Carbon Transfer from the Host Diatom Enables Fast Growth and High Rate of N2 Fixation by Symbiotic Heterocystous Cyanobacteria

. 2020 Feb 04 ; 9 (2) : . [epub] 20200204

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32033207

Grantová podpora
544338 Simons Foundation
16-15467S GAČR
LO1416 The Czech Ministry of Education, Youth and Sports

Diatom-diazotroph associations (DDAs) are symbioses where trichome-forming cyanobacteria support the host diatom with fixed nitrogen through dinitrogen (N2) fixation. It is inferred that the growth of the trichomes is also supported by the host, but the support mechanism has not been fully quantified. Here, we develop a coarse-grained, cellular model of the symbiosis between Hemiaulus and Richelia (one of the major DDAs), which shows that carbon (C) transfer from the diatom enables a faster growth and N2 fixation rate by the trichomes. The model predicts that the rate of N2 fixation is 5.5 times that of the hypothetical case without nitrogen (N) transfer to the host diatom. The model estimates that 25% of fixed C from the host diatom is transferred to the symbiotic trichomes to support the high rate of N2 fixation. In turn, 82% of N fixed by the trichomes ends up in the host. Modeled C fixation from the vegetative cells in the trichomes supports only one-third of their total C needs. Even if we ignore the C cost for N2 fixation and for N transfer to the host, the total C cost of the trichomes is higher than the C supply by their own photosynthesis. Having more trichomes in a single host diatom decreases the demand for N2 fixation per trichome and thus decreases their cost of C. However, even with five trichomes, which is about the highest observed for Hemiaulus and Richelia symbiosis, the model still predicts a significant C transfer from the diatom host. These results help quantitatively explain the observed high rates of growth and N2 fixation in symbiotic trichomes relative to other aquatic diazotrophs.

Zobrazit více v PubMed

Villareal T.A. Laboratory culture and Preliminary Characterization of the nitrogen-fixing Rhizosolenia-Richelia Symbiosis. Mar. Ecol. 1990;11:117–132. doi: 10.1111/j.1439-0485.1990.tb00233.x. DOI

Villareal T.A. Marine nitrogen fixing diatom - cyanobacteria symbioses. In: Carpenter E.J., Capone D.G., Rueter J.G., editors. Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs. Kluwer Academic Publishers; Dordrecht, The Neatherlands: 1992. pp. 163–175.

Janson S., Wouters J., Bergman B., Carpenter E.J. Host specificity in the Richelia-diatom symbiosis revealed by hetR gene sequence analysis. Environ. Microbiol. 1999;1:431–438. doi: 10.1046/j.1462-2920.1999.00053.x. PubMed DOI

Foster R.A., Zehr J.P. Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ. Microbiol. 2006;8:1913–1925. doi: 10.1111/j.1462-2920.2006.01068.x. PubMed DOI

Goebel N.L., Turk K.A., Achilles K.M., Paerl R., Hewson I., Morrison A.E., Montoya J.P., Edwards C.A., Zehr J.P. Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2 fixation in the tropical Atlantic Ocean. Environ. Microbiol. 2010;12:3272–3289. doi: 10.1111/j.1462-2920.2010.02303.x. PubMed DOI

Foster R.A., Kuypers M.M.M., Vagner T., Paerl R.W., Musat N., Zehr J.P. Nitrogen fixation and transfer in open ocean diatom– cyanobacterial symbioses. ISME J. 2011;5:1484–1493. doi: 10.1038/ismej.2011.26. PubMed DOI PMC

Hilton J.A., Foster R.A., James Tripp H., Carter B.J., Zehr J.P., Villareal T.A. Genomic deletions disrupt nitrogen metabolism pathways of a cyanobacterial diatom symbiont. Nat. Commun. 2013;4:1767. doi: 10.1038/ncomms2748. PubMed DOI PMC

Carpenter E.J., Montoya J.P., Burns J., Mulholland M.R., Subramaniam A., Capone D.G. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 1999;185:273–283. doi: 10.3354/meps185273. DOI

Gómez F., Furuya K., Takeda S. Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean. J. Plankton Res. 2005;27:323–330. doi: 10.1093/plankt/fbi007. DOI

Church M.J., Mahaffey C., Letelier R.M., Lukas R., Zehr J.P., Karl D.M. Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Global Biogeochem. Cycles. 2009;23:GB2020. doi: 10.1029/2008GB003418. DOI

Foster R.A., Subramaniam A., Zehr J.P. Distribution and activity of diazotrophs in the Eastern. Environ. Microbiol. 2009;11:741–750. doi: 10.1111/j.1462-2920.2008.01796.x. PubMed DOI PMC

Sohm J.A., Webb E.A., Capone D.G. Emerging patterns of marine nitrogen fixation. Nature. 2011;9:499–508. doi: 10.1038/nrmicro2594. PubMed DOI

Villareal T.A. Widespread occurrence of the Hemiaulus-cyanobacterial symbiosis in the Sourthwest North Atlantic Ocean. Bull. Mar. Sci. 1994;54:1–7.

Subramaniam A., Yager P.L., Carpenter E.J., Mahaffey C., Björkman K., Kustka A.B., Montoya J.P., Sañudo-Wilhelmy S.A., Shipe R., Capone D.G. Amazon river enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc. Natl. Acad. Sci. USA. 2008;105:10460–10465. doi: 10.1073/pnas.0710279105. PubMed DOI PMC

Villareal T.A., Brown C.G., Brzezinski M.A., Krause J.W., Wilson C. Summer diatom blooms in the north Pacific subtropical gyre: 2008-2009. PLoS ONE. 2012;7:2008–2009. doi: 10.1371/journal.pone.0033109. PubMed DOI PMC

Shiozaki T., Kondo Y., Yuasa D., Takeda S. Distribution of major diazotrophs in the surface water of the Kuroshio from northeastern Taiwan to south of mainland Japan. J. Plankton Res. 2018;40:407–419. doi: 10.1093/plankt/fby027. DOI

Monteiro F.M., Dutkiewicz S., Follows M.J. Biogeographical controls on the marine nitrogen fixers. Global Biogeochem. Cycles. 2011;25:GB2003. doi: 10.1029/2010GB003902. DOI

Monteiro F.M., Follows M.J., Dutkiewicz S. Distribution of diverse nitrogen fixers in the global ocean. Global Biogeochem. Cycles. 2010;24:GB3017. doi: 10.1029/2009GB003731. DOI

Stukel M.R., Coles V.J., Brooks M.T., Hood R.R. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon River plume. Biogeosciences. 2014;11:3259–3278. doi: 10.5194/bg-11-3259-2014. DOI

Staal M., Meysman F.J.R., Stal L.J. Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Nature. 2003;425:504–507. doi: 10.1038/nature01999. PubMed DOI

Caputo A., Stenegren M., Pernice M.C., Foster R.A. A short comparison of two marine planktonic diazotrophic symbioses highlights an un-quantified disparity. Front. Mar. Sci. 2018;5:1–8. doi: 10.3389/fmars.2018.00002. PubMed DOI

Janson S., Rai A., B B. Intracellular cyanobiont Richelia intracellularis: Ultrastructure and immunolocalization of phycoerythrin, nitrogenase, Rubisco and glutamine synthetase. Mar. Biol. 1995;124:1–8.

Rai A.N., Söderbäck E., Bergman B. Cyanobacterium-plant symbiosis. New Phytol. 2000;147:449–481. doi: 10.1046/j.1469-8137.2000.00720.x. PubMed DOI

Peters G.A., Meeks J.C. The Azolla-Anabaena symbiosis: Basic biology. Annu. Rev. Plant. Physiol. Mol. Biol. 1989;40:193–210. doi: 10.1146/annurev.pp.40.060189.001205. DOI

Rai A.N., Borthkur M., Singh S., Bergman B. Anthoceros-Nostoc symbiosis: Immunoelectronmicroscopic localization of nitrogenase, glutamine synthetase, phycoerythrin and ribulose-1,5-bisphosphate carboxylase/oxygenase in the cyanobiont and the cultured (free-living) isolate Nostoc 7801. Microbiology. 1989;135:385–395. doi: 10.1099/00221287-135-2-385. DOI

Rai A.N. Handbook of Symbiotic Cyanobacteria. CRC Press; Boca Raton, FL, USA: 1990.

