Coexistence of Dominant Marine Phytoplankton Sustained by Nutrient Specialization
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37458590
PubMed Central
PMC10441275
DOI
10.1128/spectrum.04000-22
Knihovny.cz E-zdroje
- Klíčová slova
- Prochlorococcus, Synechococcus, nutrient specialization,
- MeSH
- amoniové sloučeniny * MeSH
- dusičnany MeSH
- dusík MeSH
- ekosystém MeSH
- fytoplankton MeSH
- mořská voda mikrobiologie MeSH
- Synechococcus * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniové sloučeniny * MeSH
- dusičnany MeSH
- dusík MeSH
Prochlorococcus and Synechococcus are the two dominant picocyanobacteria in the low-nutrient surface waters of the subtropical ocean, but the basis for their coexistence has not been quantitatively demonstrated. Here, we combine in situ microcosm experiments and an ecological model to show that this coexistence can be sustained by specialization in the uptake of distinct nitrogen (N) substrates at low-level concentrations that prevail in subtropical environments. In field incubations, the response of both Prochlorococcus and Synechococcus to nanomolar N amendments demonstrates N limitation of growth in both populations. However, Prochlorococcus showed a higher affinity to ammonium, whereas Synechococcus was more adapted to nitrate uptake. A simple ecological model demonstrates that the differential nutrient preference inferred from field experiments with these genera may sustain their coexistence. It also predicts that as the supply of NO3- decreases, as expected under climate warming, the dominant genera should undergo a nonlinear shift from Synechococcus to Prochlorococcus, a pattern that is supported by subtropical field observations. Our study suggests that the evolution of differential nutrient affinities is an important mechanism for sustaining the coexistence of genera and that climate change is likely to shift the relative abundance of the dominant plankton genera in the largest biomes in the ocean. IMPORTANCE Our manuscript addresses the following fundamental question in microbial ecology: how do different plankton using the same essential nutrients coexist? Prochlorococcus and Synechococcus are the two dominant picocyanobacteria in the low-nutrient surface waters of the subtropical ocean, which support a significant amount of marine primary production. The geographical distributions of these two organisms are largely overlapping, but the basis for their coexistence in these biomes remains unclear. In this study, we combined in situ microcosm experiments and an ecosystem model to show that the coexistence of these two organisms can arise from specialization in the uptake of distinct nitrogen substrates; Prochlorococcus prefers ammonium, whereas Synechococcus prefers nitrate when these nutrients exist at low concentrations. Our framework can be used for simulating and predicting the coexistence in the future ocean and may provide hints toward understanding other similar types of coexistence.
Department of Aquatic Bioscience The University of Tokyo Bunkyo Tokyo Japan
Department of Botany University of South Bohemia Faculty of Science České Budejovice Czechia
Department of Geosciences Princeton University Princeton New Jersey USA
Graduate School of Oceanography University of Rhode Island Narragansett Rhode Island USA
Institute of Hydrobiology Biology Centre of the Czech Academy of Sciences České Budejovice Czechia
Institute of Microbiology The Czech Academy of Sciences Třeboň Czechia
Zobrazit více v PubMed
Field C, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240. doi:10.1126/science.281.5374.237. PubMed DOI
