Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33897635
PubMed Central
PMC8063122
DOI
10.3389/fmicb.2021.617802
Knihovny.cz E-zdroje
- Klíčová slova
- Crocosphaera subtropica, Cyanothece, carbon limitation, light limitation, nitrogen fixation, photosynthesis,
- Publikační typ
- časopisecké články MeSH
Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3 --supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.
Centre Algatech Institute of Microbiology of the Czech Academy of Sciences Třeboň Czechia
Department of Adaptive Biotechnologies Global Change Research Institute CAS Brno Czechia
Department of Earth Sciences Utrecht University Utrecht Netherlands
Department of Ecology Berlin Institute of Technology Ernst Reuter Platz 1 Berlin Germany
Department of Microbiology Oregon State University Corvallis OR United States
Dipartimento di Scienze della Vita e dell'Ambiente UniversitaÌ Politecnica delle Marche Ancona Italy
Max Planck Institute for Marine Microbiology Bremen Germany
Mount Allison University Sackville NB Canada
NIOZ Royal Netherlands Institute for Sea Research and Utrecht University Utrecht Netherlands
Sorbonne Université CNRS LOMIC Banyuls sur Mer France
Sorbonne Université CNRS LOV Villefranche sur Mer France
UMR BOREA Université de Caen Basse Normandie Caen France
Universidade Federal de São Carlos São Carlos Brazil
University of Technology Sydney Climate Change Cluster Faculty of Science Ultimo NSW Australia
Zobrazit více v PubMed
Agawin N. S. R., Rabouille S., Veldhuis M. J. W., Servatius L., Hol S., Van Overzee H. M. J., et al. (2007). Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species. Limnol. Oceanogr. 52 2233–2248. 10.4319/lo.2007.52.5.2233 DOI
Aryal U. K., Ding Z., Hedrick V., Sobreira T. J. P., Kihara D., Sherman L. A. (2018). Analysis of protein complexes in the unicellular cyanobacterium Cyanothece ATCC 51142. J. Proteome Res. 17 3628–3643. PubMed PMC
Badger M. R., Price G. D. (2003). CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot. 54 609–622. 10.1093/jxb/erg076 PubMed DOI
Badger M. R., Andrews T. J., Whitney S. M., Ludwig M., Yellowlees D. C., Leggat W., et al. (1998). The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76 1052–1071. 10.1139/cjb-76-6-1052 DOI
Badger M. R., Price G. D., Long B. M., Woodger F. J. (2006). The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J. Exp. Bot. 57 249–265. 10.1093/jxb/eri286 PubMed DOI
Bandyopadhyay A., Elvitigala T., Liberton M., Pakrasi H. B. (2013). Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol. 161 1334–1346. 10.1104/pp.112.208231 PubMed DOI PMC
Barthel S., Bernát G., Rupprecht E., Kahmann U., Schneider D. (2013). Thylakoid membrane maturation and PS II activation are linked in greening Synechocystis sp. PCC 6803 cells. Plant Physiol. 163 1037–1046. 10.1104/pp.113.224428 PubMed DOI PMC
Bergman B., Gallon J., Rai A., Stal L. (1997). N2 Fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Rev. 19 139–185. 10.1016/s0168-6445(96)00028-9 DOI
Bernát G., Rögner M. (2011). “Center of the cyanobacterial electron transport network: the cytochrome b6f complex,” in Bioenergetic Processes of Cyanobacteria: From Evolutionary Singularity to Ecological Diversity, eds Peschek G. A., Obinger C., Renger G. (Dordrecht: Springer; ), 573–606. 10.1007/978-94-007-0388-9_20 DOI
