Towards a quantitative assessment of inorganic carbon cycling in photosynthetic microorganisms

. 2019 Dec ; 19 (12) : 955-967. [epub] 20191031

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32624985

Grantová podpora
P 28406 Austrian Science Fund FWF - Austria

Photosynthetic organisms developed various strategies to mitigate high light stress. For instance, aquatic organisms are able to spend excessive energy by exchanging dissolved CO2 (dCO2) and bicarbonate ( HCO 3 - ) with the environment. Simultaneous uptake and excretion of the two carbon species is referred to as inorganic carbon cycling. Often, inorganic carbon cycling is indicated by displacements of the extracellular dCO2 signal from the equilibrium value after changing the light conditions. In this work, we additionally use (i) the extracellular pH signal, which requires non- or weakly-buffered medium, and (ii) a dynamic model of carbonate chemistry in the aquatic environment to detect and quantitatively describe inorganic carbon cycling. Based on simulations and experiments in precisely controlled photobioreactors, we show that the magnitude of the observed dCO2 displacement crucially depends on extracellular pH level and buffer concentration. Moreover, we find that the dCO2 displacement can also be caused by simultaneous uptake of both dCO2 and HCO 3 - (no inorganic carbon cycling). In a next step, the dynamic model of carbonate chemistry allows for a quantitative assessment of cellular dCO2, HCO 3 - , and H+ exchange rates from the measured dCO2 and pH signals. Limitations of the method are discussed.

Zobrazit více v PubMed

Katz, J. , Rognstad, R. , Futile cycling in glucose metabolism. Trends Biochem. Sci. 1978, 3, 171–174.

Tchernov, D. , Silverman, J. , Luz, B. , Reinhold, L. et al., Massive light‐dependent cycling of inorganic carbon between oxygenic photosynthetic microorganisms and their surroundings. Photosynth. Res. 2003, 77, 95–103. PubMed

Park, Y.‐D. , Panepinto, J. , Shin, S. , Larsen, P. et al., Mating pheromone in Cryptococcus neoformans is regulated by a transcriptional/degradative “futile” cycle. J. Biol. Chem. 2010, 285, 34746–34756. PubMed PMC

Finnegan, P. M. , Chen, W. , Arsenic toxicity: the effects on plant metabolism. Front. Physiol. 2012, 3, 182. PubMed PMC

Sharkey, T. D. , Advances in photosynthesis and respiration. Photosynth. Res. 2012, 111, 327–329.

Stein, R. B. , Blum, J. J. , On the analysis of futile cycles in metabolism. J. Theor. Biol. 1978, 72, 487–522. PubMed

van Heerden, J. H. , Wortel, M. T. , Bruggeman, F. J. , Heijnen, J. J. et al., Lost in transition: start‐up of glycolysis yields subpopulations of nongrowing cells. Science 2014, 343, 1245114. PubMed

Wang, J. , Zhu, J. , Liu, S. , Liu, B. et al., Generation of reactive oxygen species in cyanobacteria and green algae induced by allelochemicals of submerged macrophytes. Chemosphere 2011, 85, 977–82. PubMed

Qian, H. , Beard, D. A. , Metabolic futile cycles and their functions: a systems analysis of energy and control. Syst. Biol. 2008, 153, 192–200. PubMed

Britto, D. T. , Siddiqi, M. Y. , Glass, A. D. , Kronzucker, H. J. , Futile transmembrane NH cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 4255–4258. PubMed PMC

Britto, D. T. , Kronzucker, H. J. , Futile cycling at the plasma membrane: a hallmark of low‐affinity nutrient transport. Trends Plant Sci. 2006, 11, 529–534. PubMed

Neijssel, O. M. , Buurman, E. T. , Teixeira de Mattos, M. J. , The role of futile cycles in the energetics of bacterial growth. Biochim. Biophys. Acta 1990, 1018, 252–5. PubMed

Nguyen‐Quoc, B. , Foyer, C. H. , A role for “futile cycles” involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J. Exp. Bot. 2001, 52, 881–9. PubMed

Ritchie, R. J. , The ammonia transport, retention and futile cycling problem in cyanobacteria. Microb. Ecol. 2013, 65, 180–96. PubMed

Demmin‐Adams, B. , Adams, W. W. , Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Phvsiol. Plant Mol. Bioi. 1992, 599–626.