DuRand MD, Olson RJ, Chisholm SW. 2001. Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Res II 48:1983–2003. doi:10.1016/S0967-0645(00)00166-1. DOI
Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, Karl DM, Li WKW, Lomas MW, Veneziano D, Vera CS, Vrugt JA, Martiny AC. 2013. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 110:9824–9829. doi:10.1073/pnas.1307701110. PubMed DOI PMC
Partensky F, Hess WR, Vaulot D. 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127. doi:10.1128/MMBR.63.1.106-127.1999. PubMed DOI PMC
Hutchinson GE. 1961. The paradox of the plankton. The Am Nat 95:137–145. doi:10.1086/282171. DOI
Ward BA, Dutkiewicz S, Moore CM, Follows MJ. 2013. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol Oceanogr 58:2059–2075. doi:10.4319/lo.2013.58.6.2059. DOI
Tilman D. 1977. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58:338–348. doi:10.2307/1935608. DOI
Hashihama F, Yasuda I, Kumabe A, Sato M, Sasaoka H, Iida Y, Shiozaki T, Saito H, Kanda J, Furuya K, Boyd PW, Ishii M. 2021. Nanomolar phosphate supply and its recycling drive net community production in the subtropical North Pacific. Nat Commun 12:3462. doi:10.1038/s41467-021-23837-y. PubMed DOI PMC
Tilman D. 1982. Resource competition and community structure. Princeton University Press, Princeton, NJ. PubMed
Martiny AC, Kathuria S, Berube PM. 2009. Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc Natl Acad Sci USA 106:10787–10792. doi:10.1073/pnas.0902532106. PubMed DOI PMC
Dutkiewicz S, Hickman AE, Jahn O, Gregg WW, Mouw CB, Follows MJ. 2015. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model. Biogeosciences 12:4447–4481. doi:10.5194/bg-12-4447-2015. DOI
Karl DM, Björkman KM, Dore JE, Fujieki L, Hebel DV, Houlihan T, Letelier RM, Tupas LM. 2001. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Res II 48:1529–1566. doi:10.1016/S0967-0645(00)00152-1. DOI
Hashihama F, Furuya K, Kitajima S, Takeda S, Takemura T, Kanda J. 2009. Macro-scale exhaustion of surface phosphate by dinitrogen fixation in the western North Pacific. Geophys Res Lett 36:L03610. doi:10.1029/2008GL036866. DOI
Kodama T, Furuya K, Hashihama F, Takeda S, Kanda J. 2011. Occurrence of rain-origin nitrate patches at the nutrient-depleted surface in the East China Sea and the Philippine Sea during summer. J Geophys Res 116:C08003. doi:10.1029/2010JC006814. DOI
Ackermann M. 2015. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13:497–508. doi:10.1038/nrmicro3491. PubMed DOI
Masuda T, Inomura K, Kodama T, Shiozaki T, Kitajima S, Armin G, Matsui T, Suzuki K, Takeda S, Sato M, Prášil O, Furuya K. 2022. Crocosphaera as a major consumer of fixed nitrogen. Microbiol Spectr 10:e02177-21. doi:10.1128/spectrum.02177-21. PubMed DOI PMC
Shilova IN, Mills MM, Robidart JC, Turk-Kubo KA, Björkman KM, Kolber Z, Rapp I, van Dijken GL, Church MJ, Arrigo KR, Achterberg EP, Zehr JP. 2017. Differential effects of nitrate, ammonium, and urea as N sources for microbial communities in the North Pacific Ocean. Limnol Oceanogr 62:2550–2574. doi:10.1002/lno.10590. DOI
Berube PM, Biller SJ, Kent AG, Berta-Thompson JW, Roggensack SE, Roache-Johnson KH, Ackerman M, Moore LR, Meisel JD, Sher D, Thompson LR, Campbell L, Martiny AC, Chisholm SW. 2015. Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J 9:1195–1207. doi:10.1038/ismej.2014.211. PubMed DOI PMC
Moore LR, Post AF, Rocap G, Chisholm SW. 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47:989–996. doi:10.4319/lo.2002.47.4.0989. DOI
Glibert PM, Ray RT. 1990. Different patterns of growth and nitrogen uptake in two clones of marine Synechococcus spp. Mar Biol 107:273–280. doi:10.1007/BF01319826. DOI