Brauer V., Stomp M., Rosso C., van Beusekom S. A. M., Emmerich B., Stal L. J., et al. (2013). Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece. ISME J. 7 2105–2115. 10.1038/ismej.2013.103 PubMed DOI PMC
Červený J., Nedbal L. (2009). Metabolic rhythms of the cyanobacterium Cyanothece sp. ATCC 51142 correlate with modeled dynamics of circadian clock. J. Biol. Rhythms 24 295–303. 10.1177/0748730409338367 PubMed DOI
Červený J., Šetlík I., Trtílek M., Nedbal L. (2009). Photobioreactor for cultivation and real-time, in-situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms. Eng. Life Sci. 9 247–253. 10.1002/elsc.200800123 DOI
Cólon-López M. S., Sherman D. M., Sherman L. A. (1997). Transcriptional and translational regulation of nitrogenase in light- dark- and continuous-light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. J. Bacteriol. 179 4319–4327. 10.1128/jb.179.13.4319-4327.1997 PubMed DOI PMC
Deng X., Hu Z.-A., Wang H.-X., Wen X.-G., Kuang T.-Y. (2003). A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichia in response to dehydration and rehydration. Plant Sci. 165, 851–861. 10.1016/S0168-9452(03)00284-X DOI
Deschamps P., Colleoni C., Nakamura Y., Suzuki E., Putaux J. L., Buléon A., et al. (2008). Metabolic symbiosis and the birth of the plant kingdom. Mol. Biol. Evol. 25 536–548. 10.1093/molbev/msm280 PubMed DOI
Dron A., Rabouille S., Claquin P., Talec A., Raimbault V., Sciandra A. (2013). Photoperiod length paces the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii. Environ. Microbiol. 15 3292–3304. 10.1111/1462-2920.12163 PubMed DOI
Eichner M., Rost B., Kranz S. A. (2014). Diversity of ocean acidification effects on marine N2 fixers. J. Exp. Mar. Biol. Ecol. 457 199–207. 10.1016/j.jembe.2014.04.015 DOI
Falkowski P. G., Raven J. A. (2007). Aquatic Photosynthesis, 2nd Edn. Princeton, NJ: Princeton University Press.
Fay P. (1992). Oxygen relations of nitrogen-fixation in Cyanobacteria. Microbiol. Rev. 56 340–373. 10.1128/mr.56.2.340-373.1992 PubMed DOI PMC
Flores E., Frías J. E., Rubio L. M., Herrero A. (2005). Photosynthetic nitrate assimilation in cyanobacteria. Photosynth. Res. 83 117–133. 10.1007/s11120-004-5830-9 PubMed DOI
Fogel M., Cifuentes L., Velinsky D., Sharp J. H. (1992). Relationship of carbon availability in estuarine phytoplankton to isotopic composition. Mar. Ecol. Prog. Ser. 82 291–300. 10.3354/meps082291 DOI
Gallon J. R. (1992). Reconciling the incompatible – N2 fixation and O2. New Phytol. 122 571–609. 10.1111/j.1469-8137.1992.tb00087.x DOI
Garcia N., Fu F.-X., Hutchins D. (2013). Colimitation of the unicellular photosynthetic diazotroph Crocosphaera watsonii by phosphorus, light, and carbon dioxide. Limnol. Oceanogr. 58 1501–1512. 10.4319/lo.2013.58.4.1501 DOI
Grimaud G. M., Rabouille S., Dron A., Sciandra A., Bernard O. (2014). Modelling the dynamics of carbon-nitrogen metabolism in the unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501, under variable light regimes. Ecol. Model. 291 121–133. 10.1016/j.ecolmodel.2014.07.016 DOI
Großkopf T., LaRoche J. (2012). Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle. Front. Microbiol. 3:236. 10.3389/fmicb.2012.00236 PubMed DOI PMC
Hansen P., Lundholm N., Rost B. (2007). Growth limitation in marine red-tide dinoflagellates: effects of pH versus inorganic carbon availability. Mar. Ecol. Prog. Ser. 334 63–71. 10.3354/meps334063 DOI
