Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem II Contains Tandem Duplication of a Large Chromosomal Region
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27242849
PubMed Central
PMC4867675
DOI
10.3389/fpls.2016.00648
Knihovny.cz E-zdroje
- Klíčová slova
- Synechocystis 6803, chlorophyll, large tandem duplication, photosystem I, photosystem II assembly,
- Publikační typ
- časopisecké články MeSH
Cyanobacterium Synechocystis PCC 6803 represents a favored model organism for photosynthetic studies. Its easy transformability allowed construction of a vast number of Synechocystis mutants including many photosynthetically incompetent ones. However, it became clear that there is already a spectrum of Synechocystis "wild-type" substrains with apparently different phenotypes. Here, we analyzed organization of photosynthetic membrane complexes in a standard motile Pasteur collection strain termed PCC and two non-motile glucose-tolerant substrains (named here GT-P and GT-W) previously used as genetic backgrounds for construction of many photosynthetic site directed mutants. Although, both the GT-P and GT-W strains were derived from the same strain constructed and described by Williams in 1988, only GT-P was similar in pigmentation and in the compositions of Photosystem II (PSII) and Photosystem I (PSI) complexes to PCC. In contrast, GT-W contained much more carotenoids but significantly less chlorophyll (Chl), which was reflected by lower level of dimeric PSII and especially trimeric PSI. We found that GT-W was deficient in Chl biosynthesis and contained unusually high level of unassembled D1-D2 reaction center, CP47 and especially CP43. Another specific feature of GT-W was a several fold increase in the level of the Ycf39-Hlip complex previously postulated to participate in the recycling of Chl molecules. Genome re-sequencing revealed that the phenotype of GT-W is related to the tandem duplication of a large region of the chromosome that contains 100 genes including ones encoding D1, Psb28, and other PSII-related proteins as well as Mg-protoporphyrin methylester cyclase (Cycl). Interestingly, the duplication was completely eliminated after keeping GT-W cells on agar plates under photoautotrophic conditions for several months. The GT-W strain without a duplication showed no obvious defects in PSII assembly and resembled the GT-P substrain. Although, we do not exactly know how the duplication affected the GT-W phenotype, we hypothesize that changed stoichiometry of protein components of PSII and Chl biosynthetic machinery encoded by the duplicated region impaired proper assembly and functioning of these multi-subunit complexes. The study also emphasizes the crucial importance of a proper control strain for evaluating Synechocystis mutants.
Zobrazit více v PubMed
Birchler J. A., Veitia R. A. (2012). Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc. Natl. Acad. Sci. U.S.A. 109, 14746–14753. 10.1073/pnas.1207726109 PubMed DOI PMC
Boehm M., Romero E., Reisinger V., Yu J., Komenda J., Eichacker L. A., et al. . (2011). Investigating the early stages of photosystem II assembly in Synechocystis sp. PCC 6803: isolation of CP47 and CP43 complexes. J. Biol. Chem. 286, 14812–14819. 10.1074/jbc.M110.207944 PubMed DOI PMC
Boehm M., Yu J., Reisinger V., Beckova M., Eichacker L. A., Schlodder E., et al. . (2012). Subunit composition of CP43-less photosystem II complexes of Synechocystis sp PCC 6803: implications for the assembly and repair of photosystem II. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 3444–3454. 10.1098/rstb.2012.0066 PubMed DOI PMC
Coate J. E., Schlueter J. A., Whaley A. M., Doyle J. J. (2011). Comparative evolution of photosynthetic genes in response to polyploid and nonpolyploid duplication. Plant Physiol. 155, 2081–2095. 10.1104/pp.110.169599 PubMed DOI PMC
Dobáková M., Sobotka R., Tichý M., Komenda J. (2009). Psb28 protein is involved in the biogenesis of the Photosystem II Inner Antenna CP47 (PsbB) in the Cyanobacterium Synechocystis sp PCC 6803. Plant Physiol. 149, 1076–1086. 10.1104/pp.108.130039 PubMed DOI PMC
Ferreira K. N., Iverson T. M., Maghlaoui K., Barber J., Iwata S. (2004). Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838. 10.1126/science.1093087 PubMed DOI
Guskov A., Kern J., Gabdulkhakov A., Broser M., Zouni A., Saenger W. (2009). Cyanobacterial photosystem II at 2.9-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 16, 334–342. 10.1038/nsmb.1559 PubMed DOI
Haag E., Eaton-Rye J. J., Renger G., Vermaas W. F. J. (1993). Functionally important domains of the large hydrophilic loop of CP47 as probed by oligonucleotide-directed mutagenesis in Synechocystis sp. PCC 6803. Biochemistry 32, 4444–4454. 10.1021/bi00067a037 PubMed DOI
Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W., Krauss N. (2001). Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411, 909–917. 10.1038/35082000 PubMed DOI
Kaczmarzyk D., Fulda M. (2010). Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol. 152, 1598–1610. 10.1104/pp.109.148007 PubMed DOI PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. . (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. 10.1093/bioinformatics/bts199 PubMed DOI PMC
Knoppová J., Sobotka R., Tichý M., Yu J., Konik P., Halada P., et al. . (2014). Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. Plant Cell 26, 1200–1212. 10.1105/tpc.114.123919 PubMed DOI PMC
Komenda J., Knoppová J., Kopečná J., Sobotka R., Halada P., Yu J. F., et al. . (2012a). The Psb27 assembly factor binds to the CP43 complex of photosystem II in the Cyanobacterium Synechocystis sp PCC 6803. Plant Physiol. 158, 476–486. 10.1104/pp.111.184184 PubMed DOI PMC
Komenda J., Masojídek J. (1995). Structural changes of Photosystem II complex induced by high irradiance in cyanobacterial cells. Eur. J. Biochem. 233, 677–682. 10.1111/j.1432-1033.1995.677_2.x PubMed DOI
Komenda J., Sobotka R., Nixon P. J. (2012b). Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant Biol. 15, 245–251. 10.1016/j.pbi.2012.01.017 PubMed DOI
Kopečná J., Komenda J., Bučínská L., Sobotka R. (2012). Long-Term acclimation of the cyanobacterium Synechocystis sp PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric Photosystem I. Plant Physiol. 160, 2239–2250. 10.1104/pp.112.207274 PubMed DOI PMC
Kopečná J., Pilný J., Krynická V., Tomčala A., Kis M., Gombos Z., et al. . (2015). Lack of phosphatidylglycerol inhibits chlorophyll biosynthesis at multiple sites and limits chlorophyllide reutilization in Synechocystis sp. strain PCC 6803. Plant Physiol. 169, 1307–1317. 10.1104/pp.15.01150 PubMed DOI PMC
McCarren J., Brahamsha B. (2007). SwmB, a 1.12-megadalton protein that is required for nonflagellar swimming motility in Synechococcus. J. Bacteriol. 189, 1158–1162. 10.1128/JB.01500-06 PubMed DOI PMC
Morris J., Crawford T., Jeffs A., Stockwell P., Eaton-Rye J., Summerfield T. (2014). Whole genome re-sequencing of two ‘wild-type’strains of the model cyanobacterium Synechocystis sp. PCC 6803. New Zeal. J. Bot. 52, 36–47. 10.1080/0028825X.2013.846267 DOI
Nixon P. J., Michoux F., Yu J. F., Boehm M., Komenda J. (2010). Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16. 10.1093/aob/mcq059 PubMed DOI PMC
Papp B., Pál C., Hurst L. D. (2003). Dosage sensitivity and the evolution of gene families in yeast. Nature 424, 194–197. 10.1038/nature01771 PubMed DOI
Porra R. J., Thompson W. A., Kriedemann P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA-Bioenergetics 975, 384–394. 10.1016/S0005-2728(89)80347-0 DOI
Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61. 10.1099/00221287-111-1-1 DOI
Rizzon C., Ponger L., Gaut B. S. (2006). Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comp. Biol. 2:e115. 10.1371/journal.pcbi.0020115 PubMed DOI PMC
Roose J. L., Wegener K. M., Pakrasi H. B. (2007). The extrinsic proteins of photosystem II. Photosynth. Res. 92, 369–387. 10.1007/s11120-006-9117-1 PubMed DOI
Sakata S., Mizusawa N., Kubota-Kawai H., Sakurai I., Wada H. (2013). Psb28 is involved in recovery of photosystem II at high temperature in Synechocystis sp. PCC 6803. BBA-Bioenergetics 1827, 50–59. 10.1016/j.bbabio.2012.10.004 PubMed DOI
Sobotka R. (2014). Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria. Photosynth. Res. 119, 223–232. 10.1007/s11120-013-9797-2 PubMed DOI
Tichy M., Vermaas W. (2000). Combinatorial mutagenesis and pseudorevertant analysis to characterize regions in loop E of the CP47 protein in Synechocystis sp. PCC 6803. Eur. J. Biochem. 267, 6296–6301. 10.1046/j.1432-1327.2000.01718.x PubMed DOI
Umena Y., Kawakami K., Shen J. R., Kamiya N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature 473, 55–60. 10.1038/nature09913 PubMed DOI
Williams J. G. K. (1988). Construction of specific mutations in Photosystem-II photosynthetic reaction center by genetic-engineering methods in Synechocystis-6803. Method. Enzymol. 167, 766–778. 10.1016/0076-6879(88)67088-1 DOI
Chlorophyll biosynthesis under the control of arginine metabolism
High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions
Plant LHC-like proteins show robust folding and static non-photochemical quenching
Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria
Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane
Chlorophyll f synthesis by a super-rogue photosystem II complex