Dutkiewicz S, Ward BA, Monteiro F, Follows MJ. 2012. Interconnection of nitrogen fixers and iron in the Pacific Ocean: theory and numerical simulations. Global Biogeochem Cycles 26:GB1012. doi:10.1029/2011GB004039. DOI
Dutkiewicz S, Ward BA, Scott JR, Follows MJ. 2014. Understanding predicted shifts in diazotroph biogeography using resource competition theory. Biogeosciences 11:5445–5461. doi:10.5194/bg-11-5445-2014. DOI
Armstrong RA. 2008. Nutrient uptake rate as a function of cell size and surface transporter density: a Michaelis-like approximation to the model of Pasciak and Gavis. Deep Sea Res Part I: Oceanogr Res Papers 55:1311–1317. doi:10.1016/j.dsr.2008.05.004. DOI
Smith SL, Yamanaka Y, Pahlow M, Oschlies A. 2009. Optimal uptake kinetics: physiological acclimation explains the pattern of nitrate uptake by phytoplankton in the ocean. Mar Ecol Prog Ser 384:1–12. doi:10.3354/meps08022. DOI
Bonachela JA, Raghib M, Levin SA. 2011. Dynamic model of flexible phytoplankton nutrient uptake. Proc Natl Acad Sci USA 108:20633–20638. doi:10.1073/pnas.1118012108. PubMed DOI PMC
Healey FP. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb Ecol 5:281–286. doi:10.1007/BF02020335. PubMed DOI
Van de Waal DB, Litchman E. 2020. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos Trans R Soc Lond B Biol Sci 375:20190706. doi:10.1098/rstb.2019.0706. PubMed DOI PMC
Hirata T, Hardman-Mountford NJ, Brewin RJW, Aiken J, Barlow R, Suzuki K, Isada T, Howell E, Hashioka T, Noguchi-Aita M, Yamanaka Y. 2011. Synoptic relationships between surface chlorophyll-a; and diagnostic pigments specific to phytoplankton functional types. Biogeosciences 8:311–327. doi:10.5194/bg-8-311-2011. DOI
Christaki U, Courties C, Karayanni H, Giannakourou A, Maravelias C, Kormas KA, Lebaron P. 2002. Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates. Microb Ecol 43:341–352. doi:10.1007/s00248-002-2002-3. PubMed DOI
Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. 2011. Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 474:604–608. doi:10.1038/nature10172. PubMed DOI
Marston MF, Pierciey FJ, Jr, Shepard A, Gearin G, Qi J, Yandava C, Schuster SC, Henn MR, Martiny JB. 2012. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA 109:4544–4549. doi:10.1073/pnas.1120310109. PubMed DOI PMC
Vallina SM, Ward BA, Dutkiewicz S, Follows MJ. 2014. Maximal feeding with active prey-switching: a kill-the-winner functional response and its effect on global diversity and biogeography. Prog Oceanogr 120:93–109. doi:10.1016/j.pocean.2013.08.001. DOI
Ward BA, Dutkiewicz S, Follows MJ. 2014. Modelling spatial and temporal patterns in size-structured marine plankton communities: top–down and bottom–up controls. J Plankton Res 36:31–47. doi:10.1093/plankt/fbt097. DOI
Dutkiewicz S, Cermeno P, Jahn O, Follows MJ, Hickman AE, Taniguchi DAA, Ward BA. 2020. Dimensions of marine phytoplankton diversity. Biogeosciences 17:609–634. doi:10.5194/bg-17-609-2020. DOI
Follows MJ, Dutkiewicz S, Ward BA, Follett CN. 2018. Theoretical interpretation of subtropical plankton biogeography, p 467. In Gasol J, Kirshman D (eds), Microbial ecology of the oceans, 3rd ed. John Wiley, Hoboken, NJ.
Karl DM, Lukas R. 1996. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep-Sea Res 43:129–156. doi:10.1016/0967-0645(96)00005-7. DOI
Glover HE, Prézelin BB, Campbell L, Wyman M, Garside C. 1988. A nitrate-dependent Synechococcus bloom in surface Sargasso Sea water. Nature 331:161–163. doi:10.1038/331161a0. DOI
Glover HE, Garside C, Trees CC. 2007. Physiological responses of Sargasso Sea picoplankton to nanomolar nitrate perturbations. J Plankton Res 29:263–274. doi:10.1093/plankt/fbm013. DOI
Partensky F, Blanchot J, Vaulot D. 1999. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull Inst Oceanogr 19:457–475.