Kauny J., Sétif P. (2014). NADPH fluorescence in the cyanobacterium Synechocystis sp. PCC 6803: a versatile probe for in vivo measurements of rates, yields and pools. Biochim. Biophys. Acta 1837 792–801. 10.1016/j.bbabio.2014.01.009 PubMed DOI
Kirilovsky D. (2015). Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynth. Res. 126, 3–17. 10.1007/s11120-014-0031-7 PubMed DOI
Kolber Z. S., Prášil O., Falkowski P. G. (1998). Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta 1367 88–106. 10.1016/s0005-2728(98)00135-2 PubMed DOI
Kragh T., Sand-Jensen K. (2018). Carbon limitation of lake productivity. Proc. Biol. Sci. 285:20181415. 10.1098/rspb.2018.1415 PubMed DOI PMC
Kramer D. M., Evans J. R. (2011). The importance of energy balance in improving photosynthetic productivity. Plant Physiol. 155 70–78. 10.1104/pp.110.166652 PubMed DOI PMC
León C., Kumazawa S., Mitsui A. (1986). Cyclic appearance of aerobic nitrogenase activity during synchronous growth of unicellular cyanobacteria. Curr. Microbiol. 13 149–153. 10.1007/bf01568510 DOI
Lu J., Zhu B., Struewing I., Xu N., Duan S. (2019). Nitrogen–phosphorus-associated metabolic activities during the development of a cyanobacterial bloom revealed by metatranscriptomics. Sci. Rep. 9:2480. PubMed PMC
Luo Y. W., Shi D., Kranz S. A., Hopkinson B. M., Hong H., Shen R., et al. (2019). Reduced nitrogenase efficiency dominates response of the globally important nitrogen fixer Trichodesmium to ocean acidification. Nat. Commun. 10:1512. PubMed PMC
Mareš J., Johansen J. R., Hauer T., Zima J., Ventura S., Cuzman O., et al. (2019). Taxonomic resolution of the genus Cyanothece (Chroococcales, Cyanobacteria), with a treatment on Gloeothece and three new genera, Crocosphaera, Rippkaea, and Zehria. J. Phycol. 55 578–610. PubMed
Marques da Silva J., Cruz S., Cartaxana P. (2017). Inorganic carbon availability in benthic diatom communities: photosynthesis and migration. Phil. Trans. R Soc. B 372:20160398. 10.1098/rstb.2016.0398 PubMed DOI PMC
Masuda T., Bernát G., Bečková M., Kotabová E., Lawrenz E., Lukeš M., et al. (2018). Diel regulation of photosynthetic activity in the oceanic unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ. Microbiol. 20 546–560. 10.1111/1462-2920.13963 PubMed DOI
Meunier P. C., Colon-lopez M. S., Sherman L. A. (1997). Temporal changes in state transitions and photosystem organization in the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. Plant Physiol. 115 991–1000. 10.1104/pp.115.3.991 PubMed DOI PMC
Meunier P. C., Colon-Lopez M. S., Sherman L. A. (1998). Photosystem II cyclic heterogeneity and photoactivation in the diazotrophic, unicellular cyanobacterium Cyanothece species ATCC 51142. Plant Physiol. 116 1551–1562. 10.1104/pp.116.4.1551 PubMed DOI PMC
Nedbal L., Červený J., Keren N., Kaplan A. (2010). Experimental validation of a nonequilibrium model of CO2 fluxes between gas, liquid medium, and algae in a flat-panel photobioreactor. J. Ind. Microbiol. Biotechnol. 37 1319–1326. 10.1007/s10295-010-0876-5 PubMed DOI
O’Neil J. M., Davis T. W., Burford M. A., Gobler C. J. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14 313–334. 10.1016/j.hal.2011.10.027 DOI
