Plant LHC-like proteins show robust folding and static non-photochemical quenching

. 2021 Nov 25 ; 12 (1) : 6890. [epub] 20211125

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34824207

Grantová podpora
854126 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
19-28323X Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 34824207
PubMed Central PMC8617258
DOI 10.1038/s41467-021-27155-1
PII: 10.1038/s41467-021-27155-1
Knihovny.cz E-zdroje

Life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Plants collect photons by light harvesting complexes (LHC)-abundant membrane proteins containing chlorophyll and xanthophyll molecules. LHC-like proteins are similar in their amino acid sequence to true LHC antennae, however, they rather serve a photoprotective function. Whether the LHC-like proteins bind pigments has remained unclear. Here, we characterize plant LHC-like proteins (LIL3 and ELIP2) produced in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). Both proteins were associated with chlorophyll a (Chl) and zeaxanthin and LIL3 was shown to be capable of quenching Chl fluorescence via direct energy transfer from the Chl Qy state to zeaxanthin S1 state. Interestingly, the ability of the ELIP2 protein to quench can be acquired by modifying its N-terminal sequence. By employing Synechocystis carotenoid mutants and site-directed mutagenesis we demonstrate that, although LIL3 does not need pigments for folding, pigments stabilize the LIL3 dimer.

Erratum v

PubMed

Zobrazit více v PubMed

Hashimoto H, Uragami C, Cogdell RJ. Carotenoids and photosynthesis. Subcell. Biochem. 2016;79:111–139. PubMed

Toporik H, Li J, Williams D, Chiu PL, Mazor Y. The structure of the stress-induced photosystem I-IsiA antenna supercomplex. Nat. Struct. Mol. Biol. 2019;26:443–449. PubMed

Pazderník M, Mareš J, Pilný J, Sobotka R. The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration. J. Biol. Chem. 2019;294:11131–11143. PubMed PMC

Shukla MK, et al. Binding of pigments to the cyanobacterial high-light-inducible protein HliC. Photosyn. Res. 2018;137:29–39. PubMed

Staleva H, et al. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 2015;11:287–291. PubMed

Hey D, Grimm B. ONE-HELIX PROTEIN1 and 2 form heterodimers to bind chlorophyll in photosystem II biogenesis. Plant Physiol. 2020;183:179–193. PubMed PMC

Hontani Y, et al. Molecular origin of photoprotection in cyanobacteria probed by watermarked femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 2018;9:1788–1792. PubMed PMC

Komenda J, Sobotka R. Cyanobacterial high-light-inducible proteins–protectors of chlorophyll-protein synthesis and assembly. Biochim. Biophys. Acta. 2016;1857:288–295. PubMed

Engelken, J., Funk, C. & Adamska, I. In Functional Genomics and Evolution of Photosynthetic Systems Vol. 33 (eds R. L. Burnap & W. F. J. Vermaas) 265–284 (2012).

Rochaix JD. Regulation and dynamics of the light-harvesting system. Annu. Rev. Plant Biol. 2014;65:287–309. PubMed

Li Y, et al. OHP1, OHP2, and HCF244 form a transient functional complex with the photosystem II reaction center. Plant Physiol. 2019;179:195–208. PubMed PMC

Tanaka R, et al. LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proc. Natl Acad. Sci. USA. 2010;107:16721–16725. PubMed PMC

Li C, et al. A lil3 chlp double mutant with exclusive accumulation of geranylgeranyl chlorophyll displays a lethal phenotype in rice. BMC Plant Biol. 2019;19:456. PubMed PMC

Hutin C, et al. Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc. Natl Acad. Sci. USA. 2003;100:4921–4926. PubMed PMC

Tzvetkova-Chevolleau T, et al. The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Plant J. 2007;50:795–809. PubMed

Zhao L, et al. A light harvesting complex- like protein in maintenance of photosynthetic components in Chlamydomonas. Plant Physiol. 2017;174:2419–2433. PubMed PMC

Reisinger V, Ploscher M, Eichacker LA. Lil3 assembles as chlorophyll-binding protein complex during deetiolation. FEBS Lett. 2008;582:1547–1551. PubMed

Adamska I, Roobol-Boza M, Lindahl M, Andersson B. Isolation of pigment-binding early light-inducible proteins from pea. Eur. J. Biochem. 1999;260:453–460. PubMed

Mork-Jansson AE, Gargano D, Kmiec K, Furnes C, Shevela D, Eichacker LA. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana. FEBS Lett. 2015;589:3064–3070. PubMed

Mork-Jansson AE, Eichacker LA. Characterization of chlorophyll binding to LIL3. PLoS ONE. 2018;13:e0192228. PubMed PMC

Llansola-Portoles MJ, et al. Twisting a β-carotene, an adaptive trick from nature for dissipating energy during photoprotection. J. Biol. Chem. 2017;292:1396–1403. PubMed PMC

Liguori N, et al. Different carotenoid conformations have distinct functions in light-harvesting regulation in plants. Nat. Commun. 2017;8:1994. PubMed PMC

Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kuhlbrandt W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J. 2005;24:919–928. PubMed PMC

Ruban AV, Lee PJ, Wentworth M, Young AJ, Horton P. Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. J. Biol. Chem. 1999;274:10458–10465. PubMed

Formaggio E, Cinque G, Bassi R. Functional architecture of the major light-harvesting complex from higher plants. J. Mol. Biol. 2001;314:1157–1166. PubMed

Horn R, Paulsen H. Early steps in the assembly of light-harvesting chlorophyll a/b complex: time-resolved fluorescence measurements. J. Biol. Chem. 2004;279:44400–44406. PubMed

Hobe S, Fey H, Rogl H, Paulsen H. Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex. J. Biol. Chem. 2003;278:5912–5919. PubMed

Pi, X. et al. The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. Science365, eaax4406 (2019). PubMed

Pi X, et al. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc. Natl Acad. Sci. USA. 2018;115:4423–4428. PubMed PMC

Georgakopoulou S, et al. Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. Biochemistry. 2007;46:4745–4754. PubMed

Wang, W. et al. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science363, eaav0365 (2019). PubMed

Sheng X, Liu X, Cao P, Li M, Liu Z. Structural roles of lipid molecules in the assembly of plant PSII-LHCII supercomplex. Biophys. Rep. 2018;4:189–203. PubMed PMC

Hobe S, Niemeier H, Bender A, Paulsen H. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants. Eur. J. Biochem. 2000;267:616–624. PubMed

Pogson BJ, Niyogi KK, Bjorkman O, DellaPenna D. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc. Natl Acad. Sci. USA. 1998;95:13324–13329. PubMed PMC

Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell. 1996;8:1627–1639. PubMed PMC

Ruban AV, Horton P. The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. Plant Physiol. 1999;119:531–542. PubMed PMC

Fox KF, et al. A possible molecular basis for photoprotection in the minor antenna proteins of plants. Biochim Biophys. Acta Bioenerg. 2018;1859:471–481. PubMed

Reinsberg D, Ottmann K, Booth PJ, Paulsen H. Effects of chlorophyll a, chlorophyll b, and xanthophylls on the in vitro assembly kinetics of the major light-harvesting chlorophyll a/b complex, LHCIIb. J. Mol. Biol. 2001;308:59–67. PubMed

Dockter C, et al. Rigid core and flexible terminus: structure of solubilized light-harvesting chlorophyll a/b complex (LHCII) measured by EPR. J. Biol. Chem. 2012;287:2915–2925. PubMed PMC

Remelli R, Varotto C, Sandona D, Croce R, Bassi R. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J. Biol. Chem. 1999;274:33510–33521. PubMed

Takahashi K, Takabayashi A, Tanaka A, Tanaka R. Functional analysis of light-harvesting-like protein 3 (LIL3) and its light-harvesting chlorophyll-binding motif in Arabidopsis. J. Biol. Chem. 2014;289:987–999. PubMed PMC

Hey D, et al. LIL3, a light-harvesting complex protein, links terpenoid and tetrapyrrole biosynthesis in Arabidopsis thaliana. Plant Physiol. 2017;174:1037–1050. PubMed PMC

Tichý M, et al. Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front. Plant. Sci. 2016;7:648. PubMed PMC

Chidgey JW, et al. A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell. 2014;26:1267–1279. PubMed PMC

Cao TJ, et al. Manipulation of Synechocystis sp. PCC 6803 as a platform for functional identification of genes involved in carotenoid metabolism. Plant Biotechnol. J. 2020;18:605–607. PubMed PMC

Toth TN, et al. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. Biochim. Biophys. Acta. 2015;1847:1153–1165. PubMed

Proctor MS, et al. Xanthophyll carotenoids stabilise the association of cyanobacterial chlorophyll synthase with the LHC-like protein HliD. Biochem. J. 2020;477:4021–4036. PubMed

Kopečná J, Komenda J, Bučinská L, Sobotka R. Long-term acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol. 2012;160:2239–2250. PubMed PMC

Komenda J, Krynická V, Zakar T. Isolation of thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803 and analysis of their photosynthetic pigment-protein complexes by clear native-PAGE. Bio-Protoc. 2019;9:e3126. PubMed PMC

Lohscheider JN, et al. Altered levels of LIL3 isoforms in Arabidopsis lead to disturbed pigment-protein assembly and chlorophyll synthesis, chlorotic phenotype and impaired photosynthetic performance. Plant Cell Environ. 2015;38:2115–2127. PubMed

Sun T, et al. ORANGE represses chloroplast biogenesis in etiolated Arabidopsis cotyledons via interaction with TCP14. Plant Cell. 2019;31:2996–3014. PubMed PMC

Snellenburg JJ, Laptenok S, Seger R, Mullen KM, van Stokkum IHM. Glotaran: a Java-based graphical user interface for the R package TIMP. J. Stat. Softw. 2012;49:1–22.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions

. 2022 Jun ; 152 (3) : 317-332. [epub] 20220226

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...