Experimental validation of a nonequilibrium model of CO₂ fluxes between gas, liquid medium, and algae in a flat-panel photobioreactor
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, validační studie
- MeSH
- fotobioreaktory * MeSH
- kultivační média MeSH
- oxid uhličitý metabolismus MeSH
- sinice růst a vývoj metabolismus MeSH
- světlo MeSH
- teoretické modely * MeSH
- teplota MeSH
- vzduch MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
- Názvy látek
- kultivační média MeSH
- oxid uhličitý MeSH
Carbon dioxide (CO₂) availability strongly affects the productivity of algal photobioreactors, where it is dynamically exchanged between different compartments, phases, and chemical forms. To understand the underlying processes, we constructed a nonequilibrium mathematical model of CO₂ dynamics in a flat-panel algal photobioreactor. The model includes mass transfer to the algal suspension from a stream of bubbles of CO₂-enriched air and from the photobioreactor headspace. Also included are the hydration of dissolved CO₂ to bicarbonate ion (HCO₃⁻) as well as uptake and/or cycling of these two chemical forms by the cells. The model was validated in experiments using a laboratory-scale flat-panel photobioreactor that controls light, temperature, and pH and where the concentration of dissolved CO₂, and partial pressure of CO₂ in the photobioreactor exhaust are measured. First, the model prediction was compared with measured CO₂ dynamics that occurred in response to a stepwise change in the CO₂ partial pressure in the gas sparger. Furthermore, the model was used to predict CO₂ dynamics in photobioreactors with unicellular, nitrogen-fixing cyanobacterium Cyanothece sp. The metabolism changes dramatically during a day, and the distribution of CO₂ is expected to exhibit a pronounced diurnal modulation that significantly deviates from chemical equilibrium.
Zobrazit více v PubMed
Biotechnol Bioeng. 2008 Aug 1;100(5):902-10 PubMed
Plant Physiol. 1998 Apr;116(4):1551-62 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:539-570 PubMed
Curr Opin Biotechnol. 2010 Jun;21(3):365-71 PubMed
J Exp Bot. 2008;59(7):1441-61 PubMed
Annu Rev Plant Biol. 2005;56:99-131 PubMed
Appl Microbiol Biotechnol. 2008 Jul;79(5):707-18 PubMed
Science. 2000 Oct 13;290(5490):291-6 PubMed
Trends Biotechnol. 2008 Mar;26(3):126-31 PubMed
Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):815-30 PubMed
Curr Biol. 1997 Oct 1;7(10):723-8 PubMed
Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2641-50 PubMed
Photosynth Res. 2003;77(2-3):95-103 PubMed
J Biol Rhythms. 2009 Aug;24(4):295-303 PubMed
Arch Mikrobiol. 1957;25(4):392-428 PubMed
Planta. 1985 Jun;164(3):308-20 PubMed
Nat Biotechnol. 2010 Feb;28(2):126-8 PubMed
Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations
Towards a quantitative assessment of inorganic carbon cycling in photosynthetic microorganisms