Bograd SJ, Jacox MG, Hazen EL, Lovecchio E, Montes I, Pozo Buil M, Shannon LJ, Sydeman WJ, Rykaczewski RR. 2023. Climate change impacts on eastern boundary upwelling systems. Annu Rev Mar Sci 15:303–328. doi:10.1146/annurev-marine-032122-021945. PubMed DOI
Lindell D, Post AF. 1995. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol Oceanogr 40:1130–1141. doi:10.4319/lo.1995.40.6.1130. DOI
Paulot F, Jacob DJ, Johnson MT, Bell TG, Baker AR, Keene WC, Lima ID, Doney SC, Stock CA. 2015. Global oceanic emission of ammonia: constraints from seawater and atmospheric observations. Global Biogeochem Cycles 29:1165–1178. doi:10.1002/2015GB005106. DOI
Olson RJ, Chisholm SW, Zettler ER, Altabet MA, Dusenberry JA. 1990. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res 37:1033–1051. doi:10.1016/0198-0149(90)90109-9. DOI
Campbell L, Vaulot D. 1993. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep Sea Res 40:2043–2060. doi:10.1016/0967-0637(93)90044-4. DOI
Droop MR. 1973. Some thoughts on nutrient limitation in algae. J Phycol 9:264–272. doi:10.1111/j.1529-8817.1973.tb04092.x. DOI
Sweeney EN, McGillicuddy DJ, Buesseler KO. 2003. Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic Time-series Study (BATS). Deep Sea Res Part II Top Stud Oceanogr 50:3017–3039. doi:10.1016/j.dsr2.2003.07.008. DOI
Paerl RW, Johnson KS, Welsh RM, Worden AZ, Chavez FP, Zehr JP. 2011. Differential distributions of Synechococcus subgroups across the California current system. Front Microbiol 2:59. doi:10.3389/fmicb.2011.00059. PubMed DOI PMC
Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F. 2009. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299. doi:10.1128/MMBR.00035-08. PubMed DOI PMC
Partensky F, Garczarek L. 2010. Prochlorococcus: advantages and limits of minimalism. Annu Rev Mar Sci 2:305–331. doi:10.1146/annurev-marine-120308-081034. PubMed DOI
Berube PM, Rasmussen A, Braakman R, Stepanauskas R, Chisholm SW. 2019. Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. Elife 8:e14043. doi:10.7554/eLife.41043. PubMed DOI PMC
Casey JR, Lomas MW, Mandecki J, Walker DE. 2007. Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophys Res Let 34:L10604. doi:10.1029/2006GL028725. DOI
Zubkov MV, Fuchs BM, Tarran GA, Burkill PH, Amann R. 2003. High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol 69:1299–1304. doi:10.1128/AEM.69.2.1299-1304.2003. PubMed DOI PMC
Zubkov MV, Tarran GA, Fuchs BM. 2004. Depth related amino acid uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre. FEMS Microbiol Ecol 50:153–161. doi:10.1016/j.femsec.2004.06.009. PubMed DOI
Garcia-Fernandez JM, de Marsac NT, Diez J. 2004. Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol Mol Biol Rev 68:630–638. doi:10.1128/MMBR.68.4.630-638.2004. PubMed DOI PMC
Muñoz-Marín MC, Gómez-Baena G, López-Lozano A, Moreno-Cabezuelo JA, Díez J, García-Fernández JM. 2020. Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus. ISME J 14:1065–1073. doi:10.1038/s41396-020-0603-9. PubMed DOI PMC
Michelou VK, Cottrell MT, Kirchman DL. 2007. Light-stimulated bacterial production and amino acid assimilation by cyanobacteria and other microbes in the North Atlantic Ocean. Appl Environ Microbiol 73:5539–5546. doi:10.1128/AEM.00212-07. PubMed DOI PMC
Stoecker DK, Hansen PJ, Caron DA, Mitra A. 2017. Mixotrophy in the marine plankton. Annu Rev Mar Sci 9:311–335. doi:10.1146/annurev-marine-010816-060617. PubMed DOI
Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW. 2003. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047. doi:10.1038/nature01947. PubMed DOI
Zubkov MV, Tarran GA. 2005. Amino acid uptake of Prochlorococcus spp. in surface waters across the South Atlantic Subtropical Front. Aquat Microb Ecol 40:241–249. doi:10.3354/ame040241. DOI
