A Comprehensive Study of Light Quality Acclimation in Synechocystis Sp. PCC 6803
Jazyk angličtina Země Japonsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/0008413 LM2018123 LUAUS24131
Ministerstvo Školství, Mládeže a Telovýchovy
K 140351 RRF-2.3.1-21-2022-00014
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
CZ.02.1.01/0.0/0.0/16_026/0008413 LM2018123 LUAUS24131
Ministerstvo Školství, Mládeže a Telovýchovy
K 140351 RRF-2.3.1-21-2022-00014
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
PubMed
38907526
PubMed Central
PMC11369814
DOI
10.1093/pcp/pcae062
PII: 7697223
Knihovny.cz E-zdroje
- Klíčová slova
- Cyanobacteria, Light harvesting, Light quality, Photomorphogenesis, Photosynthesis, State transitions,
- MeSH
- aklimatizace * MeSH
- fotosyntéza * fyziologie MeSH
- fotosystém I - proteinový komplex metabolismus MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- světlo * MeSH
- Synechocystis * fyziologie účinky záření metabolismus růst a vývoj MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosystém I - proteinový komplex MeSH
- fotosystém II - proteinový komplex MeSH
Cyanobacteria play a key role in primary production in both oceans and fresh waters and hold great potential for sustainable production of a large number of commodities. During their life, cyanobacteria cells need to acclimate to a multitude of challenges, including shifts in intensity and quality of incident light. Despite our increasing understanding of metabolic regulation under various light regimes, detailed insight into fitness advantages and limitations under shifting light quality remains underexplored. Here, we study photo-physiological acclimation in the cyanobacterium Synechocystis sp. PCC 6803 throughout the photosynthetically active radiation (PAR) range. Using light emitting diodes (LEDs) with qualitatively different narrow spectra, we describe wavelength dependence of light capture, electron transport and energy transduction to main cellular pools. In addition, we describe processes that fine-tune light capture, such as state transitions, or the efficiency of energy transfer from phycobilisomes to photosystems (PS). We show that growth was the most limited under blue light due to inefficient light harvesting, and that many cellular processes are tightly linked to the redox state of the plastoquinone (PQ) pool, which was the most reduced under red light. The PSI-to-PSII ratio was low under blue photons, however, it was not the main growth-limiting factor, since it was even more reduced under violet and near far-red lights, where Synechocystis grew faster compared to blue light. Our results provide insight into the spectral dependence of phototrophic growth and can provide the foundation for future studies of molecular mechanisms underlying light acclimation in cyanobacteria, leading to light optimization in controlled cultivations.
HUN REN Balaton Limnological Research Institute Klebelsberg Kuno utca 3 Tihany 8237 Hungary
Institute of Plant Biology HUN REN Biological Research Centre Temesvári krt 62 Szeged 6726 Hungary
Zobrazit více v PubMed
Ajlani G. and Vernotte C. (1998) Construction and characterization of a phycobiliprotein-less mutant of Synechocystis sp. PCC 6803. Plant Mol. Biol. 37: 577–580. PubMed
Bečková M., Sobotka R. and Komenda J. (2022) Photosystem II antenna modules CP43 and CP47 do not form a stable ‘no reaction centre complex’ in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth. Res. 152: 363–371. PubMed PMC
Bernát G., Steinbach G., Kaňa R., Govindjee, Misra A.N., Prašil O. and Prašil O. (2018) On the origin of the slow M–T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses. Photosynth. Res. 136: 183–198. PubMed
Bernát G., Zavřel T., Kotabová E., Kovács L., Steinbach G., Vörös L., et al. (2021) Photomorphogenesis in the picocyanobacterium Cyanobium gracile includes increased phycobilisome abundance under blue light, phycobilisome decoupling under near far-red light, and wavelength-specific photoprotective strategies. Front Plant Sci. 12: 1–16. PubMed PMC
Calzadilla P.I. and Kirilovsky D. (2020) Revisiting cyanobacterial state transitions. Photochem. Photobiol. Sci. 19: 585–603. PubMed
Cano M., Holland S.C., Artier J., Burnap R.L., Ghirardi M., Morgan J.A., et al. (2018) Glycogen synthesis and metabolite overflow contribute to energy balancing in cyanobacteria. Cell Rep. 23: 667–672. PubMed
de Mendiburu F. and Yaseen M. (2020) Agricolae: statistical procedures for agricultural research.
Demmig‐Adams B. and Adams W.W. (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol. 172: 11–21. PubMed
Felcmanová K., Lukeš M., Kotabová E., Lawrenz E., Halsey K.H. and Prášil O. (2017) Carbon use efficiencies and allocation strategies in Prochlorococcus marinus strain PCC 9511 during nitrogen-limited growth. Photosynth. Res. 134: 71–82. PubMed
Fox J. and Weisberg S. (2019) An R Companion to Applied Regression, Third. Sage, Thousand Oaks CA.
