Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria

. 2014 Feb ; 119 (1-2) : 223-32. [epub] 20130204

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid23377990

Chlorophyll (Chl) is an essential component of the photosynthetic apparatus. Embedded into Chl-binding proteins, Chl molecules play a central role in light harvesting and charge separation within the photosystems. It is critical for the photosynthetic cell to not only ensure the synthesis of a sufficient amount of new Chl-binding proteins but also avoids any misbalance between apoprotein synthesis and the formation of potentially phototoxic Chl molecules. According to the available data, Chl-binding proteins are translated on membrane bound ribosomes and their integration into the membrane is provided by the SecYEG/Alb3 translocon machinery. It appears that the insertion of Chl molecules into growing polypeptide is a prerequisite for the correct folding and finishing of Chl-binding protein synthesis. Although the Chl biosynthetic pathway is fairly well-described on the level of enzymatic steps, a link between Chl biosynthesis and the synthesis of apoproteins remains elusive. In this review, I summarize the current knowledge about this issue putting emphasis on protein-protein interactions. I present a model of the Chl biosynthetic pathway organized into a multi-enzymatic complex and physically attached to the SecYEG/Alb3 translocon. Localization of this hypothetical large biosynthetic centre in the cyanobacterial cell is also discussed as well as regulatory mechanisms coordinating the rate of Chl and apoprotein synthesis.

Zobrazit více v PubMed

Biochim Biophys Acta. 2007 Jul;1767(7):920-9 PubMed

Science. 2003 Feb 7;299(5608):902-6 PubMed

Proc Natl Acad Sci U S A. 1990 Jun;87(11):4038-42 PubMed

Plant Cell Environ. 2012 Apr;35(4):806-18 PubMed

J Biol Chem. 2001 Oct 12;276(41):37809-14 PubMed

Plant Cell. 2006 Jun;18(6):1454-66 PubMed

J Biol Chem. 2005 Sep 9;280(36):31595-602 PubMed

Microbiology (Reading). 2009 Mar;155(Pt 3):989-996 PubMed

FEBS J. 2009 Mar;276(5):1398-417 PubMed

FEBS J. 2005 Sep;272(17):4532-9 PubMed

Microbiology (Reading). 2008 Dec;154(Pt 12):3707-3714 PubMed

J Biol Chem. 2008 Sep 19;283(38):25794-802 PubMed

Planta. 2003 Jan;216(3):475-83 PubMed

Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6860-5 PubMed

Ann Bot. 2010 Jul;106(1):1-16 PubMed

Plant Physiol. 2011 Apr;155(4):1735-47 PubMed

J Cell Biol. 2003 Sep 29;162(7):1245-54 PubMed

Biochemistry. 2005 Aug 16;44(32):10864-72 PubMed

Mol Microbiol. 2002 Jul;45(1):17-29 PubMed

Annu Rev Plant Biol. 2007;58:321-46 PubMed

Biochim Biophys Acta. 2005 Jun 1;1708(1):91-101 PubMed

J Biol Chem. 2012 Aug 10;287(33):27823-33 PubMed

Mol Cell. 2008 Feb 29;29(4):419-27 PubMed

FEBS Lett. 2012 Feb 3;586(3):211-6 PubMed

J Biol Chem. 2007 Dec 28;282(52):37660-8 PubMed

Plant Cell. 2012 Feb;24(2):660-75 PubMed

Mol Cell. 2009 May 15;34(3):344-53 PubMed

J Exp Bot. 2012 Feb;63(4):1675-87 PubMed

Plant Cell Physiol. 2010 May;51(5):670-81 PubMed

Annu Rev Biochem. 2011;80:161-87 PubMed

Mol Biol Cell. 2012 Feb;23(3):464-79 PubMed

J Biol Chem. 2011 Oct 7;286(40):35187-95 PubMed

Eur J Biochem. 1995 Oct 15;233(2):677-82 PubMed

FEBS Lett. 1992 Dec 7;314(1):77-80 PubMed

J Bacteriol. 2008 Mar;190(6):2086-95 PubMed

FEBS Lett. 2005 Aug 29;579(21):4808-12 PubMed

Biochim Biophys Acta. 2011 Sep;1807(9):1143-51 PubMed

Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19286-91 PubMed

J Biol Chem. 2005 May 13;280(19):18568-72 PubMed

J Biol Chem. 1996 Dec 13;271(50):32174-9 PubMed

Plant Cell Physiol. 2010 May;51(5):823-35 PubMed

Plant Cell. 1999 Dec;11(12):2365-77 PubMed

Annu Rev Plant Biol. 2004;55:373-99 PubMed

Microbiol Mol Biol Rev. 2007 Mar;71(1):230-53 PubMed

Mol Microbiol. 2001 Apr;40(2):476-84 PubMed

Plant Physiol. 1998 Aug;117(4):1205-16 PubMed

Appl Microbiol Biotechnol. 2005 Dec;69(4):440-7 PubMed

Mol Microbiol. 2012 Jul;85(1):21-38 PubMed

J Biol Chem. 2004 Dec 31;279(53):55792-800 PubMed

Plant Cell. 2006 Nov;18(11):3121-31 PubMed

Plant Cell. 2011 Apr;23(4):1449-67 PubMed

Curr Opin Plant Biol. 2012 Jun;15(3):245-51 PubMed

J Cell Biol. 2004 Apr;165(1):53-62 PubMed

Nature. 1999 Dec 2;402(6761 Suppl):C47-52 PubMed

FEBS Lett. 2002 Jul 31;524(1-3):127-33 PubMed

J Microbiol Biotechnol. 2008 Jun;18(6):1090-4 PubMed

Planta. 2013 Feb;237(2):497-508 PubMed

Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):636-40 PubMed

J Biol Chem. 2006 Oct 27;281(43):32705-13 PubMed

Biochemistry. 2005 May 31;44(21):7603-12 PubMed

J Biol Chem. 2012 Jan 2;287(1):682-692 PubMed

Biochem J. 2002 Dec 15;368(Pt 3):777-81 PubMed

J Proteome Res. 2011 Aug 5;10(8):3617-31 PubMed

J Biol Chem. 2011 Nov 25;286(47):41057-68 PubMed

J Biol Chem. 2005 Jul 1;280(26):24301-7 PubMed

Mol Microbiol. 1995 Jun;16(6):1051-7 PubMed

J Biol Chem. 1994 Jul 8;269(27):17918-23 PubMed

Photosynth Res. 2010 Nov;106(1-2):57-71 PubMed

Plant J. 2007 Jun;50(5):795-809 PubMed

J Bacteriol. 1987 Jun;169(6):2718-23 PubMed

Plant Physiol. 2006 Nov;142(3):911-22 PubMed

J Cell Biol. 1976 Nov;71(2):497-514 PubMed

Plant J. 2008 Dec;56(6):1007-17 PubMed

Plant Physiol. 2012 Dec;160(4):2239-50 PubMed

Photochem Photobiol Sci. 2008 Oct;7(10):1131-49 PubMed

Plant Physiol. 2012 May;159(1):118-30 PubMed

Plant Cell. 2006 Sep;18(9):2236-46 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The biogenesis and maintenance of PSII: Recent advances and current challenges

. 2024 Oct 03 ; 36 (10) : 3997-4013.

Chlorophyll biosynthesis under the control of arginine metabolism

. 2023 Nov 28 ; 42 (11) : 113265. [epub] 20231020

Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria

The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration

. 2019 Jul 19 ; 294 (29) : 11131-11143. [epub] 20190605

New Urea Derivatives Are Effective Anti-senescence Compounds Acting Most Likely via a Cytokinin-Independent Mechanism

. 2018 ; 9 () : 1225. [epub] 20180911

Plant and algal chlorophyll synthases function in Synechocystis and interact with the YidC/Alb3 membrane insertase

. 2018 Sep ; 592 (18) : 3062-3073. [epub] 20180906

Binding of pigments to the cyanobacterial high-light-inducible protein HliC

. 2018 Jul ; 137 (1) : 29-39. [epub] 20171226

The Ribosome-Bound Protein Pam68 Promotes Insertion of Chlorophyll into the CP47 Subunit of Photosystem II

. 2018 Apr ; 176 (4) : 2931-2942. [epub] 20180220

Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem II Contains Tandem Duplication of a Large Chromosomal Region

. 2016 ; 7 () : 648. [epub] 20160512

Porphyrin Binding to Gun4 Protein, Facilitated by a Flexible Loop, Controls Metabolite Flow through the Chlorophyll Biosynthetic Pathway

. 2015 Nov 20 ; 290 (47) : 28477-28488. [epub] 20151007

Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization in Synechocystis sp. Strain PCC 6803

. 2015 Oct ; 169 (2) : 1307-17. [epub] 20150812

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...