Pearl H. 1991. Ecophysiological and trophic implications of light-stimulated amino acid utilization in marine picoplankton. Appl Environ Microbiol 57:473–479. doi:10.1128/aem.57.2.473-479.1991. PubMed DOI PMC
Shiozaki T, Bombar D, Riemann L, Sato M, Hashihama F, Kodama T, Tanita I, Takeda S, Saito H, Hamasaki K, Furuya K. 2018. Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean. Glob Biogeochem Cycles 32:1028–1044. doi:10.1029/2017GB005869. DOI
Moisander PH, Zhang R, Boyle EA, Hewson I, Montoya JP, Zehr JP. 2012. Analogous nutrient limitations in unicellular diazotrophs and Prochlorococcus in the South Pacific Ocean. ISME J 6:733–744. doi:10.1038/ismej.2011.152. PubMed DOI PMC
Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, Montoya JP, Zehr JP. 2010. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1512–1514. doi:10.1126/science.1185468. PubMed DOI
Sato M, Hashihama F, Kitajima S, Takeda S, Furuya K. 2010. Distribution of nano-sized Cyanobacteria in the western and central Pacific Ocean. Aquat Microb Ecol 59:273–282. doi:10.3354/ame01397. DOI
IPCC. 2007. Climate change 2007: the physical science basis. Cambridge University Press, New York, NY.
Fu F-X, Mulholland MR, Garcia NS, Beck A, Bernhardt PW, Warner ME, Sañudo-Wilhelmy SA, Hutchins DA. 2008. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol Oceanogr 53:2472–2484. doi:10.4319/lo.2008.53.6.2472. DOI
Hutchins DA, Fu F-X, Zhang Y, Warner ME, Feng Y, Portune K, Bernhardt PW, Mulholland MR. 2007. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol Oceanogr 52:1293–1304. doi:10.4319/lo.2007.52.4.1293. DOI
Fu FX, Yu E, Garcia NS, Gale J, Luo Y, Webb EA, Hutchins DA. 2014. Differing responses of marine N2 fixers to warming and consequences for future diazotroph community structure. Aquat Microb Ecol 72:33–46. doi:10.3354/ame01683. DOI
Sánchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. 2019. Insights into the evolution of picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA). Front Microbiol 10:45. doi:10.3389/fmicb.2019.00045. PubMed DOI PMC
Komárek J, Johansen JR, Šmarda J, Strunecký O. 2020. Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea 20:171–191. doi:10.5507/fot.2020.006. DOI
Tschoeke D, Salazar VW, Vidal L, Campeão M, Swings J, Thompson F, Thompson C. 2020. Unlocking the genomic taxonomy of the Prochlorococcus collective. Microb Ecol 80:546–558. doi:10.1007/s00248-020-01526-5. PubMed DOI
Salazar VW, Tschoeke DA, Swings J, Cosenza CA, Mattoso M, Thompson CC, Thompson FL. 2020. A new genomic taxonomy system for the Synechococcus collective. Environ Microbiol 22:4557–4570. doi:10.1111/1462-2920.15173. PubMed DOI
Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, Follows MJ, Stepanauskas R, Chisholm SW. 2014. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–420. doi:10.1126/science.1248575. PubMed DOI
Biller SJ, Berube PM, Lindell D, Chisholm SW. 2015. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 13:13–27. doi:10.1038/nrmicro3378. PubMed DOI
Doré H, Farrant GK, Guyet U, Haguait J, Humily F, Ratin M, Pitt FD, Ostrowski M, Six C, Brillet-Guéguen L, Hoebeke M, Bisch A, Le Corguillé G, Corre E, Labadie K, Aury JM, Wincker P, Choi DH, Noh JH, Eveillard D, Scanlan DJ, Partensky F, Garczarek L. 2020. Evolutionary mechanisms of long-term genome diversification associated with niche partitioning in marine picocyanobacteria. Front Microbiol 11:567431. doi:10.3389/fmicb.2020.567431. PubMed DOI PMC
Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ. 2008. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161. doi:10.1111/j.1462-2920.2007.01440.x. PubMed DOI
