Photosystem II antenna modules CP43 and CP47 do not form a stable 'no reaction centre complex' in the cyanobacterium Synechocystis sp. PCC 6803

. 2022 Jun ; 152 (3) : 363-371. [epub] 20220111

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35015206

Grantová podpora
854126 European Research Council - International
61388971 Akademie Věd České Republiky
19-29225X Grantová Agentura České Republiky
854126 European Research Council - International

Odkazy

PubMed 35015206
PubMed Central PMC9458580
DOI 10.1007/s11120-022-00896-w
PII: 10.1007/s11120-022-00896-w
Knihovny.cz E-zdroje

The repair of photosystem II is a key mechanism that keeps the light reactions of oxygenic photosynthesis functional. During this process, the PSII central subunit D1 is replaced with a newly synthesized copy while the neighbouring CP43 antenna with adjacent small subunits (CP43 module) is transiently detached. When the D2 protein is also damaged, it is degraded together with D1 leaving both the CP43 module and the second PSII antenna module CP47 unassembled. In the cyanobacterium Synechocystis sp. PCC 6803, the released CP43 and CP47 modules have been recently suggested to form a so-called no reaction centre complex (NRC). However, the data supporting the presence of NRC can also be interpreted as a co-migration of CP43 and CP47 modules during electrophoresis and ultracentrifugation without forming a mutual complex. To address the existence of NRC, we analysed Synechocystis PSII mutants accumulating one or both unassembled antenna modules as well as Synechocystis wild-type cells stressed with high light. The obtained results were not compatible with the existence of a stable NRC since each unassembled module was present as a separate protein complex with a mutually similar electrophoretic mobility regardless of the presence of the second module. The non-existence of NRC was further supported by isolation of the His-tagged CP43 and CP47 modules from strains lacking either D1 or D2 and their migration patterns on native gels.

Zobrazit více v PubMed

Adir N, Shochat S, Ohad I. Light-dependent D1 protein synthesis and translocation is regulated by reaction center II. Reaction center II serves as an acceptor for the D1 precursor. J Biol Chem. 1990;265:12563–12568. doi: 10.1016/S0021-9258(19)38381-4. PubMed DOI

Adir N, Zer H, Shochat S, et al. Photoinhibition – a historical perspective. Photosynth Res. 2003;76:343–370. doi: 10.1023/A:1024969518145. PubMed DOI

Barbato R, Friso R, Rigoni F, et al. Structural changes and lateral redistribution of photosystem II during donor side photoinhibition of thylakoids. J Cell Biol. 1992;119:325–335. doi: 10.1083/jcb.119.2.325. PubMed DOI PMC

Barber J. Molecular Basis of the Vulnerability of Photosystem II to Damage by Light. Austr J Plant Physiol. 1995;22:201–208. doi: 10.1071/PP9950201. DOI

Boehm M, Romero E, Reisinger V, et al. Investigating the early stages of photosystem II assembly in Synechocystis sp. PCC 6803 isolation of CP47 and CP43 complexes. J Biol Chem. 2011;286:14812–14819. doi: 10.1074/jbc.M110.207944. PubMed DOI PMC

D’Haene S, Sobotka R, Bučinská L. Interaction of the PsbH subunit with a chlorophyll bound to histidine 114 of CP47 is responsible for the red 77 K fluorescence of Photosystem II. Biochim Biophys Acta Bioenerg. 2015;1847:1327–1334. doi: 10.1016/j.bbabio.2015.07.003. PubMed DOI

Eaton-Rye JJ, Vermaas WFJ. Oligonucleotide-directed mutagenesis of psbB, the gene encoding CP47, employing a deletion mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol. 1991;17:1165–1177. doi: 10.1007/BF00028733. PubMed DOI

Kiss E, Knoppová J, Pascual Aznar G, et al. A photosynthesis-specific rubredoxin-like protein is required for efficient association of the D1 and D2 proteins during the initial steps of photosystem II assembly. Plant Cell. 2019;31:2241–2258. doi: 10.1105/tpc.19.00155. PubMed DOI PMC

Komenda J, Barber J. Comparison of psbO and psbH deletion mutants of Synechocystis PCC 6803 indicates that degradation of D1 protein is regulated by the QB site and dependent on protein synthesis. Biochem. 1995;34:9625–9631. doi: 10.1021/bi00029a040. PubMed DOI

Komenda J, Masojídek J. Structural changes of Photosystem II complex induced by high irradiance in cyanobacterial cells. Eur J Biochem. 1995;233:677–682. doi: 10.1111/j.1432-1033.1995.677_2.x. PubMed DOI

Komenda J, Reisinger V, Muller BC, et al. Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J Biol Chem. 2004;279:48620–48629. doi: 10.1074/jbc.M405725200. PubMed DOI

Komenda J, Barker M, Kuviková S, et al. The FtsH protease Slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp PCC 6803. J Biol Chem. 2006;281:1145–1151. doi: 10.1074/jbc.M503852200. PubMed DOI