Bergman B., Rai A.N., Johansson C., Söderbäck E. Cyanobacterial-plant symbioses. Symbiosis. 1992;14:61–81.

Adams D.G., Bergman B., Nierzwicki-Bauer S.A., Rai A.N., Schüßler A. Cyanobacterial-pldant symbioses. In: Dowrkin S., Falkow S., Rosenberg E., Schleifer K.H., Stackebrandt E., editors. Signalling and Communication in Plant Symbiosis. Volume 1. Springer; Berlin, Germany: 2006. pp. 331–363.

Peters G.A., Kaplan D., Meeks J.C., Buzby K.M., Marsh B.H., Corbin J.L. Aspects of nitrogen and carbon interchange in the Azolla-Anabaena symbiosis. In: Ludden P.W., Burries J.E., editors. Nitrogen Fixation and CO2 Metabolism. Elsevier Science; New York, NY, USA: 1985. pp. 213–222.

Kaplan D., Peters G.A. Interaction of carbon metabolism in the Azolla-Anabaena symbiosis. Symbiosis. 1988;6:53–68.

Follett C.L., Dutkiewicz S., Karl D.M., Inomura K., Follows M.J. Seasonal resource conditions favor a summertime increase in North Pacific diatom–diazotroph associations. ISME J. 2018;12:1543–1557. doi: 10.1038/s41396-017-0012-x. PubMed DOI PMC

Mulholland M.R., Bernhardt P.W. The effect of growth rate, phosphorus concentration, and temperature on N2 fixation, carbon fixation, and nitrogen release in continuous cultures of Trichodesmium IMS101. Limnol. Oceanogr. 2005;50:839–849. doi: 10.4319/lo.2005.50.3.0839. DOI

Hutchins D.A., Fu F.-X., Zhang Y., Warner M.E., Feng Y., Portune K., Bernhardt P.W., Mulholland M.R. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr. 2007;52:1293–1304. doi: 10.4319/lo.2007.52.4.1293. DOI

Fu F.-X., Mulholland M.R., Garcia N.S., Beck A., Bernhardt P.W., Warner M.E., Sañudo-Wilhelmy S.A., Hutchins D.A. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol. Oceanogr. 2008;53:2472–2484. doi: 10.4319/lo.2008.53.6.2472. DOI

Großkopf T., LaRoche J. Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle. Front. Microbiol. 2012;3:236. doi: 10.3389/fmicb.2012.00236. PubMed DOI PMC

Sohm J.A., Edwards B.R., Wilson B.G., Webb E.A. Constitutive extracellular polysaccharide (EPS) production by specific isolates of Crocosphaera watsonii. Front. Microbiol. 2011;2:229. doi: 10.3389/fmicb.2011.00229. PubMed DOI PMC

Inomura K., Bragg J., Follows M.J. A quantitative analysis of the direct and indirect costs of nitrogen fixation: A model based on Azotobacter vinelandii. ISME J. 2017;11:166–175. doi: 10.1038/ismej.2016.97. PubMed DOI PMC

Inomura K., Bragg J., Riemann L., Follows M.J. A quantitative model of nitrogen fixation in the presence of ammonium. PLoS ONE. 2018;13:e0208282. doi: 10.1371/journal.pone.0208282. PubMed DOI PMC

Inomura K., Wilson S.T., Deutsch C. Mechanistic model for the coexistence of nitrogen fixation and photosynthesis in marine Trichodesmium. mSystems. 2019;4:e00210-19. doi: 10.1128/mSystems.00210-19. PubMed DOI PMC