Doré H, Leconte J, Guyet U, Breton S, Farrant GK, Demory D, Ratin M, Hoebeke M, Corre E, Pitt FD, Ostrowski M, Scanlan DJ, Partensky F, Six C, Garczarek L. 2022. Global phylogeography of marine Synechococcus in coastal areas reveals strong community shifts. mSystems 7:e00656-22. doi:10.1128/msystems.00656-22. PubMed DOI PMC
Takeda S, Obata H. 1995. Response of equatorial Pacific phytoplankton to subnanomolar Fe enrichment. Mar Chem 50:219–227. doi:10.1016/0304-4203(95)00037-R. DOI
Obata H, Karatani H, Nakayama E. 1993. Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection. Anal Chem 65:1524–1528. doi:10.1021/ac00059a007. DOI
Wu J, Sunda W, Boyle EA, Karl DM. 2000. Phosphate depletion in the western North Atlantic Ocean. Science 289:759–762. doi:10.1126/science.289.5480.759. PubMed DOI
Price NM, Harrison PJ. 1987. Comparison of methods for the analysis of dissolved urea in seawater. Mar Biol 94:307–317. doi:10.1007/BF00392945. DOI
Laglera LM, Santos-Echeandia J, Caprara S, Monticelli D. 2013. Quantification of iron in seawater at the low picomolar range based on optimization of bromate/ammonia/dihydroxynaphtalene system by catalytic adsorptive cathodic stripping voltammetry. Anal Chem 85:2486–2492. doi:10.1021/ac303621q. PubMed DOI
Shalapyonok A, Olson RJ, Shalapyonok LS. 2001. Arabian Sea phytoplankton during Southwest and Northeast Monsoon 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry. Deep Sea Res II 48:1231–1261. doi:10.1016/S0967-0645(00)00137-5. DOI
Heldal M, Scanlan DJ, Norland S, Thingstad F, Mann NH. 2003. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol Oceanogr 48:1732–1743. doi:10.4319/lo.2003.48.5.1732. DOI
Hastings WK. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109. doi:10.1093/biomet/57.1.97. DOI
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH. 1953. Equation of state calculations by fast computing machines. J Chem Phys 2:1087–1092.
Inomura K, Omta AW, Talmy D, Bragg J, Deutsch C, Follows MJ. 2020. A Mechanistic model of macromolecular allocation, elemental stoichiometry, and growth rate in phytoplankton. Front Microbiol 11:86. doi:10.3389/fmicb.2020.00086. PubMed DOI PMC
Omta AW, Talmy D, Sher D, Finkel ZV, Irwin AJ, Follows MJ. 2017. Extracting phytoplankton physiological traits from batch and chemostat culture data. Limnol Oceanogr Methods 15:453–466. doi:10.1002/lom3.10172. DOI
Wolfram Research Inc. 2018. Mathematica, version 11.3. Wolfram Research Inc., Champaign, IL.
Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL, Jickells TD, La Roche J, Lenton TM, Mahowald NM, Marañón E, Marinov I, Moore JK, Nakatsuka T, Oschlies A, Saito MA, Thingstad TF, Tsuda A, Ulloa O. 2013. Processes and patterns of oceanic nutrient limitation. Nature Geosci 6:701–710. doi:10.1038/ngeo1765. DOI
Taylor KE, Stouffer RJ, Meehl GA. 2012. An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1. DOI
Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. 2020. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36:1925–1927. doi:10.1093/bioinformatics/btz848. PubMed DOI PMC
Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. 2020. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 38:1079–1086. doi:10.1038/s41587-020-0501-8. PubMed DOI
Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi:10.1371/journal.pone.0009490. PubMed DOI PMC
Marchler-Bauer A, Bryant SH. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331. doi:10.1093/nar/gkh454. PubMed DOI PMC
Kudo I, Harrison PJ. 1997. Effect of iron nutrition on the marine cyanobacterium Synechococcus grown on different N sources and irradiances. J Phycol 33:232–240. doi:10.1111/j.0022-3646.1997.00232.x. DOI