Carbon Transfer from the Host Diatom Enables Fast Growth and High Rate of N2 Fixation by Symbiotic Heterocystous Cyanobacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
544338
Simons Foundation
16-15467S
GAČR
LO1416
The Czech Ministry of Education, Youth and Sports
PubMed
32033207
PubMed Central
PMC7076409
DOI
10.3390/plants9020192
PII: plants9020192
Knihovny.cz E-zdroje
- Klíčová slova
- DDA, carbon, cell flux model, diatom, diazotroph, growth rate, nitrogen, nitrogen fixation, photosynthesis,
- Publikační typ
- časopisecké články MeSH
Diatom-diazotroph associations (DDAs) are symbioses where trichome-forming cyanobacteria support the host diatom with fixed nitrogen through dinitrogen (N2) fixation. It is inferred that the growth of the trichomes is also supported by the host, but the support mechanism has not been fully quantified. Here, we develop a coarse-grained, cellular model of the symbiosis between Hemiaulus and Richelia (one of the major DDAs), which shows that carbon (C) transfer from the diatom enables a faster growth and N2 fixation rate by the trichomes. The model predicts that the rate of N2 fixation is 5.5 times that of the hypothetical case without nitrogen (N) transfer to the host diatom. The model estimates that 25% of fixed C from the host diatom is transferred to the symbiotic trichomes to support the high rate of N2 fixation. In turn, 82% of N fixed by the trichomes ends up in the host. Modeled C fixation from the vegetative cells in the trichomes supports only one-third of their total C needs. Even if we ignore the C cost for N2 fixation and for N transfer to the host, the total C cost of the trichomes is higher than the C supply by their own photosynthesis. Having more trichomes in a single host diatom decreases the demand for N2 fixation per trichome and thus decreases their cost of C. However, even with five trichomes, which is about the highest observed for Hemiaulus and Richelia symbiosis, the model still predicts a significant C transfer from the diatom host. These results help quantitatively explain the observed high rates of growth and N2 fixation in symbiotic trichomes relative to other aquatic diazotrophs.
Institute of Microbiology The Czech Academy of Sciences 379 81b Třeboň Czech Republic
School of Earth and Ocean Sciences Cardiff University Main Building Park Place Cardiff CF10 3AT UK
School of Oceanography University of Washington 1492 NE Boat St Seattle WA 98105 USA
Zobrazit více v PubMed
Villareal T.A. Laboratory culture and Preliminary Characterization of the nitrogen-fixing Rhizosolenia-Richelia Symbiosis. Mar. Ecol. 1990;11:117–132. doi: 10.1111/j.1439-0485.1990.tb00233.x. DOI
Villareal T.A. Marine nitrogen fixing diatom - cyanobacteria symbioses. In: Carpenter E.J., Capone D.G., Rueter J.G., editors. Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs. Kluwer Academic Publishers; Dordrecht, The Neatherlands: 1992. pp. 163–175.