Inomura K., Deutsch C., Wilson S.T., Masuda T., Lawrenz E., Bučinská L., Sobotka R., Gauglitz J.M., Saito M.A., Prášil O., et al. Quantifying oxygen management and temperature and light dependencies of nitrogen fixation by Crocosphaera watsonii. mSphere. 2019;4:e00531-19. doi: 10.1128/mSphere.00531-19. PubMed DOI PMC

Inomura K., Masuda T., Gauglitz J.M. Active nitrogen fixation by Crocosphaera expands their niche despite the presence of ammonium – A case study. Sci. Rep. 2019;9:15064. doi: 10.1038/s41598-019-51378-4. PubMed DOI PMC

Gallon J.R. The oxygen sensitivity of nitrogenase: A problem for biochemists and micro-organisms. Trends Biochem. Sci. 1981;6:19–23. doi: 10.1016/0968-0004(81)90008-6. DOI

Wang Z.C., Burns A., Watt G.D. Complex formation and O2 sensitivity of Azotobacter vinelandii nitrogenase and its component proteins. Biochemistry. 1985;24:214–221. doi: 10.1021/bi00322a031. PubMed DOI

Gallon J.R. Reconciling the incompatible: N2 fixation and O2. New Phytol. 1992;122:571–609. doi: 10.1111/j.1469-8137.1992.tb00087.x. DOI

Lang N.J., Fay P. The heterocysts of blue-green algae II. Details of ultrastructure. Proc. R. Soc. B Biol. Sci. 1971;178:193–203.

Walsby A.E. The permeability of heterocysts to the gases nitrogen and oxygen. Proc. R. Soc. B Biol. Sci. 1985;226:345–366.

Menden-deuer S., Lessard E.J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 2000;45:569–579. doi: 10.4319/lo.2000.45.3.0569. DOI

Redfield A.C. The biological control of chemical factors in the environment. Am. Sci. 1958;46:205–221. PubMed

Foster R.A., O’Mullan G.D. Nitrogen-fixing and nitrifying symbioses in the marine environment. In: Capone D.G., Bronk D.A., Mulholland M.R., Carpenter E.J., editors. Nitrogen in the Marine Environment. Academic Press; London, UK: 2008.

Villareal T.A. Nitrogen-fixation by the cyanobacterial symbiont of the diatom genus Hemiaulus. Mar. Ecol. Prog. Ser. 1991;76:201–204. doi: 10.3354/meps076201. DOI

Harke M.J., Frischkorn K.R., Haley S.T., Aylward F.O., Zehr J.P., Dyhrman S.T. Periodic and coordinated gene expression between a diazotroph and its diatom host. ISME J. 2019;13:118–131. doi: 10.1038/s41396-018-0262-2. PubMed DOI PMC

Foster R.A., Zehr J.P. Diversity, genomics, and distribution of phytoplankton-cyanobacterium single-cell symbiotic associations. Annu. Rev. Microbiol. 2019;73:435–456. doi: 10.1146/annurev-micro-090817-062650. PubMed DOI

Steinberg N.A., Meeks J.C. Physiological sources of reductant for nitrogen fixation activity in Nostoc sp. strain UCD 7801 in symbiotic association with Anthoceros punctatus. J. Bacteriol. 1991;173:7324–7329. doi: 10.1128/JB.173.22.7324-7329.1991. PubMed DOI PMC

Holl C.M., Montoya J.P. Diazotrophic growth of the marine cyanobacterium Trichodesmium IMS101 in continuous culture: Effects of growth rate on N2-fixation rate, biomass, and C:N:P stoichiometry. J. Phycol. 2008;44:929–937. doi: 10.1111/j.1529-8817.2008.00534.x. PubMed DOI

Tuit C., Waterbury J., Ravizza G. Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria. Limnol. Oceanogr. 2004;49:978–990. doi: 10.4319/lo.2004.49.4.0978. DOI

