Plant LHC-like proteins show robust folding and static non-photochemical quenching
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
854126
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
19-28323X
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
34824207
PubMed Central
PMC8617258
DOI
10.1038/s41467-021-27155-1
PII: 10.1038/s41467-021-27155-1
Knihovny.cz E-zdroje
- MeSH
- chlorofyl metabolismus MeSH
- karotenoidy metabolismus MeSH
- multimerizace proteinu MeSH
- mutace MeSH
- přenos energie MeSH
- proteiny chloroplastové chemie genetika metabolismus MeSH
- proteiny huseníčku chemie genetika metabolismus MeSH
- sbalování proteinů MeSH
- Synechocystis genetika metabolismus MeSH
- vazba proteinů MeSH
- xanthofyly metabolismus MeSH
- zeaxanthiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- ELIP2 protein, Arabidopsis MeSH Prohlížeč
- karotenoidy MeSH
- light-harvesting-like protein 3, Arabidopsis MeSH Prohlížeč
- proteiny chloroplastové MeSH
- proteiny huseníčku MeSH
- violaxanthin MeSH Prohlížeč
- xanthofyly MeSH
- zeaxanthiny MeSH
Life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Plants collect photons by light harvesting complexes (LHC)-abundant membrane proteins containing chlorophyll and xanthophyll molecules. LHC-like proteins are similar in their amino acid sequence to true LHC antennae, however, they rather serve a photoprotective function. Whether the LHC-like proteins bind pigments has remained unclear. Here, we characterize plant LHC-like proteins (LIL3 and ELIP2) produced in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). Both proteins were associated with chlorophyll a (Chl) and zeaxanthin and LIL3 was shown to be capable of quenching Chl fluorescence via direct energy transfer from the Chl Qy state to zeaxanthin S1 state. Interestingly, the ability of the ELIP2 protein to quench can be acquired by modifying its N-terminal sequence. By employing Synechocystis carotenoid mutants and site-directed mutagenesis we demonstrate that, although LIL3 does not need pigments for folding, pigments stabilize the LIL3 dimer.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Microbiology Academy of Sciences of the Czech Republic Třeboň Czech Republic
Zobrazit více v PubMed
Hashimoto H, Uragami C, Cogdell RJ. Carotenoids and photosynthesis. Subcell. Biochem. 2016;79:111–139. PubMed
Toporik H, Li J, Williams D, Chiu PL, Mazor Y. The structure of the stress-induced photosystem I-IsiA antenna supercomplex. Nat. Struct. Mol. Biol. 2019;26:443–449. PubMed
Pazderník M, Mareš J, Pilný J, Sobotka R. The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration. J. Biol. Chem. 2019;294:11131–11143. PubMed PMC
Shukla MK, et al. Binding of pigments to the cyanobacterial high-light-inducible protein HliC. Photosyn. Res. 2018;137:29–39. PubMed
Staleva H, et al. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 2015;11:287–291. PubMed
Hey D, Grimm B. ONE-HELIX PROTEIN1 and 2 form heterodimers to bind chlorophyll in photosystem II biogenesis. Plant Physiol. 2020;183:179–193. PubMed PMC
Hontani Y, et al. Molecular origin of photoprotection in cyanobacteria probed by watermarked femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 2018;9:1788–1792. PubMed PMC
Komenda J, Sobotka R. Cyanobacterial high-light-inducible proteins–protectors of chlorophyll-protein synthesis and assembly. Biochim. Biophys. Acta. 2016;1857:288–295. PubMed
Engelken, J., Funk, C. & Adamska, I. In Functional Genomics and Evolution of Photosynthetic Systems Vol. 33 (eds R. L. Burnap & W. F. J. Vermaas) 265–284 (2012).
Rochaix JD. Regulation and dynamics of the light-harvesting system. Annu. Rev. Plant Biol. 2014;65:287–309. PubMed
Li Y, et al. OHP1, OHP2, and HCF244 form a transient functional complex with the photosystem II reaction center. Plant Physiol. 2019;179:195–208. PubMed PMC
Tanaka R, et al. LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proc. Natl Acad. Sci. USA. 2010;107:16721–16725. PubMed PMC
Li C, et al. A lil3 chlp double mutant with exclusive accumulation of geranylgeranyl chlorophyll displays a lethal phenotype in rice. BMC Plant Biol. 2019;19:456. PubMed PMC
Hutin C, et al. Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc. Natl Acad. Sci. USA. 2003;100:4921–4926. PubMed PMC
Tzvetkova-Chevolleau T, et al. The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Plant J. 2007;50:795–809. PubMed
Zhao L, et al. A light harvesting complex- like protein in maintenance of photosynthetic components in Chlamydomonas. Plant Physiol. 2017;174:2419–2433. PubMed PMC
Reisinger V, Ploscher M, Eichacker LA. Lil3 assembles as chlorophyll-binding protein complex during deetiolation. FEBS Lett. 2008;582:1547–1551. PubMed
Adamska I, Roobol-Boza M, Lindahl M, Andersson B. Isolation of pigment-binding early light-inducible proteins from pea. Eur. J. Biochem. 1999;260:453–460. PubMed
Mork-Jansson AE, Gargano D, Kmiec K, Furnes C, Shevela D, Eichacker LA. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana. FEBS Lett. 2015;589:3064–3070. PubMed
Mork-Jansson AE, Eichacker LA. Characterization of chlorophyll binding to LIL3. PLoS ONE. 2018;13:e0192228. PubMed PMC
