High-light-inducible proteins control associations between chlorophyll synthase and the Photosystem II biogenesis factor Ycf39

. 2025 May 30 ; 198 (2) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40413779

Grantová podpora
Czech Science Foundation
Czech Ministry of Education
CZ.02.01.01/00/22_008/0004624 PHOTOMACHINES
854126 European Research Council - International
URF\R1\191548 Royal Society University Research Fellowship

The biogenesis of Photosystem II is a complicated process requiring numerous auxiliary factors to assist in all steps of its assembly. The cyanobacterial protein Ycf39 forms a stress-induced complex with 2 small chlorophyll-binding, High-light-inducible proteins C and D (HliC and HliD), and has been reported to participate in the insertion of chlorophyll molecules into the central D1 subunit of Photosystem II. However, how this process is organized remains unknown. Here, we show that Ycf39 and both HliC and HliD can form distinct complexes with chlorophyll synthase (ChlG) in the model cyanobacterium Synechocystis sp. PCC 6803. We isolated and characterized ChlG complexes from various strains grown under different conditions and provide a mechanistic view of the docking of Ycf39 to ChlG via HliD and the structural role of HliC. In the absence of stress, chlorophyll is produced by the ChlG-HliD2-ChlG complex, which is stabilized by chlorophyll and zeaxanthin molecules bound to the HliD homodimer. The switch to high light leads to stress pressure and greatly elevated synthesis of HliC, resulting in the replacement of HliD homodimers with HliC-HliD heterodimers. Unlike HliD, HliC cannot interact directly with ChlG or Ycf39. Therefore, the original ChlG-HliD2-ChlG complex is converted into a ChlG-HliD-HliC hetero-trimer that presumably binds transiently to Ycf39 and the nascent D1 polypeptide. We speculate that this molecular machinery promotes the delivery of chlorophyll to D1 upon high-light-induced chlorophyll deficiency. The HliD homodimers formed under standard, nonstress growth conditions and attached to ChlG could serve as an emergency chlorophyll reserve.

Zobrazit více v PubMed

Abramson  J, Adler  J, Dunger  J, Evans  R, Green  T, Pritzel  A, Ronneberger  O, Willmore  L, Ballard  AJ, Bambrick  J, et al.  Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024:630(8016):493–500. 10.1038/s41586-024-07487-w PubMed DOI PMC

Beck  J, Lohscheider  JN, Albert  S, Andersson  U, Mendgen  KW, Rojas-Stutz  MC, Adamska  I, Funck  D. Small one-helix proteins are essential for photosynthesis in Arabidopsis. Front Plant Sci. 2017:8:7. 10.3389/fpls.2017.00007 PubMed DOI PMC

Best  RB, Zhu  X, Shim  J, Lopes  PE, Mittal  J, Feig  M, Mackerell  AD, Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ(1) and χ(2) dihedral angles. J Chem Theory Comput. 2012:8(9):3257–3273. 10.1021/ct300400x PubMed DOI PMC

Bučinská  L, Kiss  E, Koník  P, Knoppová  J, Komenda  J, Sobotka  R. The ribosome-bound protein Pam68 promotes insertion of chlorophyll into the CP47 subunit of photosystem II. Plant Physiol. 2018:176:2931–2942. 10.1104/pp.18.00061 PubMed DOI PMC

Chambers  MC, Maclean  B, Burke  R, Amodei  D, Ruderman  DL, Neumann  S, Gatto  L, Fischer  B, Pratt  B, Egertson  J, et al.  A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012:30(10):918–920. 10.1038/nbt.2377 PubMed DOI PMC

Chen  GE, Hitchcock  A, Mareš  J, Gong  Y, Tichý  M, Pilný  J, Kovářová  L, Zdvihalová  B, Xu  J, Hunter  CN, et al.  Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria. Proc Natl Acad Sci U S A. 2021:118:e2024633118. 10.1073/pnas.2024633118 PubMed DOI PMC