Masuda T., Furuya K., Kodama T., Takeda S., Harrison P.J. Ammonium uptake and dinitrogen fixation by the unicellular nanocyanobacterium Crocosphaera watsonii in nitrogen-limited continuous cultures. Limnol. Oceanogr. 2013;58:2029–2036. doi: 10.4319/lo.2013.58.6.2029. DOI

Lichtl R.R., Bazin M.J., Hall D.O. The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions. Appl. Microbiol. Biotechnol. 1997;47:701–707. doi: 10.1007/s002530050998. DOI

Fay P. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Rev. 1992;56:340–373. doi: 10.1128/MMBR.56.2.340-373.1992. PubMed DOI PMC

Donze M., Haveman J., Schiereck P. Absence of Photosystem 2 in heterocysts of the blue-green alga Anabaena. BBA Bioenerg. 1972;256:157–161. doi: 10.1016/0005-2728(72)90170-3. PubMed DOI

Foster R.A., Goebel N.L., Zehr J.P. Isolation of Calothrix rhizosoleniae (Cyanobacteria) strain SC01 from Chaetoceros (Bacillariophyta) spp. diatoms of the subtropical North Pacific Ocean. J. Phycol. 2010;46:1028–1037. doi: 10.1111/j.1529-8817.2010.00885.x. DOI

Letscher R.T., Villareal T.A. Evaluation of the seasonal formation of subsurface negative preformed nitrate anomalies in the subtropical North Pacific and North Atlantic. Biogeosciences. 2018;15:6461–6480. doi: 10.5194/bg-15-6461-2018. DOI

Ostenfeld C.H., Schmidt J. Plankton fra det Røde hav og Adenbugten, Vidensk. Meddel. Naturh. Forening i Kbhvn. In: Carpenter E.J., Capone D.G., editors. Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs. Springer Science & Business Media; Berlin, German: 1901. pp. 141–182.

Taylor F.J.R. Symbioses in marine microplankton. Ann. Inst. Océanogr. 1982;58:61–90.

Sundström B.G. Observations on Rhizosolenia clevei Ostenfeld (Bacillariophyceae) and Richelia intracellularis Schmidt (Cyanophyceae) Bot. Mar. 1984;27:345–355. doi: 10.1515/botm.1984.27.8.345. DOI

Scott M., Gunderson C.W., Mateescu E.M., Zhang Z., Hwa T. Interdependence of cell growth and gene expression: Origins and consequences. Science. 2010;330:1099–1103. doi: 10.1126/science.1192588. PubMed DOI

You C., Okano H., Hui S., Zhang Z., Kim M., Gunderson C.W., Wang Y.-P., Lenz P., Yan D., Hwa T. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature. 2013;500:301–306. doi: 10.1038/nature12446. PubMed DOI PMC

Jahn M., Vialas V., Karlsen J., Maddalo G., Edfors F., Forsström B., Uhlén M., Käll L., Hudson E.P. Growth of cyanobacteria is constrained by the abundance of light and carbon assimilation proteins. Cell Rep. 2018;25:478–486. doi: 10.1016/j.celrep.2018.09.040. PubMed DOI

Zavřel T., Faizi M., Loureiro C., Poschmann G., Stühler K., Sinetova M., Zorina A., Steuer R., Červený J. Quantitative insights into the cyanobacterial cell economy. Elife. 2019;8 doi: 10.7554/eLife.42508. PubMed DOI PMC

Ellis R.J. Macromolecular crowding: Obvious but underappreciated. Trends Biochem. Sci. 2001;26:597–604. doi: 10.1016/S0968-0004(01)01938-7. PubMed DOI

Burnap R.L. Systems and photosystems: Cellular limits of autotrophic productivity in cyanobacteria. Front. Bioeng. Biotechnol. 2015;3:1. doi: 10.3389/fbioe.2015.00001. PubMed DOI PMC

Lemmermann E. Die Algenflora der Sandwich-Inseln. Ergebnisse einer Reise nach dem Pacific, H. Schauinsland 1896/97. Engler’s Bot. Jb. 1905;34:607–663.

