950;
W. Hirose, K. Sato, A. Matsuda, Angew. Chem. Int. Ed. 2010, 49, 8392-8394;
Angew. Chem. 2010, 122, 8570-8572.
C. T. Wirges, J. Timper, M. Fischler, A. S. Sologubenko, J. Mayer, U. Simon, T. Carell, Angew. Chem. Int. Ed. 2009, 48, 219-223;
Angew. Chem. 2009, 121, 225-229.
S. Wickramaratne, S. Mukherjee, P. W. Villalta, O. D. Schärer, N. Y. Tretyakova, Bioconjugate Chem. 2013, 24, 1496-1506;
T. Angelov, A. Guainazzi, O. D. Schärer, Org. Lett. 2009, 11, 661-664;
S. Mukherjee, A. Guainazzi, O. D. Schärer, Nucleic Acids Res. 2014, 42, 7429-7435;
P. Pande, S. Ji, S. Mukherjee, O. D. Schärer, N. Y. Tretyakova, A. K. Basu, Chem. Res. Toxicol. 2017, 30, 669-677.
M. Krömer, K. Bártová, V. Raindlová, M. Hocek, Chem. Eur. J. 2018, 24, 11890-11894.
L. L. G. Carrette, T. Morii, A. Madder, Bioconjugate Chem. 2013, 24, 2008-2014.
V. Raindlová, R. Pohl, M. Sanda, M. Hocek, Angew. Chem. Int. Ed. 2010, 49, 1064-1066;
Angew. Chem. 2010, 122, 1082-1084.
V. Raindlová, R. Pohl, M. Hocek, Chem. Eur. J. 2012, 18, 4080-4087.
Q. Dai, C.-X. Song, T. Pan, C. He, J. Org. Chem. 2011, 76, 4182-4188.
V. Nair, D. F. Purdy, Tetrahedron 1991, 47, 365-382.
P. Güixens-Gallardo, M. Hocek, P. Perlíková, Bioorg. Med. Chem. Lett. 2016, 26, 288-291.
L. Aravind, D. Landsman, Nucleic Acids Res. 1998, 26, 4413-4421.
J. R. Huth, C. A. Bewley, M. S. Nissen, J. N. S. Evans, R. Reeves, A. M. Gronenborn, G. M. Clore, Nat. Struct. Biol. 1997, 4, 657-665.
Examples of Schiff base formation with proteins in the major groove:
E.-A. Raiber, G. Portella, S. Martínez Cuesta, R. Hardisty, P. Murat, Z. Li, M. Iurlaro, W. Dean, J. Spindel, D. Beraldi, Z. Liu, M. A. Dawson, W. Reik, S. Balasubramanian, Nat. Chem. 2018, 10, 1258-1266;
F. Li, Y. Zhang, J. Bai, M. M. Greenberg, Z. Xi, C. Zhou, J. Am. Chem. Soc. 2017, 139, 10617-10620;
S. Ji, H. Shao, Q. Han, C. L. Seiler, N. Y. Tretyakova, Angew. Chem. Int. Ed. 2017, 56, 14130-14134;
Angew. Chem. 2017, 129, 14318-14322.
Example of non-specific cross-linking with protein from diazirine-linked DNA in the minor groove: U. K. Shigdel, J. Zhang, C. He, Angew. Chem. Int. Ed. 2008, 47, 90-93;
Angew. Chem. 2008, 120, 96-99.