Llansola-Portoles MJ, et al. Twisting a β-carotene, an adaptive trick from nature for dissipating energy during photoprotection. J. Biol. Chem. 2017;292:1396–1403. PubMed PMC
Liguori N, et al. Different carotenoid conformations have distinct functions in light-harvesting regulation in plants. Nat. Commun. 2017;8:1994. PubMed PMC
Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kuhlbrandt W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J. 2005;24:919–928. PubMed PMC
Ruban AV, Lee PJ, Wentworth M, Young AJ, Horton P. Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. J. Biol. Chem. 1999;274:10458–10465. PubMed
Formaggio E, Cinque G, Bassi R. Functional architecture of the major light-harvesting complex from higher plants. J. Mol. Biol. 2001;314:1157–1166. PubMed
Horn R, Paulsen H. Early steps in the assembly of light-harvesting chlorophyll a/b complex: time-resolved fluorescence measurements. J. Biol. Chem. 2004;279:44400–44406. PubMed
Hobe S, Fey H, Rogl H, Paulsen H. Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex. J. Biol. Chem. 2003;278:5912–5919. PubMed
Pi, X. et al. The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. Science365, eaax4406 (2019). PubMed
Pi X, et al. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc. Natl Acad. Sci. USA. 2018;115:4423–4428. PubMed PMC
Georgakopoulou S, et al. Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. Biochemistry. 2007;46:4745–4754. PubMed
Wang, W. et al. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science363, eaav0365 (2019). PubMed
Sheng X, Liu X, Cao P, Li M, Liu Z. Structural roles of lipid molecules in the assembly of plant PSII-LHCII supercomplex. Biophys. Rep. 2018;4:189–203. PubMed PMC
Hobe S, Niemeier H, Bender A, Paulsen H. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants. Eur. J. Biochem. 2000;267:616–624. PubMed
Pogson BJ, Niyogi KK, Bjorkman O, DellaPenna D. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc. Natl Acad. Sci. USA. 1998;95:13324–13329. PubMed PMC
Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell. 1996;8:1627–1639. PubMed PMC
Ruban AV, Horton P. The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. Plant Physiol. 1999;119:531–542. PubMed PMC
Fox KF, et al. A possible molecular basis for photoprotection in the minor antenna proteins of plants. Biochim Biophys. Acta Bioenerg. 2018;1859:471–481. PubMed
Reinsberg D, Ottmann K, Booth PJ, Paulsen H. Effects of chlorophyll a, chlorophyll b, and xanthophylls on the in vitro assembly kinetics of the major light-harvesting chlorophyll a/b complex, LHCIIb. J. Mol. Biol. 2001;308:59–67. PubMed
Dockter C, et al. Rigid core and flexible terminus: structure of solubilized light-harvesting chlorophyll a/b complex (LHCII) measured by EPR. J. Biol. Chem. 2012;287:2915–2925. PubMed PMC
Remelli R, Varotto C, Sandona D, Croce R, Bassi R. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J. Biol. Chem. 1999;274:33510–33521. PubMed
Takahashi K, Takabayashi A, Tanaka A, Tanaka R. Functional analysis of light-harvesting-like protein 3 (LIL3) and its light-harvesting chlorophyll-binding motif in Arabidopsis. J. Biol. Chem. 2014;289:987–999. PubMed PMC
Hey D, et al. LIL3, a light-harvesting complex protein, links terpenoid and tetrapyrrole biosynthesis in Arabidopsis thaliana. Plant Physiol. 2017;174:1037–1050. PubMed PMC
Tichý M, et al. Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front. Plant. Sci. 2016;7:648. PubMed PMC
Chidgey JW, et al. A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell. 2014;26:1267–1279. PubMed PMC
Cao TJ, et al. Manipulation of Synechocystis sp. PCC 6803 as a platform for functional identification of genes involved in carotenoid metabolism. Plant Biotechnol. J. 2020;18:605–607. PubMed PMC
Toth TN, et al. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. Biochim. Biophys. Acta. 2015;1847:1153–1165. PubMed
Proctor MS, et al. Xanthophyll carotenoids stabilise the association of cyanobacterial chlorophyll synthase with the LHC-like protein HliD. Biochem. J. 2020;477:4021–4036. PubMed
Kopečná J, Komenda J, Bučinská L, Sobotka R. Long-term acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol. 2012;160:2239–2250. PubMed PMC
Komenda J, Krynická V, Zakar T. Isolation of thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803 and analysis of their photosynthetic pigment-protein complexes by clear native-PAGE. Bio-Protoc. 2019;9:e3126. PubMed PMC
Lohscheider JN, et al. Altered levels of LIL3 isoforms in Arabidopsis lead to disturbed pigment-protein assembly and chlorophyll synthesis, chlorotic phenotype and impaired photosynthetic performance. Plant Cell Environ. 2015;38:2115–2127. PubMed
Sun T, et al. ORANGE represses chloroplast biogenesis in etiolated Arabidopsis cotyledons via interaction with TCP14. Plant Cell. 2019;31:2996–3014. PubMed PMC
Snellenburg JJ, Laptenok S, Seger R, Mullen KM, van Stokkum IHM. Glotaran: a Java-based graphical user interface for the R package TIMP. J. Stat. Softw. 2012;49:1–22.
High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions