The biogenesis and maintenance of PSII: Recent advances and current challenges
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
61388971
Institutional Research Concept
19-29225X
Czech Science Foundation
854126
ERC
CEP - Centrální evidence projektů
BB/V002007/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
38484127
PubMed Central
PMC11449106
DOI
10.1093/plcell/koae082
PII: 7628888
Knihovny.cz E-zdroje
- MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza MeSH
- fotosystém II (proteinový komplex) * metabolismus MeSH
- sinice * metabolismus MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chlorofyl MeSH
- fotosystém II (proteinový komplex) * MeSH
The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.
Zobrazit více v PubMed
Adir N, Shochat S, Ohad I. Light-dependent D1 protein synthesis and translocation is regulated by reaction center II. Reaction center II serves as an acceptor for the D1 precursor. J Biol Chem. 1990:265(21):12563–12568. 10.1016/S0021-9258(19)38381-4 PubMed DOI
Anbudurai PR, Mor TS, Ohad I, Shestakov SV, Pakrasi HB. The ctpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem II reaction center complex. Proc Natl Acad Sci U S A. 1994:91(17):8082–8086. 10.1073/pnas.91.17.8082 PubMed DOI PMC
Armbruster U, Zühlke J, Rengstl B, Kreller R, Makarenko E, Rühle T, Schünemann D, Jahns P, Weisshaar B, Nickelsen J, et al. . The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly. Plant Cell. 2010:22(10):3439–3460. 10.1105/tpc.110.077453 PubMed DOI PMC
Avramov AP, Hwang HJ, Burnap RL. The role of Ca2+ and protein scaffolding in the formation of nature's water oxidizing complex. Proc Natl Acad Sci U S A. 2020:117(45):28036–28045. 10.1073/pnas.2011315117 PubMed DOI PMC
Bao H, Burnap RL. Photoactivation: the light-driven assembly of the water oxidation complex of photosystem II. Front Plant Sci. 2016:7:578. 10.3389/fpls.2016.00578 PubMed DOI PMC
Barbato R, Friso G, Rigoni F, Dalla Vecchia F, Giacometti GM. Structural changes and lateral redistribution of photosystem II during donor side photoinhibition of thylakoids. J Cell Biol. 1992:119(2):325–335. 10.1083/jcb.119.2.325 PubMed DOI PMC
Barker M, de Vries R, Nield J, Komenda J, Nixon PJ. The deg proteases protect Synechocystis sp. PCC 6803 during heat and light stresses but are not essential for removal of damaged D1 protein during the photosystem two repair cycle. J Biol Chem. 2006:281(41):30347–30355. 10.1074/jbc.M601064200 PubMed DOI
Bečková M, Gardian Z, Yu J, Konik P, Nixon PJ, Komenda J. Association of Psb28 and Psb27 proteins with PSII-PSI supercomplexes upon exposure of Synechocystis sp. PCC 6803 to high light. Mol Plant. 2017a:10(1):62–72. 10.1016/j.molp.2016.08.001 PubMed DOI
Bečková M, Sobotka R, Komenda J. Photosystem II antenna modules CP43 and CP47 do not form a stable ‘no reaction centre complex’ in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res. 2022:152(3):363–371. 10.1007/s11120-022-00896-w PubMed DOI PMC
Bečková M, Yu J, Krynická V, Kozlo A, Shao S, Koník P, Komenda J, Murray JW, Nixon PJ. Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Philos Trans R Soc Lond B Biol Sci. 2017b:372(1730):20160394. 10.1098/rstb.2016.0394 PubMed DOI PMC
Bentley FK, Luo H, Dilbeck P, Burnap RL, Eaton-Rye JJ. Effects of inactivating psbM and psbT on photodamage and assembly of photosystem II in Synechocystis sp. PCC 6803. Biochemistry. 2008:47(44):11637–11646. 10.1021/bi800804h PubMed DOI
Bishop CL, Ulas S, Baena-Gonzalez E, Aro EM, Purton S, Nugent JH, Mäenpää P. The PsbZ subunit of photosystem II in Synechocystis sp. PCC 6803 modulates electron flow through the photosynthetic electron transfer chain. Photosynth Res. 2007:93(1–3):139–147. 10.1007/s11120-007-9182-0 PubMed DOI
Boehm M, Nield J, Zhang P, Aro EM, Komenda J, Nixon PJ. Structural and mutational analysis of band 7 proteins in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol. 2009:191(20):6425–6435. 10.1128/JB.00644-09 PubMed DOI PMC
Boehm M, Romero E, Reisinger V, Yu J, Komenda J, Eichacker LA, Dekker JP, Nixon PJ. Investigating the early stages of photosystem II assembly in Synechocystis sp. PCC 6803: isolation of CP47 and CP43 complexes. J Biol Chem. 2011:286(17):14812–14819. 10.1074/jbc.M110.207944 PubMed DOI PMC
Boehm M, Yu J, Krynická V, Barker M, Tichý M, Komenda J, Nixon PJ, Nield J. Subunit organization of a Synechocystis hetero-oligomeric thylakoid FtsH complex involved in photosystem II repair. Plant Cell. 2012a:24(9):3669–3683. 10.1105/tpc.112.100891 PubMed DOI PMC
Boehm M, Yu J, Reisinger V, Beckova M, Eichacker LA, Schlodder E, Komenda J, Nixon PJ. Subunit composition of CP43-less photosystem II complexes of Synechocystis sp. PCC 6803: implications for the assembly and repair of photosystem II. Philos Trans R Soc Lond B Biol Sci. 2012b:367(1608):3444–3454. 10.1098/rstb.2012.0066 PubMed DOI PMC
Brinkert K, De Causmaecker S, Krieger-Liszkay A, Fantuzzi A, Rutherford AW. Bicarbonate-induced redox tuning in photosystem II for regulation and protection. Proc Natl Acad Sci U S A. 2016:113(43):12144–12149. 10.1073/pnas.1608862113 PubMed DOI PMC
Bučinská L, Kiss É, Koník P, Knoppová J, Komenda J, Sobotka R. The ribosome-bound protein Pam68 promotes insertion of chlorophyll into the CP47 subunit of photosystem II. Plant Physiol. 2018:176(4):2931–2942. 10.1104/pp.18.00061 PubMed DOI PMC
Calderon RH, de Vitry C, Wollman FA, Niyogi KK. Rubredoxin 1 promotes the proper folding of D1 and is not required for heme b559 assembly in Chlamydomonas photosystem II. J Biol Chem. 2023:299(3):102968. 10.1016/j.jbc.2023.102968 PubMed DOI PMC
Calderon RH, García-Cerdán JG, Malnoë A, Cook R, Russell JJ, Gaw C, Dent RM, de Vitry C, Niyogi KK. A conserved rubredoxin is necessary for photosystem II accumulation in diverse oxygenic photoautotrophs. J Biol Chem. 2013:288(37):26688–26696. 10.1074/jbc.M113.487629 PubMed DOI PMC
Cao P, Pan X, Su X, Liu Z, Li M. Assembly of eukaryotic photosystem II with diverse light-harvesting antennas. Curr Opin Struct Biol. 2020:63:49–57. 10.1016/j.sbi.2020.03.007 PubMed DOI
Chazaux M, Caffarri S, Da Graça J, Cuiné S, Floriani M, Brzezowski P, Peltier G, Genty B, Alric J, Johnson X. ACCLIMATION OF PHOTOSYNTHESIS TO THE ENVIRONMENT 1 regulates Photosystem II Supercomplex dynamics in response to light in Chlamydomonas reinhardtii. bioRxiv 966580. February 29, 2020, preprint: not peer reviewed. 10.1101/2020.02.26.966580 DOI
Che Y, Kusama S, Matsui S, Suorsa M, Nakano T, Aro EM, Ifuku K. Arabidopsis PsbP-like protein 1 facilitates the assembly of the photosystem II supercomplexes and optimizes plant fitness under fluctuating light. Plant Cell Physiol. 2020:61(6):1168–1180. 10.1093/pcp/pcaa045 PubMed DOI
Che L, Meng H, Ruan J, Peng L, Zhang L. Rubredoxin 1 is required for formation of the functional photosystem II core complex in Arabidopsis thaliana. Front Plant Sci. 2022:13:824358. 10.3389/fpls.2022.824358 PubMed DOI PMC
Chen H, Zhang D, Guo J, Wu H, Jin M, Lu Q, Lu C, Zhang L. A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem II. Plant Mol Biol. 2006:61(4–5):567–575. 10.1007/s11103-006-0031-x PubMed DOI
Chidgey JW, Linhartová M, Komenda J, Jackson PJ, Dickman MJ, Canniffe DP, Koník P, Pilný J, Hunter CN, Sobotka R. A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell. 2014:26(3):1267–1279. 10.1105/tpc.114.124495 PubMed DOI PMC
Choo P, Forsman JA, Hui L, Khaing EP, Summerfield TC, Eaton-Rye JJ. The PsbJ protein is required for photosystem II activity in centers lacking the PsbO and PsbV lumenal subunits. Photosynth Res. 2022:151(1):103–111. 10.1007/s11120-021-00862-y PubMed DOI
Chotewutmontri P, Barkan A. Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit. Proc Natl Acad Sci U S A. 2020:117(35):21775–21784. 10.1073/pnas.2007833117 PubMed DOI PMC
Cormann KU, Bangert JA, Ikeuchi M, Rögner M, Stoll R, Nowaczyk MM. Structure of Psb27 in solution: implications for transient binding to photosystem II during biogenesis and repair. Biochemistry. 2009:48(37):8768–8770. 10.1021/bi9012726 PubMed DOI
Cymer F, von Heijne G, White SH. Mechanisms of integral membrane protein insertion and folding. J Mol Biol. 2015:427(5):999–1022. 10.1016/j.jmb.2014.09.014 PubMed DOI PMC
de Vitry C, Olive J, Drapier D, Recouvreur M, Wollman FA. Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol. 1989:109(3):991–1006. 10.1083/jcb.109.3.991 PubMed DOI PMC
Diner BA, Nixon PJ. The rate of reduction of oxidized redox-active tyrosine, Z+, by exogenous Mn2+ is slowed in a site-directed mutant, at aspartate 170 of polypeptide D1 of photosystem II, inactive for photosynthetic oxygen evolution. Biochim Biophys Acta. 1992:1101(2):134–138. 10.1016/0005-2728(92)90196-9 DOI
Diner BA, Rappaport F. Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol. 2002:53(1):551–580. 10.1146/annurev.arplant.53.100301.135238 PubMed DOI
Dobáková M, Sobotka R, Tichý M, Komenda J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 2009:149(2):1076–1086. 10.1104/pp.108.130039 PubMed DOI PMC
Dolganov NA, Bhaya D, Grossman AR. Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci U S A. 1995:92(2):636–640. 10.1073/pnas.92.2.636 PubMed DOI PMC
Domonkos I, Kis M, Gombos Z, Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res. 2013:52(4):539–561. 10.1016/j.plipres.2013.07.001 PubMed DOI
Eichacker LA, Soll J, Lauterbach P, Rüdiger W, Klein RR, Mullet JE. In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem. 1990:265(23):13566–13571. 10.1016/S0021-9258(18)77385-7 PubMed DOI
Ermakova-Gerdes S, Vermaas W. Inactivation of the open reading frame slr0399 in Synechocystis sp. PCC 6803 functionally complements mutations near the Q(A) niche of photosystem II. A possible role of Slr0399 as a chaperone for quinone binding. J Biol Chem. 1999:274(43):30540–30549. 10.1074/jbc.274.43.30540 PubMed DOI
Fadeeva M, Klaiman D, Caspy I, Nelson N. Structure of Chlorella ohadii photosystem II reveals protective mechanisms against environmental stress. Cells. 2023:12(15):1971. 10.3390/cells12151971 PubMed DOI PMC
Fagerlund RD, Eaton-Rye JJ. The lipoproteins of cyanobacterial photosystem II. J Photochem Photobiol B. 2011:104(1–2):191–203. 10.1016/j.jphotobiol.2011.01.022 PubMed DOI
Fagerlund RD, Forsman JA, Biswas S, Vass I, Davies FK, Summerfield TC, Eaton-Rye JJ. Stabilization of photosystem II by the PsbT protein impacts photodamage, repair and biogenesis. Biochim Biophys Acta Bioenerg. 2020:1861(10):148234. 10.1016/j.bbabio.2020.148234 PubMed DOI
Fantuzzi A, Haniewicz P, Farci D, Loi MC, Park K, Büchel C, Bochtler M, Rutherford AW, Piano D. Bicarbonate activation of the monomeric photosystem II-PsbS/Psb27 complex. Plant Physiol. 2023:192(4):2656–2671. 10.1093/plphys/kiad275 PubMed DOI PMC
Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. Architecture of the photosynthetic oxygen-evolving center. Science. 2004:303(5665):1831–1838. 10.1126/science.1093087 PubMed DOI
Fu W, Cui Z, Guo J, Cui X, Han G, Zhu Y, Hu J, Gao X, Li Y, Xu M, et al. . Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in Chlamydomonas. Plant Physiol. 2023:191(2):1002–1016. 10.1093/plphys/kiac524 PubMed DOI PMC
Funk C, Vermaas W. A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry. 1999:38(29):9397–9404. 10.1021/bi990545+ PubMed DOI
García-Cerdán JG, Furst AL, McDonald KL, Schünemann D, Francis MB, Niyogi KK. A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II. Proc Natl Acad Sci U S A. 2019:116(33):16631–16640. 10.1073/pnas.1903314116 PubMed DOI PMC
Gisriel CJ, Brudvig GW. Comparison of PsbQ and Psb27 in photosystem II provides insight into their roles. Photosynth Res. 2022:152(2):177–191. 10.1007/s11120-021-00888-2 PubMed DOI PMC
Gisriel CJ, Wang J, Liu J, Flesher DA, Reiss KM, Huang HL, Yang KR, Armstrong WH, Gunner MR, Batista VS, et al. . High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium, Synechocystis sp. PCC 6803. Proc Natl Acad Sci U S A. 2022:119(1):e2116765118. 10.1073/pnas.2116765118 PubMed DOI PMC
Gisriel CJ, Zhou K, Huang H-L, Debus RJ, Xiong Y, Brudvig GW. Cryo-EM structure of monomeric photosystem II from Synechocyst 2020:4(10):2131–2148. 10.1016/j.joule.2020.07.016 DOI
Graça AT, Hall M, Persson K, Schröder WP. High–resolution model of Arabidopsis photosystem II reveals the structural consequences of digitonin–extraction. Sci Rep. 2021:11(1):15534. 10.1038/s41598-021-94914-x PubMed DOI PMC
Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol. 2009:16(3):334–342. 10.1038/nsmb.1559 PubMed DOI
Hamilton ML, Franco E, Deák Z, Schlodder E, Vass I, Nixon PJ. Investigating the photoprotective role of cytochrome b-559 in photosystem II in a mutant with altered ligation of the haem. Plant Cell Physiol. 2014:55(7):1276–1285. 10.1093/pcp/pcu070 PubMed DOI
Hennon SW, Soman R, Zhu L, Dalbey RE. Yidc/Alb3/Oxa1 family of insertases. J Biol Chem. 2015:290(24):14866–14874. 10.1074/jbc.R115.638171 PubMed DOI PMC
Hey D, Grimm B. ONE-HELIX PROTEIN1 and 2 form heterodimers to bind chlorophyll in photosystem II biogenesis. Plant Physiol. 2020:183(1):179–193. 10.1104/pp.19.01304 PubMed DOI PMC
Hollingshead S, Kopečná J, Armstrong DR, Bučinská L, Jackson PJ, Chen GE, Dickman MJ, Williamson MP, Sobotka R, Hunter CN. Synthesis of chlorophyll-binding proteins in a fully segregated Δycf54 strain of the cyanobacterium Synechocystis PCC 6803. Front Plant Sci. 2016:7:292. 10.3389/fpls.2016.00292 PubMed DOI PMC
Hristou A, Gerlach I, Stolle DS, Neumann J, Bischoff A, Dünschede B, Nowaczyk MM, Zoschke R, Schünemann D. Ribosome-associated chloroplast SRP54 enables efficient cotranslational membrane insertion of key photosynthetic proteins. Plant Cell. 2019:31(11):2734–2750. 10.1105/tpc.19.00169 PubMed DOI PMC
Huang G, Xiao Y, Pi X, Zhao L, Zhu Q, Wang W, Kuang T, Han G, Sui SF, Shen JR. Structural insights into a dimeric Psb27-photosystem II complex from a cyanobacterium Thermosynechococcus vulcanus. Proc Natl Acad Sci U S A. 2021:118(5):e2018053118. 10.1073/pnas.2018053118 PubMed DOI PMC
Hung CH, Hwang HJ, Chen YH, Chiu YF, Ke SC, Burnap RL, Chu HA. Spectroscopic and functional characterizations of cyanobacterium Synechocystis PCC 6803 mutants on and near the heme axial ligand of cytochrome b559 in photosystem II. J Biol Chem. 2010:285(8):5653–5663. 10.1074/jbc.M109.044719 PubMed DOI PMC
Ifuku K, Noguchi T. Structural coupling of extrinsic proteins with the oxygen-evolving center in photosystem II. Front Plant Sci. 2016:7:84. 10.3389/fpls.2016.00084 PubMed DOI PMC
Inagaki N, Yamamoto Y, Satoh K. A sequential two-step proteolytic process in the carboxyl-terminal truncation of precursor D1 protein in Synechocystis sp. PCC6803. FEBS Lett. 2001:509(2):197–201. 10.1016/s0014-5793(01)03180-5 PubMed DOI
Ishikawa Y, Schröder WP, Funk C. Functional analysis of the PsbP-like protein (sll1418) in Synechocystis sp. PCC 6803. Photosynth Res. 2005:84(1–3):257–262. 10.1007/s11120-005-0477-8 PubMed DOI
Jansen MA, Mattoo AK, Edelman M. D1-D2 protein degradation in the chloroplast. Complex light saturation kinetics. Eur J Biochem. 1999:260(2):527–532. 10.1046/j.1432-1327.1999.00196.x PubMed DOI
Jimbo H, Wada H. Deacylation of galactolipids decomposes photosystem II dimers to enhance degradation of damaged D1 protein. Plant Physiol. 2023:191(1):87–95. 10.1093/plphys/kiac460 PubMed DOI PMC
Johnson VM, Biswas S, Roose JL, Pakrasi HB, Liu H. Psb27, a photosystem II assembly protein, enables quenching of excess light energy during its participation in the PSII lifecycle. Photosynth Res. 2022:152(3):297–304. 10.1007/s11120-021-00895-3 PubMed DOI
Johnson VM, Pakrasi HB. Advances in the understanding of the lifecycle of photosystem II. Microorganisms. 2022:10(5):836. 10.3390/microorganisms10050836 PubMed DOI PMC
Kale R, Hebert AE, Frankel LK, Sallans L, Bricker TM, Pospíšil P. Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of photosystem II. Proc Natl Acad Sci U S A. 2017:114(11):2988–2993. 10.1073/pnas.1618922114 PubMed DOI PMC
Kashino Y, Koike H, Yoshio M, Egashira H, Ikeuchi M, Pakrasi HB, Satoh K. Low-molecular-mass polypeptide components of a photosystem II preparation from the thermophilic cyanobacterium Thermosynechococcus vulcanus. Plant Cell Physiol. 2002:43(11):1366–1373. 10.1093/pcp/pcf168 PubMed DOI
