2-Formyl-dATP as Substrate for Polymerase Synthesis of Reactive DNA Bearing an Aldehyde Group in the Minor Groove

. 2020 Jun ; 85 (6) : 1164-1170.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32496002

2-Formyl-2'-deoxyadenosine triphosphate (dCHO ATP) was synthesized and tested as a substrate in enzymatic synthesis of DNA modified in the minor groove with a reactive aldehyde group. The multistep synthesis of dCHO ATP was based on the preparation of protected 2-dihydroxyethyl-2'-deoxyadenosine intemediate, which was triphosphorylated and converted to aldehyde through oxidative cleavage. The dCHO ATP triphosphate was a moderate substrate for KOD XL DNA polymerase, and was used for enzymatic synthesis of some sequences using primer extension (PEX). On the other hand, longer sequences (31-mer) with higher number of modifications, or sequences with modifications at adjacent positions did not give full extension. Single-nucleotide extension followed by PEX was used for site-specific incorporation of one aldehyde-linked adenosine into a longer 49-mer sequence. The reactive formyl group was used for cross-linking with peptides and proteins using reductive amination and for fluorescent labelling through oxime formation with an AlexaFluor647-linked hydroxylamine.

Zobrazit více v PubMed

Reviews:

A. Hottin, A. Marx, Acc. Chem. Res., 2016, 49, 418-427;

M. Hollenstein, Molecules, 2012, 17, 13569-13591;

M. Hocek, J. Org. Chem., 2014, 79, 9914-9921;

M. Kuwahara, N. Sugimoto, Molecules 2010, 15, 5423-5444;

M. Hocek, Acc. Chem. Res. 2019, 52, 1730-1737.

S. Obeid, A. Baccaro, W. Welte, K. Diederichs, A. Marx, Proc. Natl. Acad. Sci. USA 2010, 107, 21327-21331;

K. Bergen, A. L. Steck, S. Strütt, A. Baccaro, W. Welte, K. Diederichs, A. Marx, J. Am. Chem. Soc. 2012, 134, 11840-11843;

P. Kielkowski, J. Fanfrlík, M. Hocek, Angew. Chem. Int. Ed. 2014, 53, 7552-7555;

Angew. Chem. 2014, 126, 7682-7685;

H. Cahová, A. Panattoni, P. Kielkowski, J. Fanfrlík, M. Hocek, ACS Chem. Biol. 2016, 11, 3165-3171;

A. Hottin, K. Betz, K. Diederichs, A. Marx, Chem. Eur. J. 2017, 23, 2109-2118;

H. M. Kropp, K. Diederichs, A. Marx, Angew. Chem. Int. Ed. 2019, 58, 5457-5461.

J. Matyašovský, P. Perlíková, V. Malnuit, R. Pohl, M. Hocek, Angew. Chem. Int. Ed. 2016, 55, 15856-5859;

Angew. Chem. 2016, 128, 16088-16091.

A. S. P. Gowda, M. Lee, T. E. Spratt, Angew. Chem. Int. Ed. 2017, 129, 2628-2631.

J. Matyašovský, R. Pohl, M. Hocek, Chem. Eur. J. 2018, 24, 14938-14941.

J. Matyašovský, M. Hocek, Org. Biomol. Chem. 2020, 18, 255-262.

Reviews:

I. Ivancová, D.-L. Leone, M. Hocek, Curr. Opin. Chem. Biol. 2019, 52, 136-144;

K. Krell, D. Harijan, D. Ganz, L. Doll, H.-A. Wagenknecht, Bioconjug. Chem. 2020, 10.1021/acs.bioconjchem.0c00072.

Recent examples:

M. Tera, N. W. Luedtke, Bioconjugate Chem. 2019, 30, 2991-2997;

I. Ivancová, R. Pohl, M. Hubálek, M. Hocek, Angew. Chem. Int. Ed. 2019, 58, 13345-13348;

U. Reisacher, D. Ploschik, F. Rönicke, G. B. Cserép, P. Kele, H.-A. Wagenknecht, Chem. Sci. 2019, 10, 4032-4037.

C. Liu, Y. Wang, X. Zhang, F. Wu, W. Yang, G. Zou, Q. Yao, J. Wang, Y. Chen, S. Wang, X. Zhou, Chem. Sci. 2017, 8, 4505-4510;