Yoon H.S., Golden J.W. Heterocyst pattern formation controlled by a diffusible peptide. Science. 1998;282:935–938. doi: 10.1126/science.282.5390.935. PubMed DOI

Khudyakov I.Y., Golden J.W. Different functions of HetR, a master regulator of heterocyst differentiation in Anabaena sp. PCC 7120, can be separated by mutation. Proc. Natl. Acad. Sci. USA. 2004;101:16040–16045. doi: 10.1073/pnas.0405572101. PubMed DOI PMC

Yoon H.S., Golden J.W. PatS and products of nitrogen fixation control heterocyst pattern. J. Bacteriol. 2001;183:2605–2613. doi: 10.1128/JB.183.8.2605-2613.2001. PubMed DOI PMC

Risser D.D., Callahan S.M. Genetic and cytological evidence that heterocyst patterning is regulated by inhibitor gradients that promote activator decay. Proc. Natl. Acad. Sci. USA. 2009;106:19884–19888. doi: 10.1073/pnas.0909152106. PubMed DOI PMC

Borthakur P.B., Orozco C.C., Young-Robbins S.S., Haselkorn R., Callahan S.M. Inactivation of patS and hetN causes lethal levels of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 2005;57:111–123. doi: 10.1111/j.1365-2958.2005.04678.x. PubMed DOI

Corrales-Guerrero L., Mariscal V., Nu¨rnberg D.J., Elhai J., Mullineaux C.W., Flores E., Herrero A. Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp. strain PCC 7120. J. Bacteriol. 2014;196:3452–3460. doi: 10.1128/JB.01922-14. PubMed DOI PMC

Muñoz-García J., Ares S. Formation and maintenance of nitrogen-fixing cell patterns in filamentous cyanobacteria. Proc. Natl. Acad. Sci. USA. 2016;113:6218–6223. doi: 10.1073/pnas.1524383113. PubMed DOI PMC

Berry D., Mader E., Lee T.K., Woebken D., Wang Y., Zhu D., Palatinszky M., Schintlmeister A., Schmid M.C., Hanson B.T., et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc. Natl. Acad. Sci. USA. 2015;112:E194–E203. doi: 10.1073/pnas.1420406112. PubMed DOI PMC

He C., Fong L.G., Young S.G., Jiang H. NanoSIMS imaging: An approach for visualizing and quantifying lipids in cells and tissues. J. Investig. Med. 2017;65:669–672. doi: 10.1136/jim-2016-000239. PubMed DOI PMC

Lee K.S., Palatinszky M., Pereira F.C., Nguyen J., Fernandez V.I., Mueller A.J., Menolascina F., Daims H., Berry D., Wagner M., et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 2019;4:1035–1048. doi: 10.1038/s41564-019-0394-9. PubMed DOI

Popa R., Weber P.K., Pett-Ridge J., Finzi J.A., Fallon S.J., Hutcheon I.D., Nealson K.H., Capone D.G. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 2007;1:354–360. doi: 10.1038/ismej.2007.44. PubMed DOI

Sharkey T.D., Berry J.A. Carbon isotope fractionation of algae influenced by an inducible CO2 concentrating mechanism. In: Lucas W.J., Berry J.A., editors. Inorganic Carbon uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists; Rockville, MD, USA: 1985. pp. 389–401.

Keller K., Morel F.M.M. A model of carbon isotopic fractionation and active carbon uptake in phytoplankton. Mar. Ecol. Prog. Ser. 1999;182:295–298. doi: 10.3354/meps182295. DOI

Rittmann B.E., McCarty P.L. Environmental Biotechnology: Principles and Applications. McGraw-Hill; New York, NY, USA: 2001. pp. 126–164.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Quantifying Cyanothece growth under DIC limitation

. 2021 ; 19 () : 6456-6464. [epub] 20211129

Quantitative models of nitrogen-fixing organisms

. 2020 ; 18 () : 3905-3924. [epub] 20201121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...