Kato Y, Hyodo K, Sakamoto W. The photosystem II repair cycle requires FtsH turnover through the EngA GTPase. Plant Physiol. 2018:178(2):596–611. 10.1104/pp.18.00652 PubMed DOI PMC
Kato Y, Kuroda H, Ozawa SI, Saito K, Dogra V, Scholz M, Zhang G, de Vitry C, Ishikita H, Kim C, et al. . Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts. Elife. 2023:12:RP88822. 10.7554/eLife.88822 PubMed DOI PMC
Kato Y, Sakamoto W. Protein quality control in chloroplasts: a current model of D1 protein degradation in the photosystem II repair cycle. J Biochem. 2009:146(4):463–469. 10.1093/jb/mvp073 PubMed DOI
Keller JM, Frieboes MJ, Jödecke L, Kappel S, Wulff N, Rindfleisch T, Sandoval-Ibanez O, Gerlach I, Thiele W, Bock R, et al. . Eukaryote-specific assembly factor DEAP2 mediates an early step of photosystem II assembly in Arabidopsis. Plant Physiol. 2023:193(3):1970–1986. 10.1093/plphys/kiad446 PubMed DOI PMC
Keren N, Ohkawa H, Welsh EA, Liberton M, Pakrasi HB. Psb29, a conserved 22-kD protein, functions in the biogenesis of photosystem II complexes in Synechocystis and Arabidopsis. Plant Cell. 2005:17(10):2768–2781. 10.1105/tpc.105.035048 PubMed DOI PMC
Kiss É, Knoppová J, Aznar GP, Pilný J, Yu J, Halada P, Nixon PJ, Sobotka R, Komenda J. A photosynthesis-specific rubredoxin-like protein is required for efficient association of the D1 and D2 proteins during the initial steps of photosystem II assembly. Plant Cell. 2019:31(9):2241–2258. 10.1105/tpc.19.00155 PubMed DOI PMC
Knoppová J, Sobotka R, Tichy M, Yu J, Konik P, Halada P, Nixon PJ, Komenda J. Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. Plant Cell. 2014:26(3):1200–1212. 10.1105/tpc.114.123919 PubMed DOI PMC
Knoppová J, Sobotka R, Yu J, Bečková M, Pilný J, Trinugroho JP, Csefalvay L, Bína D, Nixon PJ, Komenda J. Assembly of D1/D2 complexes of photosystem II: binding of pigments and a network of auxiliary proteins. Plant Physiol. 2022:189(2):790–804. 10.1093/plphys/kiac045 PubMed DOI PMC
Knoppová J, Yu J, Janouškovec J, Halada P, Nixon PJ, Whitelegge JP, Komenda J. The photosystem II assembly factor Ycf48 from the cyanobacterium Synechocystis sp. PCC 6803 is lipidated using an atypical lipobox sequence. Int J Mol Sci. 2021:22(7):3733. 10.3390/ijms22073733 PubMed DOI PMC
Knoppová J, Yu J, Konik P, Nixon PJ, Komenda J. CyanoP is involved in the early steps of photosystem II assembly in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 2016:57(9):1921–1931. 10.1093/pcp/pcw115 PubMed DOI
Komenda J, Barber J. Comparison of psbO and psbH deletion mutants of Synechocystis PCC 6803 indicates that degradation of D1 protein is regulated by the QB site and dependent on protein synthesis. Biochemistry. 1995:34(29):9625–9631. 10.1021/bi00029a040 PubMed DOI
Komenda J, Barker M, Kuviková S, de Vries R, Mullineaux CW, Tichý M, Nixon PJ. The FtsH protease slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem. 2006:281(2):1145–1151. 10.1074/jbc.M503852200 PubMed DOI
Komenda J, Hassan HA, Diner BA, Debus RJ, Barber J, Nixon PJ. Degradation of the photosystem II D1 and D2 proteins in different strains of the cyanobacterium Synechocytis PCC 6803 varying with respect to the type and level of psbA transcript. Plant Mol Biol. 2000:42(4):635–645. 10.1023/a:1006305308196 PubMed DOI
Komenda J, Knoppová J, Kopečná J, Sobotka R, Halada P, Yu J, Nickelsen J, Boehm M, Nixon PJ. The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 2012b:158(1):476–486. 10.1104/pp.111.184184 PubMed DOI PMC
Komenda J, Kuviková S, Granvogl B, Eichacker LA, Diner BA, Nixon PJ. Cleavage after residue Ala352 in the C-terminal extension is an early step in the maturation of the D1 subunit of photosystem II in Synechocystis PCC 6803. Biochim Biophys Acta. 2007a:1767(6):829–837. 10.1016/j.bbabio.2007.01.005 PubMed DOI
Komenda J, Masojídek J. Functional and structural changes of the photosystem II complex induced by high irradiance in cyanobacterial cells. Eur J Biochem. 1995:233(2):677–682. 10.1111/j.1432-1033.1995.677_2.x PubMed DOI
Komenda J, Nickelsen J, Tichý M, Prášil O, Eichacker LA, Nixon PJ. The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp. PCC 6803. J Biol Chem. 2008:283(33):22390–22399. 10.1074/jbc.M801917200 PubMed DOI
Komenda J, Reisinger V, Müller BC, Dobáková M, Granvogl B, Eichacker LA. Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J Biol Chem. 2004:279(47):48620–48629. 10.1074/jbc.M405725200 PubMed DOI
Komenda J, Sobotka R, Nixon PJ. Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr Opin Plant Biol. 2012a:15(3):245–251. 10.1016/j.pbi.2012.01.017 PubMed DOI
Komenda J, Tichý M, Prášil O, Knoppová J, Kuviková S, de Vries R, Nixon PJ. The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803. Plant Cell. 2007b:19(9):2839–2854. 10.1105/tpc.107.053868 PubMed DOI PMC
Konert MM, Wysocka A, Koník P, Sobotka R. High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions. Photosynth Res. 2022:152(3):317–332. 10.1007/s11120-022-00904-z PubMed DOI
Kopečná J, Komenda J, Bučinská L, Sobotka R. Long-term acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol. 2012:160(4):2239–2250. 10.1104/pp.112.207274 PubMed DOI PMC
Kopečná J, Pilný J, Krynická V, Tomčala A, Kis M, Gombos Z, Komenda J, Sobotka R. Lack of phosphatidylglycerol inhibits chlorophyll biosynthesis at multiple sites and limits chlorophyllide reutilization in Synechocystis sp. Strain PCC 6803. Plant Physiol. 2015:169(2):1307–1317. 10.1104/pp.15.01150 PubMed DOI PMC