Goss, R. , Jakob, T. , Regulation and function of xanthophyll cycle‐dependent photoprotection in algae. Photosynth. Res. 2010, 106, 103–22. PubMed

Karapetyan, N. V. , Protective dissipation of excess absorbed energy by photosynthetic apparatus of cyanobacteria: role of antenna terminal emitters. Photosynth. Res. 2008, 97, 195–204. PubMed

Niyogi, K. K. , Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 333–359. PubMed

Szabó, I. , Bergantino, E. , Giacometti, G. M. , Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo‐oxidation. EMBO Rep. 2005, 6, 629–34. PubMed PMC

Wilhelm, C. , Selmar, D. , Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J. Plant Physiol. 2011, 168, 79–87. PubMed

Tchernov, D. , Keren, N. , Hess, M. , Ronen‐Tarazi, M. et al., Massive inorganic carbon cycling in cyanobacteria geared to the energy transfer to PSII, in: Photosynthesis: Mechanisms and Effects, Springer Netherlands, Dordrecht: 1998, pp. 3427–3430.

Poschenrieder, C. , Fernández, J. , Rubio, L. , Pérez, L. et al., Transport and use of bicarbonate in plants: current knowledge and challenges ahead. Int. J. Mol. Sci. 2018, 19, 1352. PubMed PMC

Burnap, R. L. , Hagemann, M. , Kaplan, A. , Regulation of CO2 concentrating mechanism in cyanobacteria. Life 2015, 5, 348–371. PubMed PMC

Kaplan, A. , On the cradle of CCM research: discovery, development, and challenges ahead. J. Exp. Bot. 2017, 68, 3785–3796. PubMed

Giordano, M. , Beardall, J. , Raven, J. A. , CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 2005, 56, 99–131. PubMed

Sun, N. , Han, X. , Xu, M. , Kaplan, A. et al., A thylakoid‐located carbonic anhydrase regulates CO2 uptake in the cyanobacterium Synechocystis sp. PCC 6803. New Phytol. 2019, 222, 206–217. PubMed

Nedbal, L. , Červený, J. , Keren, N. , Kaplan, A. , Experimental validation of a nonequilibrium model of CO2 fluxes between gas, liquid medium, and algae in a flat‐panel photobioreactor. J. Ind. Microbiol. Biotechnol. 2010, 37, 1319–1326. PubMed

Stanier, R. Y. , Kunisawa, R. , Mandel, M. , Cohen‐Bazire, G. , Purification and properties of unicellular blue‐green algae (order Chroococcales). Bacteriol. Rev. 1971, 35, 171–205. PubMed PMC

Nedbal, L. , Trtílek, M. , Červený, J. , Komárek, O. et al., A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high‐content analysis of suspension dynamics. Biotechnol. Bioeng. 2008, 100, 902–910. PubMed

Sinetova, M. A. , Červený, J. , Zavřel, T. , Nedbal, L. , On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142. J. Biotechnol. 2012, 162, 148–155. PubMed

Zavřel, T. , Knoop, H. , Steuer, R. , Jones, P. R. P. R. et al., A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene‐forming enzyme by membrane inlet mass spectrometry. Bioresour. Technol. 2016, 202, 142–151. PubMed

Tu, C. , Spiller, H. , Wynns, G. , Silverman, D. , Carbonic anhydrase and the uptake of inorganic carbon by Synechococcus sp.(UTEX‐2380). Plant Physiol. 1987, 72–77. PubMed PMC

Zavřel, T. , Sinetova, M. A. M. A. , Búzová, D. , Literáková, P. et al., Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat‐panel photobioreactor. Eng. Life Sci. 2015, 15, 122–132.

Liran, O. , Shemesh, E. , Tchernov, D. , Investigation into the CO2 concentrating step rates within the carbon concentrating mechanism of Synechocystis sp. PCC6803 at various pH and light intensities reveal novel mechanistic properties. Algal Res. 2018, 33, 419–429.