C. Liu, Y. Wang, W. Yang, F. Wu, W. Zeng, Z. Chen, J. Huang, G. Zou, X. Zhang, S. Wang, X. Weng, Z. Wu, Y. Zhou, X. Zhou, Chem. Sci. 2017, 8, 7443-7447;

P. Guo, S. Yan, J. Hu, X. Xing, C. Wang, X. Xu, X. Qiu, W. Ma, C. Lu, X. Weng, X. Zhou, Org. Lett. 2013, 15, 3266-3269;

B. Samanta, J. Seikowski, C. Höbartner, Angew. Chem. Int. Ed. 2016, 55, 1912-1916;

Angew. Chem. 2016, 128, 1946-1950;

W. Hirose, K. Sato, A. Matsuda, Angew. Chem. Int. Ed. 2010, 49, 8392-8394;

Angew. Chem. 2010, 122, 8570-8572.

C. T. Wirges, J. Timper, M. Fischler, A. S. Sologubenko, J. Mayer, U. Simon, T. Carell, Angew. Chem. Int. Ed. 2009, 48, 219-223;

Angew. Chem. 2009, 121, 225-229.

S. Wickramaratne, S. Mukherjee, P. W. Villalta, O. D. Schärer, N. Y. Tretyakova, Bioconjugate Chem. 2013, 24, 1496-1506;

T. Angelov, A. Guainazzi, O. D. Schärer, Org. Lett. 2009, 11, 661-664;

S. Mukherjee, A. Guainazzi, O. D. Schärer, Nucleic Acids Res. 2014, 42, 7429-7435;

P. Pande, S. Ji, S. Mukherjee, O. D. Schärer, N. Y. Tretyakova, A. K. Basu, Chem. Res. Toxicol. 2017, 30, 669-677.

M. Krömer, K. Bártová, V. Raindlová, M. Hocek, Chem. Eur. J. 2018, 24, 11890-11894.

L. L. G. Carrette, T. Morii, A. Madder, Bioconjugate Chem. 2013, 24, 2008-2014.

V. Raindlová, R. Pohl, M. Sanda, M. Hocek, Angew. Chem. Int. Ed. 2010, 49, 1064-1066;

Angew. Chem. 2010, 122, 1082-1084.

V. Raindlová, R. Pohl, M. Hocek, Chem. Eur. J. 2012, 18, 4080-4087.

Q. Dai, C.-X. Song, T. Pan, C. He, J. Org. Chem. 2011, 76, 4182-4188.

V. Nair, D. F. Purdy, Tetrahedron 1991, 47, 365-382.

P. Güixens-Gallardo, M. Hocek, P. Perlíková, Bioorg. Med. Chem. Lett. 2016, 26, 288-291.

L. Aravind, D. Landsman, Nucleic Acids Res. 1998, 26, 4413-4421.

J. R. Huth, C. A. Bewley, M. S. Nissen, J. N. S. Evans, R. Reeves, A. M. Gronenborn, G. M. Clore, Nat. Struct. Biol. 1997, 4, 657-665.

Examples of Schiff base formation with proteins in the major groove:

E.-A. Raiber, G. Portella, S. Martínez Cuesta, R. Hardisty, P. Murat, Z. Li, M. Iurlaro, W. Dean, J. Spindel, D. Beraldi, Z. Liu, M. A. Dawson, W. Reik, S. Balasubramanian, Nat. Chem. 2018, 10, 1258-1266;

F. Li, Y. Zhang, J. Bai, M. M. Greenberg, Z. Xi, C. Zhou, J. Am. Chem. Soc. 2017, 139, 10617-10620;

S. Ji, H. Shao, Q. Han, C. L. Seiler, N. Y. Tretyakova, Angew. Chem. Int. Ed. 2017, 56, 14130-14134;

Angew. Chem. 2017, 129, 14318-14322.

Example of non-specific cross-linking with protein from diazirine-linked DNA in the minor groove: U. K. Shigdel, J. Zhang, C. He, Angew. Chem. Int. Ed. 2008, 47, 90-93;

Angew. Chem. 2008, 120, 96-99.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...