Kopečná J, Sobotka R, Komenda J. Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of photosystem I and photosystem II in the cyanobacterium Synechocystis PCC 6803. Planta. 2013:237(2):497–508. 10.1007/s00425-012-1761-4 PubMed DOI
Krynická V, Shao S, Nixon PJ, Komenda J. Accessibility controls selective degradation of photosystem II subunits by FtsH protease. Nat Plants. 2015:1(12):15168. 10.1038/nplants.2015.168 PubMed DOI
Krynická V, Skotnicová P, Jackson PJ, Barnett S, Yu J, Wysocka A, Kaňa R, Dickman MJ, Nixon PJ, Hunter CN, et al. . Ftsh4 protease controls biogenesis of the PSII complex by dual regulation of high light-inducible proteins. Plant Commun. 2023:4(1):100502. 10.1016/j.xplc.2022.100502 PubMed DOI PMC
Laczkó-Dobos H, Ughy B, Tóth SZ, Komenda J, Zsiros O, Domonkos I, Párducz A, Bogos B, Komura M, Itoh S, et al. . Role of phosphatidylglycerol in the function and assembly of photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes. Biochim Biophys Acta. 2008:1777(9):1184–1194. 10.1016/j.bbabio.2008.06.003 PubMed DOI
Lambertz J, Meier-Credo J, Kucher S, Bordignon E, Langer JD, Nowaczyk MM. Isolation of a novel heterodimeric PSII complex via strep-tagged PsbO. Biochim Biophys Acta Bioenerg. 2023:1864(2):148953. 10.1016/j.bbabio.2022.148953 PubMed DOI
Li Y, Liu B, Zhang J, Kong F, Zhang L, Meng H, Li W, Rochaix JD, Li D, Peng L. OHP1, OHP2, and HCF244 form a transient functional complex with the photosystem II reaction center. Plant Physiol. 2019:179(1):195–208. 10.1104/pp.18.01231 PubMed DOI PMC
Link S, Engelmann K, Meierhoff K, Westhoff P. The atypical short-chain dehydrogenases HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of Arabidopsis. Plant Physiol. 2012:160(4):2202–2218. 10.1104/pp.112.205104 PubMed DOI PMC
Liu H, Huang RY, Chen J, Gross ML, Pakrasi HB. Psb27, a transiently associated protein, binds to the chlorophyll binding protein CP43 in photosystem II assembly intermediates. Proc Natl Acad Sci U S A. 2011:108(45):18536–18541. 10.1073/pnas.1111597108 PubMed DOI PMC
Liu Z, Li A, You T, Pang X, Wang Y, Tian L, Li X. Structural basis for an early stage of the photosystem II repair cycle in Chlamydomonas reinhardtii. Research Square. 2023. Online article. Preprint, not peer reviewed. Available at: https://www.researchsquare.com/article/rs-3272545/v1. 10.21203/rs.3.rs-3272545/v1 PubMed DOI PMC
Lokstein H, Renger G, Götze JP. Photosynthetic light-harvesting (antenna) complexes-structures and functions. Molecules. 2021:26(11):3378. 10.3390/molecules26113378 PubMed DOI PMC
Longoni FP, Goldschmidt-Clermont M. Thylakoid protein phosphorylation in chloroplasts. Plant Cell Physiol. 2021:62(7):1094–1107. 10.1093/pcp/pcab043 PubMed DOI
Luo H, Jackson SA, Fagerlund RD, Summerfield TC, Eaton-Rye JJ. The importance of the hydrophilic region of PsbL for the plastoquinone electron acceptor complex of photosystem II. Biochim Biophys Acta. 2014:1837(9):1435–1446. 10.1016/j.bbabio.2014.02.015 PubMed DOI
Mabbitt PD, Rautureau GJ, Day CL, Wilbanks SM, Eaton-Rye JJ, Hinds MG. Solution structure of Psb27 from cyanobacterial photosystem II. Biochemistry. 2009:48(37):8771–8773. 10.1021/bi901309c PubMed DOI
Maeda H, Takahashi K, Ueno Y, Sakata K, Yokoyama A, Yarimizu K, Myouga F, Shinozaki K, Ozawa SI, Takahashi Y, et al. . Characterization of photosystem II assembly complexes containing ONE-HELIX PROTEIN1 in Arabidopsis thaliana. J Plant Res. 2022:135(2):361–376. 10.1007/s10265-022-01376-x PubMed DOI
Malnoë A, Wang F, Girard-Bascou J, Wollman F-A, de Vitry C. Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions. Plant Cell. 2014:26(1):373–390. 10.1105/tpc.113.120113 PubMed DOI PMC
Manna P, Vermaas W. Mutational studies on conserved histidine residues in the chlorophyll-binding protein CP43 of photosystem II. Eur J Biochem. 1997:247(2):666–672. 10.1111/j.1432-1033.1997.00666.x PubMed DOI
Masuda T, Inomura K, Gao M, Armin G, Kotabová E, Bernát G, Lawrenz-Kendrick E, Lukeš M, Bečková M, Steinbach G, et al. . The balance between photosynthesis and respiration explains the niche differentiation between Crocosphaera and Cyanothece. Comput Struct Biotechnol J. 2023:21:58–65. 10.1016/j.csbj.2022.11.029 PubMed DOI PMC
Meurer J, Plücken H, Kowallik KV, Westhoff P. A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J. 1998:17(18):5286–5297. 10.1093/emboj/17.18.5286 PubMed DOI PMC
Michoux F, Boehm M, Bialek W, Takasaka K, Maghlaoui K, Barber J, Murray JW, Nixon PJ. Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes. Photosynth Res. 2014:122(1):57–67. 10.1007/s11120-014-0010-z PubMed DOI PMC
Michoux F, Takasaka K, Boehm M, Komenda J, Nixon PJ, Murray JW. Crystal structure of the Psb27 assembly factor at 1.6 Å: implications for binding to photosystem II. Photosynth Res. 2012:110(3):169–175. 10.1007/s11120-011-9712-7 PubMed DOI
Michoux F, Takasaka K, Boehm M, Nixon PJ, Murray JW. Structure of CyanoP at 2.8 A: implications for the evolution and function of the PsbP subunit of photosystem II. Biochemistry. 2010:49(35):7411–7413. 10.1021/bi1011145 PubMed DOI
Morais F, Barber J, Nixon PJ. The chloroplast-encoded alpha subunit of cytochrome b-559 is required for assembly of the photosystem two complex in both the light and the dark in Chlamydomonas reinhardtii. J Biol Chem. 1998:273(45):29315–29320. 10.1074/jbc.273.45.29315 PubMed DOI
Morais F, Kühn K, Stewart DH, Barber J, Brudvig GW, Nixon PJ. Photosynthetic water oxidation in cytochrome b-559 mutants containing a disrupted heme-binding pocket. J Biol Chem. 2001:276(34):31986–31993. 10.1074/jbc.M103935200 PubMed DOI