Janson S., Wouters J., Bergman B., Carpenter E.J. Host specificity in the Richelia-diatom symbiosis revealed by hetR gene sequence analysis. Environ. Microbiol. 1999;1:431–438. doi: 10.1046/j.1462-2920.1999.00053.x. PubMed DOI
Foster R.A., Zehr J.P. Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ. Microbiol. 2006;8:1913–1925. doi: 10.1111/j.1462-2920.2006.01068.x. PubMed DOI
Goebel N.L., Turk K.A., Achilles K.M., Paerl R., Hewson I., Morrison A.E., Montoya J.P., Edwards C.A., Zehr J.P. Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2 fixation in the tropical Atlantic Ocean. Environ. Microbiol. 2010;12:3272–3289. doi: 10.1111/j.1462-2920.2010.02303.x. PubMed DOI
Foster R.A., Kuypers M.M.M., Vagner T., Paerl R.W., Musat N., Zehr J.P. Nitrogen fixation and transfer in open ocean diatom– cyanobacterial symbioses. ISME J. 2011;5:1484–1493. doi: 10.1038/ismej.2011.26. PubMed DOI PMC
Hilton J.A., Foster R.A., James Tripp H., Carter B.J., Zehr J.P., Villareal T.A. Genomic deletions disrupt nitrogen metabolism pathways of a cyanobacterial diatom symbiont. Nat. Commun. 2013;4:1767. doi: 10.1038/ncomms2748. PubMed DOI PMC
Carpenter E.J., Montoya J.P., Burns J., Mulholland M.R., Subramaniam A., Capone D.G. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 1999;185:273–283. doi: 10.3354/meps185273. DOI
Gómez F., Furuya K., Takeda S. Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean. J. Plankton Res. 2005;27:323–330. doi: 10.1093/plankt/fbi007. DOI
Church M.J., Mahaffey C., Letelier R.M., Lukas R., Zehr J.P., Karl D.M. Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Global Biogeochem. Cycles. 2009;23:GB2020. doi: 10.1029/2008GB003418. DOI
Foster R.A., Subramaniam A., Zehr J.P. Distribution and activity of diazotrophs in the Eastern. Environ. Microbiol. 2009;11:741–750. doi: 10.1111/j.1462-2920.2008.01796.x. PubMed DOI PMC
Sohm J.A., Webb E.A., Capone D.G. Emerging patterns of marine nitrogen fixation. Nature. 2011;9:499–508. doi: 10.1038/nrmicro2594. PubMed DOI
Villareal T.A. Widespread occurrence of the Hemiaulus-cyanobacterial symbiosis in the Sourthwest North Atlantic Ocean. Bull. Mar. Sci. 1994;54:1–7.
Subramaniam A., Yager P.L., Carpenter E.J., Mahaffey C., Björkman K., Kustka A.B., Montoya J.P., Sañudo-Wilhelmy S.A., Shipe R., Capone D.G. Amazon river enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc. Natl. Acad. Sci. USA. 2008;105:10460–10465. doi: 10.1073/pnas.0710279105. PubMed DOI PMC
Villareal T.A., Brown C.G., Brzezinski M.A., Krause J.W., Wilson C. Summer diatom blooms in the north Pacific subtropical gyre: 2008-2009. PLoS ONE. 2012;7:2008–2009. doi: 10.1371/journal.pone.0033109. PubMed DOI PMC
Shiozaki T., Kondo Y., Yuasa D., Takeda S. Distribution of major diazotrophs in the surface water of the Kuroshio from northeastern Taiwan to south of mainland Japan. J. Plankton Res. 2018;40:407–419. doi: 10.1093/plankt/fby027. DOI
Monteiro F.M., Dutkiewicz S., Follows M.J. Biogeographical controls on the marine nitrogen fixers. Global Biogeochem. Cycles. 2011;25:GB2003. doi: 10.1029/2010GB003902. DOI
Monteiro F.M., Follows M.J., Dutkiewicz S. Distribution of diverse nitrogen fixers in the global ocean. Global Biogeochem. Cycles. 2010;24:GB3017. doi: 10.1029/2009GB003731. DOI
Stukel M.R., Coles V.J., Brooks M.T., Hood R.R. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon River plume. Biogeosciences. 2014;11:3259–3278. doi: 10.5194/bg-11-3259-2014. DOI
Staal M., Meysman F.J.R., Stal L.J. Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Nature. 2003;425:504–507. doi: 10.1038/nature01999. PubMed DOI
Caputo A., Stenegren M., Pernice M.C., Foster R.A. A short comparison of two marine planktonic diazotrophic symbioses highlights an un-quantified disparity. Front. Mar. Sci. 2018;5:1–8. doi: 10.3389/fmars.2018.00002. PubMed DOI
Janson S., Rai A., B B. Intracellular cyanobiont Richelia intracellularis: Ultrastructure and immunolocalization of phycoerythrin, nitrogenase, Rubisco and glutamine synthetase. Mar. Biol. 1995;124:1–8.
