Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- bakteriální proteiny metabolismus MeSH
- buněčná membrána metabolismus MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza MeSH
- proteiny vázající chlorofyl biosyntéza MeSH
- sinice cytologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny MeSH
- chlorofyl MeSH
- proteiny vázající chlorofyl MeSH
Chlorophyll (Chl) is an essential component of the photosynthetic apparatus. Embedded into Chl-binding proteins, Chl molecules play a central role in light harvesting and charge separation within the photosystems. It is critical for the photosynthetic cell to not only ensure the synthesis of a sufficient amount of new Chl-binding proteins but also avoids any misbalance between apoprotein synthesis and the formation of potentially phototoxic Chl molecules. According to the available data, Chl-binding proteins are translated on membrane bound ribosomes and their integration into the membrane is provided by the SecYEG/Alb3 translocon machinery. It appears that the insertion of Chl molecules into growing polypeptide is a prerequisite for the correct folding and finishing of Chl-binding protein synthesis. Although the Chl biosynthetic pathway is fairly well-described on the level of enzymatic steps, a link between Chl biosynthesis and the synthesis of apoproteins remains elusive. In this review, I summarize the current knowledge about this issue putting emphasis on protein-protein interactions. I present a model of the Chl biosynthetic pathway organized into a multi-enzymatic complex and physically attached to the SecYEG/Alb3 translocon. Localization of this hypothetical large biosynthetic centre in the cyanobacterial cell is also discussed as well as regulatory mechanisms coordinating the rate of Chl and apoprotein synthesis.
Zobrazit více v PubMed
Biochim Biophys Acta. 2007 Jul;1767(7):920-9 PubMed
Science. 2003 Feb 7;299(5608):902-6 PubMed
Proc Natl Acad Sci U S A. 1990 Jun;87(11):4038-42 PubMed
Plant Cell Environ. 2012 Apr;35(4):806-18 PubMed
J Biol Chem. 2001 Oct 12;276(41):37809-14 PubMed
Plant Cell. 2006 Jun;18(6):1454-66 PubMed
J Biol Chem. 2005 Sep 9;280(36):31595-602 PubMed
Microbiology (Reading). 2009 Mar;155(Pt 3):989-996 PubMed
FEBS J. 2009 Mar;276(5):1398-417 PubMed
FEBS J. 2005 Sep;272(17):4532-9 PubMed
Microbiology (Reading). 2008 Dec;154(Pt 12):3707-3714 PubMed
J Biol Chem. 2008 Sep 19;283(38):25794-802 PubMed
Planta. 2003 Jan;216(3):475-83 PubMed
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6860-5 PubMed
Ann Bot. 2010 Jul;106(1):1-16 PubMed
Plant Physiol. 2011 Apr;155(4):1735-47 PubMed
J Cell Biol. 2003 Sep 29;162(7):1245-54 PubMed
Biochemistry. 2005 Aug 16;44(32):10864-72 PubMed
Mol Microbiol. 2002 Jul;45(1):17-29 PubMed
Annu Rev Plant Biol. 2007;58:321-46 PubMed
Biochim Biophys Acta. 2005 Jun 1;1708(1):91-101 PubMed
J Biol Chem. 2012 Aug 10;287(33):27823-33 PubMed
Mol Cell. 2008 Feb 29;29(4):419-27 PubMed
FEBS Lett. 2012 Feb 3;586(3):211-6 PubMed
J Biol Chem. 2007 Dec 28;282(52):37660-8 PubMed
Plant Cell. 2012 Feb;24(2):660-75 PubMed
Mol Cell. 2009 May 15;34(3):344-53 PubMed
J Exp Bot. 2012 Feb;63(4):1675-87 PubMed
Plant Cell Physiol. 2010 May;51(5):670-81 PubMed
Annu Rev Biochem. 2011;80:161-87 PubMed
Mol Biol Cell. 2012 Feb;23(3):464-79 PubMed
J Biol Chem. 2011 Oct 7;286(40):35187-95 PubMed
Eur J Biochem. 1995 Oct 15;233(2):677-82 PubMed
FEBS Lett. 1992 Dec 7;314(1):77-80 PubMed
J Bacteriol. 2008 Mar;190(6):2086-95 PubMed
FEBS Lett. 2005 Aug 29;579(21):4808-12 PubMed
Biochim Biophys Acta. 2011 Sep;1807(9):1143-51 PubMed
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19286-91 PubMed
J Biol Chem. 2005 May 13;280(19):18568-72 PubMed
J Biol Chem. 1996 Dec 13;271(50):32174-9 PubMed
Plant Cell Physiol. 2010 May;51(5):823-35 PubMed
Plant Cell. 1999 Dec;11(12):2365-77 PubMed
Annu Rev Plant Biol. 2004;55:373-99 PubMed
Microbiol Mol Biol Rev. 2007 Mar;71(1):230-53 PubMed
Mol Microbiol. 2001 Apr;40(2):476-84 PubMed
Plant Physiol. 1998 Aug;117(4):1205-16 PubMed
Appl Microbiol Biotechnol. 2005 Dec;69(4):440-7 PubMed
Mol Microbiol. 2012 Jul;85(1):21-38 PubMed
J Biol Chem. 2004 Dec 31;279(53):55792-800 PubMed
Plant Cell. 2006 Nov;18(11):3121-31 PubMed
Plant Cell. 2011 Apr;23(4):1449-67 PubMed
Curr Opin Plant Biol. 2012 Jun;15(3):245-51 PubMed
J Cell Biol. 2004 Apr;165(1):53-62 PubMed
Nature. 1999 Dec 2;402(6761 Suppl):C47-52 PubMed
FEBS Lett. 2002 Jul 31;524(1-3):127-33 PubMed
J Microbiol Biotechnol. 2008 Jun;18(6):1090-4 PubMed
Planta. 2013 Feb;237(2):497-508 PubMed
Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):636-40 PubMed
J Biol Chem. 2006 Oct 27;281(43):32705-13 PubMed
Biochemistry. 2005 May 31;44(21):7603-12 PubMed
J Biol Chem. 2012 Jan 2;287(1):682-692 PubMed
Biochem J. 2002 Dec 15;368(Pt 3):777-81 PubMed
J Proteome Res. 2011 Aug 5;10(8):3617-31 PubMed
J Biol Chem. 2011 Nov 25;286(47):41057-68 PubMed
J Biol Chem. 2005 Jul 1;280(26):24301-7 PubMed
Mol Microbiol. 1995 Jun;16(6):1051-7 PubMed
J Biol Chem. 1994 Jul 8;269(27):17918-23 PubMed
Photosynth Res. 2010 Nov;106(1-2):57-71 PubMed
Plant J. 2007 Jun;50(5):795-809 PubMed
J Bacteriol. 1987 Jun;169(6):2718-23 PubMed
Plant Physiol. 2006 Nov;142(3):911-22 PubMed
J Cell Biol. 1976 Nov;71(2):497-514 PubMed
Plant J. 2008 Dec;56(6):1007-17 PubMed
Plant Physiol. 2012 Dec;160(4):2239-50 PubMed
Photochem Photobiol Sci. 2008 Oct;7(10):1131-49 PubMed
Plant Physiol. 2012 May;159(1):118-30 PubMed
Plant Cell. 2006 Sep;18(9):2236-46 PubMed
The biogenesis and maintenance of PSII: Recent advances and current challenges
Chlorophyll biosynthesis under the control of arginine metabolism
Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria
Binding of pigments to the cyanobacterial high-light-inducible protein HliC