Müller B, Eichacker LA. Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts. Plant Cell. 1999:11(12):2365–2377. PMID: 10590164 PubMed PMC
Mullet JE, Klein PG, Klein RR. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and D1 by increasing apoprotein stability. Proc Natl Acad Sci U S A. 1990:87(11):4038–4042. 10.1073/pnas.87.11.4038 PubMed DOI PMC
Mulo P, Tyystjärvi T, Tyystjärvi E, Govindjee, Mäenpää P, Aro EM. Mutagenesis of the D-E loop of photosystem II reaction centre protein D1. Function and assembly of photosystem II. Plant Mol Biol. 1997:33(6):1059–1071. 10.1023/a:1005765305956 PubMed DOI
Myouga F, Takahashi K, Tanaka R, Nagata N, Kiss AZ, Funk C, Nomura Y, Nakagami H, Jansson S, Shinozaki K. Stable accumulation of photosystem II requires ONE-HELIX PROTEIN1 (OHP1) of the light harvesting-like family. Plant Physiol. 2018:176(3):2277–2291. 10.1104/pp.17.01782 PubMed DOI PMC
Nakajima Y, Umena Y, Nagao R, Endo K, Kobayashi K, Akita F, Suga M, Wada H, Noguchi T, Shen JR. Thylakoid membrane lipid sulfoquinovosyl-diacylglycerol (SQDG) is required for full functioning of photosystem II in Thermosynechococcus elongatus. J Biol Chem. 2018:293(38):14786–14797. 10.1074/jbc.RA118.004304 PubMed DOI PMC
Nickelsen J, Rengstl B. Photosystem II assembly: from cyanobacteria to plants. Annu Rev Plant Biol. 2013:64(1):609–635. 10.1146/annurev-arplant-050312-120124 PubMed DOI
Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J. 2001:20(20):5587–5594. 10.1093/emboj/20.20.5587 PubMed DOI PMC
Nixon PJ, Barker M, Boehm M, de Vries R, Komenda J. FtsH-mediated repair of the photosystem II complex in response to light stress. J Exp Bot. 2005:56(411):357–363. 10.1093/jxb/eri021 PubMed DOI
Nixon PJ, Diner BA. Aspartate 170 of the photosystem II reaction center polypeptide D1 is involved in the assembly of the oxygen-evolving manganese cluster. Biochemistry. 1992:31(3):942–948. 10.1021/bi00118a041 PubMed DOI
Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J. Recent advances in understanding the assembly and repair of photosystem II. Ann Bot. 2010:106(1):1–16. 10.1093/aob/mcq059 PubMed DOI PMC
Nixon PJ, Trost JT, Diner BA. Role of the carboxy terminus of polypeptide D1 in the assembly of a functional water-oxidizing manganese cluster in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: assembly requires a free carboxyl group at C-terminal position 344. Biochemistry. 1992:31(44):10859–10871. 10.1021/bi00159a029 PubMed DOI
Nowaczyk MM, Hebeler R, Schlodder E, Meyer HE, Warscheid B, Rögner M. Psb27, a cyanobacterial lipoprotein, is involved in the repair cycle of photosystem II. Plant Cell. 2006:18(11):3121–3131. 10.1105/tpc.106.042671 PubMed DOI PMC
Ota K, Sakaguchi M, Hamasaki N, Mihara K. Assessment of topogenic functions of anticipated transmembrane segments of human band 3. J Biol Chem. 1998:273(43):28286–28291. 10.1074/jbc.273.43.28286 PubMed DOI
Pakrasi HB, Williams JG, Arntzen CJ. Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: evidence for a functional role of cytochrome b559 in photosystem II. EMBO J. 1988:7(2):325–332. 10.1002/j.1460-2075.1988.tb02816.x PubMed DOI PMC
Pasch JC, Nickelsen J, Schünemann D. The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl Microbiol Biotechnol. 2005:69(4):440–447. 10.1007/s00253-005-0029-3 PubMed DOI
Pascual-Aznar G, Konert G, Bečková M, Kotabová E, Gardian Z, Knoppová J, Bučinská L, Kaňa R, Sobotka R, Komenda J. Psb35 protein stabilizes the CP47 assembly module and associated high-light inducible proteins during the biogenesis of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 2021:62(1):178–190. 10.1093/pcp/pcaa148 PubMed DOI
Pazderník M, Mareš J, Pilný J, Sobotka R. The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration. J Biol Chem. 2019:294(29):11131–11143. 10.1074/jbc.RA119.008434 PubMed DOI PMC
Plücken H, Müller B, Grohmann D, Westhoff P, Eichacker LA. The HCF136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Lett. 2002:532(1–2):85–90. 10.1016/s0014-5793(02)03634-7 PubMed DOI
Pospíšil P. Production of reactive oxygen species by photosystem II. Biochim Biophys Acta. 2009:1787(10):1151–1160. 10.1016/j.bbabio.2009.05.005 PubMed DOI
Pospíšil P. Enzymatic function of cytochrome b559 in photosystem II. J Photochem Photobiol B. 2011:104(1–2):341–347. 10.1016/j.jphotobiol.2011.02.013 PubMed DOI
Proctor MS, Chidgey JW, Shukla MK, Jackson PJ, Sobotka R, Hunter CN, Hitchcock A. Plant and algal chlorophyll synthases function in Synechocystis and interact with the YidC/Alb3 membrane insertase. FEBS Lett. 2018:592(18):3062–3073. 10.1002%2F1873-3468.13222 PubMed PMC
Promnares K, Komenda J, Bumba L, Nebesarova J, Vacha F, Tichy M. Cyanobacterial small chlorophyll-binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J Biol Chem. 2006:281(43):32705–32713. 10.1074/jbc.M606360200 PubMed DOI
Puthiyaveetil S, Tsabari O, Lowry T, Lenhert S, Lewis RR, Reich Z, Kirchhoff H. Compartmentalization of the protein repair machinery in photosynthetic membranes. Proc Natl Acad Sci U S A. 2014:111(44):15839–15844. 10.1073/pnas.1413739111 PubMed DOI PMC
Qi M, Zhao Z, Nixon PJ. The photosynthetic electron transport chain of oxygenic photosynthesis. Bioelectricity. 2023:5(1):31–38. 10.1089/bioe.2023.0003 DOI