Rai A.N., Söderbäck E., Bergman B. Cyanobacterium-plant symbiosis. New Phytol. 2000;147:449–481. doi: 10.1046/j.1469-8137.2000.00720.x. PubMed DOI
Peters G.A., Meeks J.C. The Azolla-Anabaena symbiosis: Basic biology. Annu. Rev. Plant. Physiol. Mol. Biol. 1989;40:193–210. doi: 10.1146/annurev.pp.40.060189.001205. DOI
Rai A.N., Borthkur M., Singh S., Bergman B. Anthoceros-Nostoc symbiosis: Immunoelectronmicroscopic localization of nitrogenase, glutamine synthetase, phycoerythrin and ribulose-1,5-bisphosphate carboxylase/oxygenase in the cyanobiont and the cultured (free-living) isolate Nostoc 7801. Microbiology. 1989;135:385–395. doi: 10.1099/00221287-135-2-385. DOI
Rai A.N. Handbook of Symbiotic Cyanobacteria. CRC Press; Boca Raton, FL, USA: 1990.
Bergman B., Rai A.N., Johansson C., Söderbäck E. Cyanobacterial-plant symbioses. Symbiosis. 1992;14:61–81.
Adams D.G., Bergman B., Nierzwicki-Bauer S.A., Rai A.N., Schüßler A. Cyanobacterial-pldant symbioses. In: Dowrkin S., Falkow S., Rosenberg E., Schleifer K.H., Stackebrandt E., editors. Signalling and Communication in Plant Symbiosis. Volume 1. Springer; Berlin, Germany: 2006. pp. 331–363.
Peters G.A., Kaplan D., Meeks J.C., Buzby K.M., Marsh B.H., Corbin J.L. Aspects of nitrogen and carbon interchange in the Azolla-Anabaena symbiosis. In: Ludden P.W., Burries J.E., editors. Nitrogen Fixation and CO2 Metabolism. Elsevier Science; New York, NY, USA: 1985. pp. 213–222.
Kaplan D., Peters G.A. Interaction of carbon metabolism in the Azolla-Anabaena symbiosis. Symbiosis. 1988;6:53–68.
Follett C.L., Dutkiewicz S., Karl D.M., Inomura K., Follows M.J. Seasonal resource conditions favor a summertime increase in North Pacific diatom–diazotroph associations. ISME J. 2018;12:1543–1557. doi: 10.1038/s41396-017-0012-x. PubMed DOI PMC
Mulholland M.R., Bernhardt P.W. The effect of growth rate, phosphorus concentration, and temperature on N2 fixation, carbon fixation, and nitrogen release in continuous cultures of Trichodesmium IMS101. Limnol. Oceanogr. 2005;50:839–849. doi: 10.4319/lo.2005.50.3.0839. DOI
Hutchins D.A., Fu F.-X., Zhang Y., Warner M.E., Feng Y., Portune K., Bernhardt P.W., Mulholland M.R. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr. 2007;52:1293–1304. doi: 10.4319/lo.2007.52.4.1293. DOI
Fu F.-X., Mulholland M.R., Garcia N.S., Beck A., Bernhardt P.W., Warner M.E., Sañudo-Wilhelmy S.A., Hutchins D.A. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol. Oceanogr. 2008;53:2472–2484. doi: 10.4319/lo.2008.53.6.2472. DOI
Großkopf T., LaRoche J. Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle. Front. Microbiol. 2012;3:236. doi: 10.3389/fmicb.2012.00236. PubMed DOI PMC
Sohm J.A., Edwards B.R., Wilson B.G., Webb E.A. Constitutive extracellular polysaccharide (EPS) production by specific isolates of Crocosphaera watsonii. Front. Microbiol. 2011;2:229. doi: 10.3389/fmicb.2011.00229. PubMed DOI PMC
Inomura K., Bragg J., Follows M.J. A quantitative analysis of the direct and indirect costs of nitrogen fixation: A model based on Azotobacter vinelandii. ISME J. 2017;11:166–175. doi: 10.1038/ismej.2016.97. PubMed DOI PMC
Inomura K., Bragg J., Riemann L., Follows M.J. A quantitative model of nitrogen fixation in the presence of ammonium. PLoS ONE. 2018;13:e0208282. doi: 10.1371/journal.pone.0208282. PubMed DOI PMC
Inomura K., Wilson S.T., Deutsch C. Mechanistic model for the coexistence of nitrogen fixation and photosynthesis in marine Trichodesmium. mSystems. 2019;4:e00210-19. doi: 10.1128/mSystems.00210-19. PubMed DOI PMC
Inomura K., Deutsch C., Wilson S.T., Masuda T., Lawrenz E., Bučinská L., Sobotka R., Gauglitz J.M., Saito M.A., Prášil O., et al. Quantifying oxygen management and temperature and light dependencies of nitrogen fixation by Crocosphaera watsonii. mSphere. 2019;4:e00531-19. doi: 10.1128/mSphere.00531-19. PubMed DOI PMC
Inomura K., Masuda T., Gauglitz J.M. Active nitrogen fixation by Crocosphaera expands their niche despite the presence of ammonium – A case study. Sci. Rep. 2019;9:15064. doi: 10.1038/s41598-019-51378-4. PubMed DOI PMC
Gallon J.R. The oxygen sensitivity of nitrogenase: A problem for biochemists and micro-organisms. Trends Biochem. Sci. 1981;6:19–23. doi: 10.1016/0968-0004(81)90008-6. DOI
Wang Z.C., Burns A., Watt G.D. Complex formation and O2 sensitivity of Azotobacter vinelandii nitrogenase and its component proteins. Biochemistry. 1985;24:214–221. doi: 10.1021/bi00322a031. PubMed DOI
Gallon J.R. Reconciling the incompatible: N2 fixation and O2. New Phytol. 1992;122:571–609. doi: 10.1111/j.1469-8137.1992.tb00087.x. DOI
Lang N.J., Fay P. The heterocysts of blue-green algae II. Details of ultrastructure. Proc. R. Soc. B Biol. Sci. 1971;178:193–203.
Walsby A.E. The permeability of heterocysts to the gases nitrogen and oxygen. Proc. R. Soc. B Biol. Sci. 1985;226:345–366.
Menden-deuer S., Lessard E.J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 2000;45:569–579. doi: 10.4319/lo.2000.45.3.0569. DOI
Redfield A.C. The biological control of chemical factors in the environment. Am. Sci. 1958;46:205–221. PubMed
Foster R.A., O’Mullan G.D. Nitrogen-fixing and nitrifying symbioses in the marine environment. In: Capone D.G., Bronk D.A., Mulholland M.R., Carpenter E.J., editors. Nitrogen in the Marine Environment. Academic Press; London, UK: 2008.
Villareal T.A. Nitrogen-fixation by the cyanobacterial symbiont of the diatom genus Hemiaulus. Mar. Ecol. Prog. Ser. 1991;76:201–204. doi: 10.3354/meps076201. DOI
Harke M.J., Frischkorn K.R., Haley S.T., Aylward F.O., Zehr J.P., Dyhrman S.T. Periodic and coordinated gene expression between a diazotroph and its diatom host. ISME J. 2019;13:118–131. doi: 10.1038/s41396-018-0262-2. PubMed DOI PMC
Foster R.A., Zehr J.P. Diversity, genomics, and distribution of phytoplankton-cyanobacterium single-cell symbiotic associations. Annu. Rev. Microbiol. 2019;73:435–456. doi: 10.1146/annurev-micro-090817-062650. PubMed DOI
Steinberg N.A., Meeks J.C. Physiological sources of reductant for nitrogen fixation activity in Nostoc sp. strain UCD 7801 in symbiotic association with Anthoceros punctatus. J. Bacteriol. 1991;173:7324–7329. doi: 10.1128/JB.173.22.7324-7329.1991. PubMed DOI PMC
Holl C.M., Montoya J.P. Diazotrophic growth of the marine cyanobacterium Trichodesmium IMS101 in continuous culture: Effects of growth rate on N2-fixation rate, biomass, and C:N:P stoichiometry. J. Phycol. 2008;44:929–937. doi: 10.1111/j.1529-8817.2008.00534.x. PubMed DOI
Tuit C., Waterbury J., Ravizza G. Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria. Limnol. Oceanogr. 2004;49:978–990. doi: 10.4319/lo.2004.49.4.0978. DOI