Červený, J. , Sinetova, M. A. , Zavřel, T. , Los, D. A. , Mechanisms of high temperature resistance of Synechocystis sp. PCC 6803: an impact of histidine kinase 34. Life 2015, 5, 676–699. PubMed PMC

Amoroso, G. , Sultemeyer, D. , Thyssen, C. , Fock, H. P. , Uptake of HCO3 − and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta . Plant Physiol. 1998, 116, 193–201.

Benschop, J. J. , Badger, M. R. , Dean Price, G. , Characterisation of CO2 and HCO3 − uptake in the cyanobacterium Synechocystis sp. PCC6803. Photosynth. Res. 2003, 77, 117–126. PubMed

Omata, T. , Price, G. D. , Badger, M. R. , Okamura, M. et al., Identification of an ATP‐binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Pnas 1999, 96, 13571–13576. PubMed PMC

Tchernov, D. , Helman, Y. , Keren, N. , Luz, B. et al., Passive entry of CO2 and its energy‐dependent intracellular conversion to HCO3 − in cyanobacteria are driven by a photosystem I‐generated ΔµH+ . J. Biol. Chem. 2001, 276, 23450–23455. PubMed

Skleryk, R. , So, A. , Espie, G. , Effects of carbon nutrition on the physiological expression of HCO3 − transport and the CO2‐concentrating mechanism in the cyanobacterium Chlorogloeopsis sp. ATCC 27193. Planta 2002, 214, 572–583. PubMed

Wang, H.‐L. , Postier, B. L. , Burnap, R. L. , Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J. Biol. Chem. 2004, 279, 5739–5751. PubMed

Zeebe, R. E. , Wolf‐Gladrow, D. , CO2 in Seawater: Equilibrium, Kinetics, Isotopes, Elsevier B.V., Amsterdam: 2001.

Kupriyanova, E. V. , Pronina, N. A. , Carbonic anhydrase: enzyme that has transformed the biosphere. Russ. J. Plant Physiol. 2011, 58, 197–209.

Peschek, G. A. , Bernroitner, M. , Sari, S. , Pairer, M. et al., Bioenergetic Processes of Cyanobacteria, Springer Netherlands, Dordrecht: 2011.

Taylor, A. R. , Brownlee, C. , Wheeler, G. L. , Proton channels in algae: reasons to be excited. Trends Plant Sci. 2012, 17, 675–684. PubMed

Lucas, W. J. , Keifer, D. W. , Sanders, D. , Bicarbonate transport in Chara corallina: evidence for cotransport of HCO3 − with H+ . J. Membr. Biol. 1983, 73, 263–274.

Hahn, A. , Schleiff, E. , The Cell Envelope, in: Flores E., Herrero A. (Eds.), The Cell Biology of Cyanobacteria, Caister Academic Press, Norfolk, UK: 2014, pp. 29–89.

Marchand, J. , Heydarizadeh, P. , Schoefs, B. , Spetea, C. , Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell. Mol. Life Sci. 2018, 75, 2153–2176. PubMed PMC

Singh, A. K. , Bhattacharyya‐Pakrasi, M. , Elvitigala, T. , Ghosh, B. K. et al., A systems‐level analysis of the effects of light quality on the metabolism of a cyanobacterium. Plant Physiol. 2009, 151, 1596–608. PubMed PMC

Shastri, A. , Morgan, J. , Flux balance analysis of photoautotrophic metabolism. Biotechnol. Prog. 2005, 21, 1617–26. PubMed

Zavřel, T. , Očenášová, P. , Červený, J. , Phenotypic characterization of Synechocystis sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress. PLoS One 2017, 12, e0189130. PubMed PMC

Zavřel, T. , Faizi, M. , Loureiro, C. , Poschmann, G. et al., Quantitative insights into the cyanobacterial cell economy. Elife 2019, 8, e4250. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Comprehensive Study of Light Quality Acclimation in Synechocystis Sp. PCC 6803

. 2024 Sep 03 ; 65 (8) : 1285-1297.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...