Foyer C.H., Neukermans J., Queval G., Noctor G. and Harbinson J. (2012) Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 63: 1637–1661. PubMed
Giraudoux P., Antonietti J.-P., Beale C., Groemping U., Lancelot R., Pleydell D., et al. (2023) pgirmess: spatial analysis and data mining for field ecologists.
Grébert T., Doré H., Partensky F., Farrant G.K., Boss E.S., Picheral M., et al. (2018) Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 115: E2010–E2019. PubMed PMC
Hirose Y., Chihong S., Watanabe M., Yonekawa C., Murata K., Ikeuchi M., et al. (2019) Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. Mol. Plant 12: 715–725. PubMed
Holtrop T., Huisman J., Stomp M., Biersteker L., Aerts J., Grébert T., et al. (2021) Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. Nat. Ecol. Evol. 5: 55–66. PubMed
Hübschmann T., Yamamoto H., Gieler T., Murata N. and Börner T. (2005) Red and far-red light alter the transcript profile in the cyanobacterium Synechocystis sp. PCC 6803: impact of cyanobacterial phytochromes. Febs. Lett. 579: 1613–1618. PubMed
Jahn M., Vialas V., Karlsen J., Ka L., Uhle M. and Hudson E.P. (2018) Growth of cyanobacteria is constrained by the abundance of light and carbon assimilation proteins. Cell Rep. 25: 478–486. PubMed
Kirilovsky D. and Kerfeld C.A. (2016) Cyanobacterial photoprotection by the orange carotenoid protein. Nat. Plants 2: 1–7. PubMed
Klaus O., Hilgers F., Nakielski A., Hasenklever D., Jaeger K.E., Axmann I.M., et al. (2022) Engineering phototrophic bacteria for the production of terpenoids. Curr. Opin. Biotechnol. 77: 1–10. PubMed
Kondo K., Mullineaux C.W. and Ikeuchi M. (2009) Distinct roles of CpcG1-phycobilisome and CpcG2-phycobilisome in state transitions in a cyanobacterium Synechocystis sp. PCC 6803. Photosynth. Res. 99: 217–225. PubMed
Krieger-Liszkay A. (2004) Singlet oxygen production in photosynthesis. J. Exp. Bot. 56: 337–346. PubMed
Li M., Ma J., Li X. and Sui S.-F. (2021) In situ cryo-ET structure of phycobilisome–photosystem II supercomplex from red alga. Elife 10: 1–19. PubMed PMC
Luimstra V.M., Schuurmans J.M., Hellingwerf K.J., Matthijs H.C.P. and Huisman J. (2020) Blue light induces major changes in the gene expression profile of the cyanobacterium Synechocystis sp. PCC 6803. Physiol. Plant. 170: 10–26. PubMed PMC
Luimstra V.M., Schuurmans J.M., Verschoor A.M., Hellingwerf K.J., Huisman J. and Matthijs H.C.P. (2018) Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth. Res. 138: 177–189. PubMed PMC
Montgomery B.L. (2016) Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. J. Exp. Bot. 67: 4079–4090. PubMed
Müller S., Zavřel T. and Červený J. (2019) Towards a quantitative assessment of inorganic carbon cycling in photosynthetic microorganisms. Eng. Life Sci. 19: 955–967. PubMed PMC
Murakami A., Kim S.J. and Fujita Y. (1997) Changes in photosystem stoichiometry in response to environmental conditions for cell growth observed with the cyanophyte synechocystis PCC 6714. Plant Cell Physiol. 38: 392–397. PubMed
Netzer-El S.Y., Caspy I. and Nelson N. (2019) Crystal structure of photosystem I monomer from synechocystis PCC 6803. Front Plant Sci. 9: 1–7. PubMed PMC
Pfennig T., Kullmann E., Zavřel T., Nakielski A., Ebenhöh O., Červený J., et al. (2023) Shedding light on blue-green photosynthesis: a wavelength-dependent mathematical model of photosynthesis in synechocystis sp. PCC 6803. bioRxiv. 1–23.
Pospíšil P. (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta - Bioenergy 1817: 218–231. PubMed
R Core Team . (2022) R: A language and environment for statistical computing.
Remelli W. and Santabarbara S. (2018) Excitation and emission wavelength dependence of fluorescence spectra in whole cells of the cyanobacterium Synechocystis sp. PPC6803: influence on the estimation of Photosystem II maximal quantum efficiency. BBA - Bioenerg. 1859: 1207–1222. PubMed
Rippka R., Deruelles J., Waterbury J.B., Herdman M. and Stanier R.Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111: 1–61.