Rahimzadeh-Karvansara P, Pascual-Aznar G, Bečková M, Komenda J. Psb34 protein modulates binding of high-light-inducible proteins to CP47-containing photosystem II assembly intermediates in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res. 2022:152(3):333–346. 10.1007/s11120-022-00908-9 PubMed DOI PMC
Rögner M, Chisholm DA, Diner BA. Site-directed mutagenesis of the psbC gene of photosystem II: isolation and functional characterization of CP43-less photosystem II core complexes. Biochemistry. 1991:30(22):5387–5395. 10.1021/bi00236a009 PubMed DOI
Roose JL, Pakrasi HB. The Psb27 protein facilitates manganese cluster assembly in photosystem II. J Biol Chem. 2008:283(7):4044–4050. 10.1074/jbc.M708960200 PubMed DOI
Sakamoto W, Zaltsman A, Adam Z, Takahashi Y. Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes. Plant Cell. 2003:15(12):2843–2855. 10.1105/tpc.017319 PubMed DOI PMC
Sakata S, Mizusawa N, Kubota-Kawai H, Sakurai I, Wada H. Psb28 is involved in recovery of photosystem II at high temperature in Synechocystis sp. PCC 6803. Biochim Biophys Acta. 2013:1827(1):50–59. 10.1016/j.bbabio.2012.10.004 PubMed DOI
Shao S, Cardona T, Nixon PJ. Early emergence of the FtsH proteases involved in photosystem II repair. Photosynthetica. 2018:56(SPECIAL ISSUE):163–177. 10.1007/s11099-018-0769-9 DOI
Shen JR. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol. 2015:66(1):23–48. 10.1146/annurev-arplant-050312-120129 PubMed DOI
Shen G, Eaton-Rye JJ, Vermaas WF. Mutation of histidine residues in CP47 leads to destabilization of the photosystem II complex and to impairment of light energy transfer. Biochemistry. 1993:32(19):5109–5115. 10.1021/bi00070a019 PubMed DOI
Shen G, Zhao J, Reimer SK, Antonkine ML, Cai Q, Weiland SM, Golbeck JH, Bryant DA. Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity. J Biol Chem. 2002:277(23):20343–20354. 10.1074/jbc.M201103200 PubMed DOI
Shukla MK, Llansola-Portoles MJ, Tichý M, Pascal AA, Robert B, Sobotka R. Binding of pigments to the cyanobacterial high-light-inducible protein HliC. Photosynth Res. 2018:137(1):29–39. 10.1007/s11120-017-0475-7 PubMed DOI
Shukla VK, Stanbekova GE, Shestakov SV, Pakrasi HB. The D1 protein of the photosystem II reaction-centre complex accumulates in the absence of D2: analysis of a mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking cytochrome b559. Mol Microbiol. 1992:6(7):947–956. 10.1111/j.1365-2958.1992.tb01544.x PubMed DOI
Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH, Nixon PJ. Ftsh is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. Plant Cell. 2003:15(9):2152–2164. 10.1105/tpc.012609 PubMed DOI PMC
Sinha RK, Komenda J, Knoppová J, Sedlářová M, Pospíšil P. Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Environ. 2012:35(4):806–818. 10.1111/j.1365-3040.2011.02454.x PubMed DOI
Skotnicová P, Srivastava A, Aggarwal D, Talbot J, Karlínová I, Moos M, Mareš J, Bučinská L, Koník P, Šimek P, et al. . A thylakoid biogenesis BtpA protein is required for the initial step of tetrapyrrole biosynthesis in cyanobacteria. New Phytol. 2024:41(3):1236–1249. 10.1111/nph.19397 PubMed DOI
Sobotka R. Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria. Photosynth Res. 2014:119(1–2):223–232. 10.1007/s11120-013-9797-2 PubMed DOI
Sozer O, Komenda J, Ughy B, Domonkos I, Laczkó-Dobos H, Malec P, Gombos Z, Kis M. Involvement of carotenoids in the synthesis and assembly of protein subunits of photosynthetic reaction centers of Synechocystis sp. PCC 6803. Plant Cell Physiol. 2010:51(5):823–835. 10.1093/pcp/pcq031 PubMed DOI
Staleva H, Komenda J, Shukla MK, Šlouf V, Kaňa R, Polívka T, Sobotka R. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat Chem Biol. 2015:11(4):287–291. 10.1038/nchembio.1755 PubMed DOI
Stengel A, Gügel IL, Hilger D, Rengstl B, Jung H, Nickelsen J. Initial steps of photosystem II de novo assembly and preloading with manganese take place in biogenesis centers in Synechocystis. Plant Cell. 2012:24(2):660–675. 10.1105/tpc.111.093914 PubMed DOI PMC
Strašková A, Knoppová J, Komenda J. Isolation of the cyanobacterial YFP-tagged photosystem I using GFP-Trap. Photosynthetica. 2018:56(SPECIAL ISSUE):300–305. 10.1007/s11099-018-0771-2 DOI
Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G, Müller B, Eichacker LA, Stern DB, Bassi R, et al. . The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell. 2001:13(6):1347–1367. 10.1105/tpc.13.6.1347 PubMed DOI PMC
Swiatek M, Regel RE, Meurer J, Wanner G, Pakrasi HB, Ohad I, Herrmann RG. Effects of selective inactivation of individual genes for low-molecular-mass subunits on the assembly of photosystem II, as revealed by chloroplast transformation: the psbEFLJ operon in Nicotiana tabacum. Mol Genet Genomics. 2003:268(6):699–710. 10.1007/s00438-002-0791-1 PubMed DOI
Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB. Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem ii activity in the cyanobacterium Synechocystis 6803. Plant Cell. 2004:16(8):2164–2175. 10.1105/tpc.104.023515 PubMed DOI PMC
Tokano T, Kato Y, Sugiyama S, Uchihashi T, Noguchi T. Structural dynamics of a protein domain relevant to the water-oxidizing complex in photosystem ii as visualized by high-speed atomic force microscopy. J Phys Chem B. 2020:124(28):5847–5857. 10.1021/acs.jpcb.0c03892 PubMed DOI
Torabi S, Umate P, Manavski N, Plöchinger M, Kleinknecht L, Bogireddi H, Herrmann RG, Wanner G, Schröder WP, Meurer J. Psbn is required for assembly of the photosystem II reaction center in Nicotiana tabacum. Plant Cell. 2014:26(3):1183–1199. 10.1105/tpc.113.120444 PubMed DOI PMC
Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011:473(7345):55–60. 10.1038/nature09913 PubMed DOI
van Wijk KJ, Knott TG, Robinson C. Evidence for SecA- and delta pH-independent insertion of D1 into thylakoids. FEBS Lett. 1995:368(2):263–266. 10.1016/0014-5793(95)00668-y PubMed DOI
Vass I. Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiol Plant. 2011:142(1):6–16. 10.1111/j.1399-3054.2011.01454.x PubMed DOI
Vass I. Molecular mechanisms of photodamage in the photosystem II complex. Biochim Biophys Acta. 2012:1817(1):209–217. 10.1016/j.bbabio.2011.04.014 PubMed DOI
Vermaas WF, Ikeuchi M, Inoue Y. Protein composition of the photosystem II core complex in genetically engineered mutants of the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res. 1988:17(1–2):97–113. 10.1007/BF00047683 PubMed DOI
Walters RG, Shephard F, Rogers JJ, Rolfe SA, Horton P. Identification of mutants of Arabidopsis defective in acclimation of photosynthesis to the light environment. Plant Physiol. 2003:131(2):472–481. 10.1104/pp.015479 PubMed DOI PMC
Wang F, Dischinger K, Westrich LD, Meindl I, Egidi F, Trösch R, Sommer F, Johnson X, Schroda M, Nickelsen J, et al. . One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas. Plant Physiol. 2023:191(3):1612–1633. 10.1093/plphys/kiad015 PubMed DOI PMC
Wang F, Qi Y, Malnoë A, Choquet Y, Wollman FA, de Vitry C. The high light response and redox control of thylakoid FtsH protease in Chlamydomonas reinhardtii. Mol Plant. 2017a:10(1):99–114. 10.1016/j.molp.2016.09.012 PubMed DOI
Wang S, Yang CI, Shan SO. Seca mediates cotranslational targeting and translocation of an inner membrane protein. J Cell Biol. 2017b:216(11):3639–3653. 10.1083/jcb.201704036 PubMed DOI PMC
Wastl J, Duin EC, Iuzzolino L, Dörner W, Link T, Hoffmann S, Sticht H, Dau H, Lingelbach K, Maier UG. Eukaryotically encoded and chloroplast-located rubredoxin is associated with photosystem II. J Biol Chem. 2000:275(39):30058–30063. 10.1074/jbc.M004629200 PubMed DOI
Wei L, Guo J, Ouyang M, Sun X, Ma J, Chi W, Lu C, Zhang L. LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor processing during PSII biogenesis. J Biol Chem. 2010:285(28):21391–21398. 10.1074/jbc.M110.105064 PubMed DOI PMC
Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature. 2016:534(7605):69–74. 10.1038/nature18020 PubMed DOI
Weisz DA, Johnson VM, Niedzwiedzki DM, Shinn MK, Liu H, Klitzke CF, Gross ML, Blankenship RE, Lohman TM, Pakrasi HB. A novel chlorophyll protein complex in the repair cycle of photosystem II. Proc Natl Acad Sci U S A. 2019:116(43):21907–21913. 10.1073/pnas.1909644116 PubMed DOI PMC
Weisz DA, Liu H, Zhang H, Thangapandian S, Tajkhorshid E, Gross ML, Pakrasi HB. Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in photosystem II. Proc Natl Acad Sci U S A. 2017:114(9):2224–2229. 10.1073/pnas.1620360114 PubMed DOI PMC
Xiao Y, Huang G, You X, Zhu Q, Wang W, Kuang T, Han G, Sui SF, Shen JR. Structural insights into cyanobacterial photosystem II intermediates associated with Psb28 and Tsl0063. Nat Plants. 2021:7(8):1132–1142. 10.1038/s41477-021-00961-7 PubMed DOI
Xingxing C, Jiuyang L, Huan Z, Fudong L, Shuya Z, Min X, Ke R, Yuhua W, Aigen F. Crystal structure of Psb27 from Arabidopsis thaliana determined at a resolution of 1.85 Å. Photosynth Res. 2018:136(2):139–146. 10.1007/s11120-017-0450-3 PubMed DOI PMC
Yao DC, Brune DC, Vermaas WF. Lifetimes of photosystem I and II proteins in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 2012:586(2):169–173. 10.1016/j.febslet.2011.12.010 PubMed DOI
Yao D, Kieselbach T, Komenda J, Promnares K, Prieto MA, Tichy M, Vermaas W, Funk C. Localization of the small CAB-like proteins in photosystem II. J Biol Chem. 2007:282(1):267–276. 10.1074/jbc.M605463200 PubMed DOI
Yi L, Liu B, Nixon PJ, Yu J, Chen F. Recent advances in understanding the structural and functional evolution of FtsH proteases. Front Plant Sci. 2022:13:837528. 10.3389/fpls.2022.837528 PubMed DOI PMC
You X, Zhang X, Cheng J, Xiao Y, Ma J, Sun S, Zhang X, Wang HW, Sui SF. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex. Nature. 2023:616(7955):199–206. 10.1038/s41586-023-05831-0 PubMed DOI
Yu J, Knoppová J, Michoux F, Bialek W, Cota E, Shukla MK, Strašková A, Pascual Aznar G, Sobotka R, Komenda J, et al. . Ycf48 involved in the biogenesis of the oxygen-evolving photosystem II complex is a seven-bladed beta-propeller protein. Proc Natl Acad Sci U S A. 2018:115(33):E7824–E7833. 10.1073/pnas.1800609115 PubMed DOI PMC
Zabret J, Bohn S, Schuller SK, Arnolds O, Möller M, Meier-Credo J, Liauw P, Chan A, Tajkhorshid E, Langer JD, et al. . Structural insights into photosystem II assembly. Nat Plants. 2021:7(4):524–538. 10.1038/s41477-021-00895-0 PubMed DOI PMC
Zhang L, Paakkarinen V, van Wijk KJ, Aro EM. Co-translational assembly of the D1 protein into photosystem II. J Biol Chem. 1999:274(23):16062–16067. 10.1074/jbc.274.23.16062 PubMed DOI
Zhao Z. Structural investigations of photosystem II assembly [PhD thesis]. London, UK: Department of Life Sciences, Imperial College London; 2023.
Zhao Z, Vercellino I, Knoppová J, Sobotka R, Murray JW, Nixon PJ, Sazanov LA, Komenda J. The Ycf48 accessory factor occupies the site of the oxygen-evolving manganese cluster during photosystem II biogenesis. Nat Commun. 2023:14(1):4681. 10.1038/s41467-023-40388-6 PubMed DOI PMC