Masuda T., Furuya K., Kodama T., Takeda S., Harrison P.J. Ammonium uptake and dinitrogen fixation by the unicellular nanocyanobacterium Crocosphaera watsonii in nitrogen-limited continuous cultures. Limnol. Oceanogr. 2013;58:2029–2036. doi: 10.4319/lo.2013.58.6.2029. DOI
Lichtl R.R., Bazin M.J., Hall D.O. The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions. Appl. Microbiol. Biotechnol. 1997;47:701–707. doi: 10.1007/s002530050998. DOI
Fay P. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Rev. 1992;56:340–373. doi: 10.1128/MMBR.56.2.340-373.1992. PubMed DOI PMC
Donze M., Haveman J., Schiereck P. Absence of Photosystem 2 in heterocysts of the blue-green alga Anabaena. BBA Bioenerg. 1972;256:157–161. doi: 10.1016/0005-2728(72)90170-3. PubMed DOI
Foster R.A., Goebel N.L., Zehr J.P. Isolation of Calothrix rhizosoleniae (Cyanobacteria) strain SC01 from Chaetoceros (Bacillariophyta) spp. diatoms of the subtropical North Pacific Ocean. J. Phycol. 2010;46:1028–1037. doi: 10.1111/j.1529-8817.2010.00885.x. DOI
Letscher R.T., Villareal T.A. Evaluation of the seasonal formation of subsurface negative preformed nitrate anomalies in the subtropical North Pacific and North Atlantic. Biogeosciences. 2018;15:6461–6480. doi: 10.5194/bg-15-6461-2018. DOI
Ostenfeld C.H., Schmidt J. Plankton fra det Røde hav og Adenbugten, Vidensk. Meddel. Naturh. Forening i Kbhvn. In: Carpenter E.J., Capone D.G., editors. Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs. Springer Science & Business Media; Berlin, German: 1901. pp. 141–182.
Taylor F.J.R. Symbioses in marine microplankton. Ann. Inst. Océanogr. 1982;58:61–90.
Sundström B.G. Observations on Rhizosolenia clevei Ostenfeld (Bacillariophyceae) and Richelia intracellularis Schmidt (Cyanophyceae) Bot. Mar. 1984;27:345–355. doi: 10.1515/botm.1984.27.8.345. DOI
Scott M., Gunderson C.W., Mateescu E.M., Zhang Z., Hwa T. Interdependence of cell growth and gene expression: Origins and consequences. Science. 2010;330:1099–1103. doi: 10.1126/science.1192588. PubMed DOI
You C., Okano H., Hui S., Zhang Z., Kim M., Gunderson C.W., Wang Y.-P., Lenz P., Yan D., Hwa T. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature. 2013;500:301–306. doi: 10.1038/nature12446. PubMed DOI PMC
Jahn M., Vialas V., Karlsen J., Maddalo G., Edfors F., Forsström B., Uhlén M., Käll L., Hudson E.P. Growth of cyanobacteria is constrained by the abundance of light and carbon assimilation proteins. Cell Rep. 2018;25:478–486. doi: 10.1016/j.celrep.2018.09.040. PubMed DOI
Zavřel T., Faizi M., Loureiro C., Poschmann G., Stühler K., Sinetova M., Zorina A., Steuer R., Červený J. Quantitative insights into the cyanobacterial cell economy. Elife. 2019;8 doi: 10.7554/eLife.42508. PubMed DOI PMC
Ellis R.J. Macromolecular crowding: Obvious but underappreciated. Trends Biochem. Sci. 2001;26:597–604. doi: 10.1016/S0968-0004(01)01938-7. PubMed DOI
Burnap R.L. Systems and photosystems: Cellular limits of autotrophic productivity in cyanobacteria. Front. Bioeng. Biotechnol. 2015;3:1. doi: 10.3389/fbioe.2015.00001. PubMed DOI PMC
Lemmermann E. Die Algenflora der Sandwich-Inseln. Ergebnisse einer Reise nach dem Pacific, H. Schauinsland 1896/97. Engler’s Bot. Jb. 1905;34:607–663.