Rodrigues J.S., Kovács L., Lukeš M., Höper R., Steuer R., Červený J., et al. (2023) Characterizing isoprene production in cyanobacteria – Insights into the effects of light, temperature, and isoprene on Synechocystis sp. PCC 6803. Bioresour. Technol. 380: 1–10. PubMed
Sanfilippo J.E., Garczarek L., Partensky F. and Kehoe D.M. (2019) Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73: 407–433. PubMed
Schreiber U., Klughammer C. and Kolbowski J. (2012) Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth. Res. 113: 127–144. PubMed PMC
Singh A.K., Bhattacharyya-Pakrasi M., Elvitigala T., Ghosh B., Aurora R. and Pakrasi H.B. (2009) A systems-level analysis of the effects of light quality on the metabolism of a cyanobacterium. Plant Physiol. 151: 1596–1608. PubMed PMC
Singh S.P., Der D.H.Ã. and Sinha R.P. (2010) Cyanobacteria and ultraviolet radiation (UVR) stress;: mitigation strategies. Ageing. Res. Rev. 9: 79–90. PubMed
Stirbet A., Lazár D., Kromdijk J. and Govindjee G. (2018) Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56: 86–104.
Tamary E., Kiss V., Nevo R., Adam Z., Bernát G., Rexroth S., et al. (2012) Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim. Biophys. Acta - Bioenergy 1817: 319–327. PubMed
Tchernov D., Silverman J., Luz B., Reinhold L. and Kaplan A. (2003) Massive light-dependent cycling of inorganic carbon between oxygenic photosynthetic microorganisms and their surroundings. Photosynth. Res. 77: 95–103. PubMed
Tóth S.Z., Schansker G. and Strasser R.J. (2007) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth. Res. 93: 193–203. PubMed
Tsimilli-Michael M., Stamatakis K. and Papageorgiou G.C. (2009) Dark-to-light transition in Synechococcus sp. PCC 7942 cells studied by fluorescence kinetics assesses plastoquinone redox poise in the dark and photosystem II fluorescence component and dynamics during state 2 to state 1 transition. Photosynth. Res. 99: 243–255. PubMed
Tsuyama M., Shibata M., Kawazu T. and Kobayashi Y. (2004) An analysis of the mechanism of the low-wave phenomenon of chlorophyll fluorescence. Photosynth. Res. 81: 67–76. PubMed
Umena Y., Kawakami K., Shen J.-R. and Kamiya N. (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473: 55–60. PubMed
Wang F. and Chen M. (2022) Chromatic acclimation processes and their relationships with phycobiliprotein complexes. Microorganisms 10: 2–15. PubMed PMC
Wilde A., Churin Y., Schubert H. and Börner T. (1997) Disruption of a Synechocystis sp. PCC 6803 gene with partial similarity to phytochrome genes alters growth under changing light qualities. Febs. Lett. 406: 89–92. PubMed
Wiltbank L.B. and Kehoe D.M. (2019) Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol. 17: 37–50. PubMed
Zakar T., Herman E., Vajravel S., Kovacs L., Knoppová J., Komenda J., et al. (2017) Lipid and carotenoid cooperation-driven adaptation to light and temperature stress in Synechocystis sp. PCC6803. Biochim. Biophys. Acta - Bioenergy 1858: 337–350. PubMed PMC
Zavřel T., Chmelík D., Sinetova M.A. and Červený J. (2018a) Spectrophotometric determination of phycobiliprotein content in cyanobacterium synechocystis. J. Vis. Exp. 139 1–9. PubMed PMC
Zavřel T., Faizi M., Loureiro C., Sinetova M., Zorina A., Poschmann G., et al. (2019) Quantitative insights into the cyanobacterial cell economy. Elife 8: 1–29. PubMed PMC
Zavřel T., Očenášová P., Červený J. and Jacobs J.M. (2017) Phenotypic characterization of Synechocystis sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress. PLoS One 12: 1–21. PubMed PMC
Zavřel T., Očenášová P., Sinetova M. and Červený J. (2018b) Determination of storage (starch/glycogen) and total saccharides content in algae and cyanobacteria by a phenol-sulfuric acid method. Bio-Protocol 8: 1–13. PubMed PMC
Zavřel T., Schoffman H., Lukeš M., Fedorko J., Keren N. and Červený J. (2021) Monitoring fitness and productivity in cyanobacteria batch cultures. Algal. Res. 56: 1–15.
Zavřel T., Sinetova M.A., Búzová D., Literáková P. and Červený J. (2015a) Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng. Life Sci. 15: 122–132.
Zavřel T., Sinetova M.A. and Červený J. (2015b) Measurement of chlorophyll a and carotenoids concentration in Cyanobacteria. bio-protocol 5: 1–5.
Zavřel T., Szabó M., Tamburic B., Evenhuis C., Kuzhiumparambil U., Literáková P., et al. (2018c) Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata. J. Photochem. Photobiol. B: Biol. 181: 31–43. PubMed
A quantitative description of light-limited cyanobacterial growth using flux balance analysis