Polerecky L., Masuda T., Eichner M., Rabouille S., Vancová M., Kienhuis M. V. M., et al. (2021). Temporal patterns and intra- and inter-cellular variability in carbon and nitrogen assimilation by the unicellular cyanobacterium Cyanothece sp. ATCC 51142. Front. Microbiol. 12:620915. 10.3389/fmicb.2021.620915 PubMed DOI PMC
Provasoli L., Mclaughlin J. J. A., Droop M. R. (1957). The development of artificial media for marine algae. Arch. Mikrobiol. 25 392–428. 10.1007/bf00446694 PubMed DOI
Rabouille S., Claquin P. (2016). Photosystem-II shutdown evolved with Nitrogen fixation in the unicellular diazotroph Crocosphaera watsonii. Environ. Microbiol. 18 477–485. 10.1111/1462-2920.13157 PubMed DOI
Rabouille S., Van De Waal D. B., Matthijs H. C. P., Huisman J. (2014). Nitrogen fixation and respiratory electron transport in the cyanobacterium Cyanothece under different light/dark cycles. FEMS Microbiol. Ecol. 87 630–638. 10.1111/1574-6941.12251 PubMed DOI
Rae B. D., Long B. M., Whitehead L. F., Förster B., Badger M. R., Price G. D. (2013). Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation. J. Mol. Microbiol. Biotechnol. 23 300–307. 10.1159/000351342 PubMed DOI
Raven J. A., Beardall J., Giordano M. (2014). Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 121 111–124. 10.1007/s11120-013-9962-7 PubMed DOI
Reddy K. J., Haskell J. B., Sherman D. M., Sherman L. A. (1993). Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J. Bacteriol. 175 1284–1292. 10.1128/jb.175.5.1284-1292.1993 PubMed DOI PMC
Riebesell U., Wolf-Gladrow D., Smetacek V. (1993). Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361 249–251. 10.1038/361249a0 DOI
Schneegurt M. A., Sherman D. M., Nayar S., Sherman L. A. (1994). Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J. Bacteriol. 176 1586–1597. 10.1128/jb.176.6.1586-1597.1994 PubMed DOI PMC
Schreiber U., Klughammer C. (2009). New NADPH/9-AA module for the DUAL-PAM-100: description, operation and examples of application. PAM Appl. Notes 2 1–13.
Sherman L. A., Meunier P., Cólon-López M. S. (1998). Diurnal rhythms in metabolism: a day in the life of a unicellular, diazotrophic cyanobacterium. Photosynth. Res. 58 25–42.
Shi D., Kranz S. A., Kim J. M., Morel F. M. M. (2012). Ocean acidification slows nitrogen fixation and growth in the dominant diazotroph Trichodesmium under low-iron conditions. Proc. Natl. Acad. Sci. U.S.A. 109 E3094–E3100. PubMed PMC
Sicora C. I., Chiş I., Chiş C., Sicora O. (2019). Regulation of PSII function in Cyanothece sp. ATCC 51142 during a light–dark cycle. Photosynth. Res. 139 461–473. 10.1007/s11120-018-0598-5 PubMed DOI
Stöckel J., Welsh E. A., Liberton M., Kunnvakkam R., Aurora R., Pakrasi H. B. (2008). Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proc. Natl. Acad. Sci. U.S.A. 105 6156–6161. 10.1073/pnas.0711068105 PubMed DOI PMC
Stoll H., Guitián J., Hernández-Almeida I., Mejía L. M., Phelps S., Polissar P., et al. (2019). Upregulation of phytoplankton carbon concentrating mechanisms during low CO2 glacial periods and implications for the phytoplankton pCO2 proxy. Quat. Sci. Rev. 208 1–20. 10.1016/j.quascirev.2019.01.012 DOI
Suggett D. J., Goyen S., Evenhuis C., Szabó M., Pettay D. T., Warner M. E., et al. (2015). Functional diversity of photobiological traits within the genus Symbiodinium appears to be governed by the interaction of cell size with cladal designation. New Phytol. 208 370–381. 10.1111/nph.13483 PubMed DOI