Yoon H.S., Golden J.W. Heterocyst pattern formation controlled by a diffusible peptide. Science. 1998;282:935–938. doi: 10.1126/science.282.5390.935. PubMed DOI
Khudyakov I.Y., Golden J.W. Different functions of HetR, a master regulator of heterocyst differentiation in Anabaena sp. PCC 7120, can be separated by mutation. Proc. Natl. Acad. Sci. USA. 2004;101:16040–16045. doi: 10.1073/pnas.0405572101. PubMed DOI PMC
Yoon H.S., Golden J.W. PatS and products of nitrogen fixation control heterocyst pattern. J. Bacteriol. 2001;183:2605–2613. doi: 10.1128/JB.183.8.2605-2613.2001. PubMed DOI PMC
Risser D.D., Callahan S.M. Genetic and cytological evidence that heterocyst patterning is regulated by inhibitor gradients that promote activator decay. Proc. Natl. Acad. Sci. USA. 2009;106:19884–19888. doi: 10.1073/pnas.0909152106. PubMed DOI PMC
Borthakur P.B., Orozco C.C., Young-Robbins S.S., Haselkorn R., Callahan S.M. Inactivation of patS and hetN causes lethal levels of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 2005;57:111–123. doi: 10.1111/j.1365-2958.2005.04678.x. PubMed DOI
Corrales-Guerrero L., Mariscal V., Nu¨rnberg D.J., Elhai J., Mullineaux C.W., Flores E., Herrero A. Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp. strain PCC 7120. J. Bacteriol. 2014;196:3452–3460. doi: 10.1128/JB.01922-14. PubMed DOI PMC
Muñoz-García J., Ares S. Formation and maintenance of nitrogen-fixing cell patterns in filamentous cyanobacteria. Proc. Natl. Acad. Sci. USA. 2016;113:6218–6223. doi: 10.1073/pnas.1524383113. PubMed DOI PMC
Berry D., Mader E., Lee T.K., Woebken D., Wang Y., Zhu D., Palatinszky M., Schintlmeister A., Schmid M.C., Hanson B.T., et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc. Natl. Acad. Sci. USA. 2015;112:E194–E203. doi: 10.1073/pnas.1420406112. PubMed DOI PMC
He C., Fong L.G., Young S.G., Jiang H. NanoSIMS imaging: An approach for visualizing and quantifying lipids in cells and tissues. J. Investig. Med. 2017;65:669–672. doi: 10.1136/jim-2016-000239. PubMed DOI PMC
Lee K.S., Palatinszky M., Pereira F.C., Nguyen J., Fernandez V.I., Mueller A.J., Menolascina F., Daims H., Berry D., Wagner M., et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 2019;4:1035–1048. doi: 10.1038/s41564-019-0394-9. PubMed DOI
Popa R., Weber P.K., Pett-Ridge J., Finzi J.A., Fallon S.J., Hutcheon I.D., Nealson K.H., Capone D.G. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 2007;1:354–360. doi: 10.1038/ismej.2007.44. PubMed DOI
Sharkey T.D., Berry J.A. Carbon isotope fractionation of algae influenced by an inducible CO2 concentrating mechanism. In: Lucas W.J., Berry J.A., editors. Inorganic Carbon uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists; Rockville, MD, USA: 1985. pp. 389–401.
Keller K., Morel F.M.M. A model of carbon isotopic fractionation and active carbon uptake in phytoplankton. Mar. Ecol. Prog. Ser. 1999;182:295–298. doi: 10.3354/meps182295. DOI
Rittmann B.E., McCarty P.L. Environmental Biotechnology: Principles and Applications. McGraw-Hill; New York, NY, USA: 2001. pp. 126–164.
Quantifying Cyanothece growth under DIC limitation
Quantitative models of nitrogen-fixing organisms