Komenda J, Tichý M, Prášil O, et al. The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803. Plant Cell. 2007;19:2839–2854. doi: 10.1105/tpc.107.053868. PubMed DOI PMC

Komenda J, Knoppová J, Krynická, V, et al. Role of FtsH2 in the repair of photosystem II in mutants of the cyanobacterium Synechocystis PCC 6803 with impaired assembly or stability of the CaMn4 cluster. Biochim Biophys Acta Bioenerg. 2010;1797:566–575. doi: 10.1016/j.bbabio.2010.02.006. PubMed DOI

Komenda J, Knoppová J, Kopečná J, et al. The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp PCC 6803. Plant Physiol. 2012;158:476–486. doi: 10.1104/pp.111.184184. PubMed DOI PMC

Komenda J, Sobotka R, Nixon PJ. Assembling and maintaining the photosystem II complex in chloroplasts and cyano-bacteria. Cur Opin Plant Biol. 2012;15:245–251. doi: 10.1016/j.pbi.2012.01.017. PubMed DOI

Krynická V, Shao S, Nixon PJ, et al. Accessibility controls selective degradation of photosystem II subunits by FtsH protease. Nature Plants. 2015;1:15168. doi: 10.1038/nplants.2015.168. PubMed DOI

Kubota H, Sakurai I, Katayama K, et al. Purification and characterization of photosystem I complex from Synechocystis sp PCC 6803 by expressing histidine-tagged subunits. Biochim Biophys Acta Bioenerg. 2010;1797:98–105. doi: 10.1016/j.bbabio.2009.09.001. PubMed DOI

Laczkó-Dobos H, Ughy B, Tóth SZ. Role of phosphatidylglycerol in the function and assembly of photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes. Biochim Biophys Acta Bioenerg. 2008;1777:1184–1194. doi: 10.1016/j.bbabio.2008.06.003. PubMed DOI

Pakrasi HB, Williams JG, Arntzen CJ. Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: evidence for a functional role of cytochrome b559 in photosystem II. EMBO J. 1988;7:325–332. doi: 10.1002/j.1460-2075.1988.tb02816.x. PubMed DOI PMC

Pascual-Aznar G, Konert G, Bečková M, et al. Psb35 protein stabilizes the CP47 assembly module and associated high-light inducible proteins during the biogenesis of photosystem II in the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol. 2021;62:178–190. doi: 10.1093/pcp/pcaa148. PubMed DOI

Shukla MK, Llansola-Portoles MJ, Tichý M, et al. Binding of pigments to the cyanobacterial high-light-inducible protein HliC. Photosynth Res. 2018;137:29–39. doi: 10.1007/s11120-017-0475-7. PubMed DOI

Silva P, Thompson E, Bailey S, et al. FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. Plant Cell. 2003;15:2152–2164. doi: 10.1105/tpc.012609. PubMed DOI PMC

Strecker V, Wumaier Z, Wittig I, et al. Large pore gels to separate mega protein complexes larger than 10 MDa by blue native electrophoresis: isolation of putative respiratory strings or patches. Proteomics. 2010;10:3379–3387. doi: 10.1002/pmic.201000343. PubMed DOI

Theis J, Schroda M. Revisiting the photosystem II repair cycle. Plant Signal Behav. 2016;11:e1218587. doi: 10.1080/15592324.2016.1218587. PubMed DOI PMC

Tichý M, Bečková M, Kopečná J, et al. Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front Plant Sci. 2016;7:648. doi: 10.3389/fpls.2016.00648. PubMed DOI PMC

Vermaas WF, Ikeuchi M, Inoue Y. Protein composition of the photosystem II core complex in genetically engineered mutants of the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res. 1988;17:97–113. doi: 10.1007/978-94-009-2269-3_18. PubMed DOI

Weisz DA, Johnson VM, Niedzwiedzki DM, et al. A novel chlorophyll protein complex in the repair cycle of photosystem II. Proc Natl Acad Sci USA. 2019;116:21907. doi: 10.1073/pnas.1909644116. PubMed DOI PMC

Wittig I, Karas M, Schagger H. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics. 2007;6:1215–1225. doi: 10.1074/mcp.M700076-MCP200. PubMed DOI

Yao DCI, Brune DC, Vermaas WFJ. Lifetimes of photosystem I and II proteins in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 2012;586:169–173. doi: 10.1016/j.febslet.2011.12.010. PubMed DOI

Zhang L, Paakkarinen V, van Wijk KJ, et al. Co-translational assembly of the D1 protein into photosystem II. J Biol Chem. 1999;274:16062–16067. doi: 10.1074/jbc.274.23.16062. PubMed DOI

Zheleva D, Sharma J, Panico M, et al. Isolation and characterization of monomeric and dimeric CP47-reaction center photosystem II complexes. J Biol Chem. 1998;273:16122–16127. doi: 10.1074/jbc.273.26.16122. PubMed DOI

Zouni A, Kern J, Frank J, et al. Size determination of cyanobacterial and higher plant Photosystem II by gel permeation chromatography, light scattering, and ultracentrifugation. Biochem. 2005;44:4572–4581. doi: 10.1021/bi047685q. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...