Suggett D. J., Macintyre H. L., Geider R. J. (2004). Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnol. Oceanogr. Methods 2 316–332. 10.4319/lom.2004.2.316 DOI
Talmy D., Blackford J., Hardman-Mountford N. J., Polimene L., Follows M. J., Geider R. J., et al. (2014). Flexible C : N ratio enhances metabolism of large phytoplankton when resource supply is intermittent. Biogeosciences 11, 4881-4895. 10.5194/bg-11-4881-2014 DOI
Tamagnini P., Leitão E., Oliveira P., Ferreira D., Pinto F., Harris D. J., et al. (2007). Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol. Rev. 31 692–720. 10.1111/j.1574-6976.2007.00085.x PubMed DOI
Taniuchi Y., Chen Y.-L. L., Chen H.-Y., Tsai M.-L., Ohki K. (2012). Isolation and characterization of the unicellular diazotrophic cyanobacterium Group C TW3 from the tropical western Pacific Ocean. Environ. Microbiol. 14 641–654. 10.1111/j.1462-2920.2011.02606.x PubMed DOI
Tikhonov A. N. (2013). pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res. 116 511–534. 10.1007/s11120-013-9845-y PubMed DOI
Toepel J., Welsh E., Summerfield T. C., Pakrasi H. B., Sherman L. A. (2008). Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light-dark and continuous-light growth. J. Bacteriol. 190 3904–3913. 10.1128/jb.00206-08 PubMed DOI PMC
van Baalen C. (1962). Studies on marine blue-green algae. Bot. Mar. 4 129–139.
Van Dam B. R., Tobias C., Holbach A., Paerl H. W., Zhu G. (2018). CO2 limited conditions favor cyanobacteria in a hypereutrophic lake: an empirical and theoretical stable isotope study. Limnol. Oceanogr. 63 1643–1659. 10.1002/lno.10798 DOI
Vieira S., Cartaxana P., Máguas C., Silva J. (2016). Photosynthesis in estuarine intertidal microphytobenthos is limited by inorganic carbon availability. Photosynth. Res. 128 85–92. 10.1007/s11120-015-0203-0 PubMed DOI
Wilson S. T., Karl D. M., Kolber Z. S., Tozzi S., Zehr J. P. (2012). Nitrogen fixation, hydrogen cycling, and electron transport kinetics in Trichodesmium Erythraeum (Cyanobacteria) strain IMS101. J. Phycol. 48 595–606. 10.1111/j.1529-8817.2012.01166.x PubMed DOI
Xu M., Bernát G., Singh A., Mi H., Rögner M., Pakrasi H. B., et al. (2008). Properties of mutants of Synechocystis sp. strain PCC 6803 lacking inorganic carbon sequestration systems. Plant Cell Phys. 49 1672–1677. 10.1093/pcp/pcn139 PubMed DOI
Zavřel T., Sinetova M. A., Búzová D., Literáková P., Červený J. (2015). Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng. Life Sci. 15 122–132. 10.1002/elsc.201300165 DOI
Zehr J. P., Waterbury J. B., Turner P. J. (2001). Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635–638. 10.1038/35088063 PubMed DOI
Zeng S., Liu H., Liu Z., Kaufmann G., Zeng Q., Chen B. (2019). Seasonal and diurnal variations in DIC, NO3– and TOC concentrations in spring-pond ecosystems under different land-uses at the Shawan Karst test site, SW China: carbon limitation of aquatic photosynthesis. J. Hydrol. 574 811–821. 10.1016/j.jhydrol.2019.04.090 DOI
Zhang X., Sherman D. M., Sherman L. A. (2014). The uptake hydrogenase in the unicellular diazotrophic cyanobacterium Cyanothece sp. Strain PCC 7822 protects nitrogenase from oxygen toxicity. J. Bacteriol. 196 840–849. 10.1128/jb.01248-13 PubMed DOI PMC
Quantifying Cyanothece growth under DIC limitation