Chidgey  JW, Linhartová  M, Komenda  J, Jackson  PJ, Dickman  MJ, Canniffe  DP, Koník  P, Pilný  J, Hunter  CN, Sobotka  R. A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell. 2014:26(3):1267–1279. 10.1105/tpc.114.124495 PubMed DOI PMC

Chotewutmontri  P, Barkan  A. Multilevel effects of light on ribosome dynamics in chloroplasts program genome-wide and psbA-specific changes in translation. PLoS Genet. 2018:14(8):e1007555. 10.1371/journal.pgen.1007555 PubMed DOI PMC

de la Rosa-Trevin  JM, Quintana  A, Del Cano  L, Zaldivar  A, Foche  I, Gutiérrez  J, Gómez-Blanco  J, Burguet-Castell  J, Cuenca-Alba  J, Abrishami  V, et al.  Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. J Struct Biol. 2016:195(1):93–99. 10.1016/j.jsb.2016.04.010 PubMed DOI

Dobáková  M, Sobotka  R, Tichý  M, Komenda  J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 2009:149(2):1076–1086. 10.1104/pp.108.130039 PubMed DOI PMC

Havaux  M, Guedeney  G, He  QF, Grossman  AR. Elimination of high-light-inducible polypeptides related to eukaryotic chlorophyll a/b-binding proteins results in aberrant photoacclimation in Synechocystis PCC 6803. Biochim Biophys Acta Bioenerg. 2003:1557:21–33. 10.1016/S0005-2728(02)00391-2 PubMed DOI

He  Q, Dolganov  N, Björkman  O, Grossman  AR. The high light-inducible polypeptides in Synechocystis PCC 6803. Expression and function in high light. J Biol Chem. 2001:276(1):306–314. 10.1074/jbc.M008686200 PubMed DOI

Hey  D, Grimm  B. ONE-HELIX PROTEIN 2 (OHP2) is required for the stability of OHP1 and assembly factor HCF244 and is functionally linked to PSII biogenesis. Plant Physiol. 2018:177(4):1453–1472. 10.1104/pp.18.00540 PubMed DOI PMC

Hihara  Y, kamei  A, Kanehisa  M, Kaplan  A, Ikeuchi  M. DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell. 2001:13(4):793–806. 10.1105/tpc.13.4.793 PubMed DOI PMC

Hitchcock  A, Jackson  PJ, Chidgey  JW, Dickman  MJ, Hunter  CN, Canniffe  DP. Biosynthesis of chlorophyll a in a purple bacterial phototroph and assembly into a plant chlorophyll-protein complex. ACS Synth Biol. 2016:5(9):948–954. 10.1021/acssynbio.6b00069 PubMed DOI

Hollingshead  S, Kopečná  J, Armstrong  DR, Bučinská  L, Jackson  PJ, Chen  GE, Dickman  MJ, Williamson  MP, Sobotka  R, Hunter  CN. Synthesis of chlorophyll-binding proteins in a fully segregated Δycf54 strain of the Cyanobacterium Synechocystis PCC 6803. Front Plant Sci. 2016:7:292. 10.3389/fpls.2016.00292 PubMed DOI PMC

Jackson  PJ, Hitchcock  A, Brindley  AA, Dickman  MJ, Hunter  CN. Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. Photosynth Res. 2023:155(3):219–245. 10.1007/s11120-022-00990-z PubMed DOI PMC

Jo  S, Kim  T, Iyer  VG, Im  W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008:29(11):1859–1865. 10.1002/jcc.20945 PubMed DOI

Kameo  S, Aso  M, Furukawa  R, Matsumae  R, Yokono  M, Fujita  T, Tanaka  A, Tanaka  R, Takabayashi  A. Substitution of deoxycholate with the amphiphilic polymer amphipol A8-35 improves the stability of large protein complexes during native electrophoresis. Plant Cell Physiol. 2021:62(2):348–355. 10.1093/pcp/pcaa165 PubMed DOI

Katoh  K, Standley  DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013:30(4):772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Klein  RR, Gamble  PE, Mullet  JE. Light-dependent accumulation of radiolabeled plastid-encoded chlorophyll a-apoproteins requires chlorophyll a: I. Analysis of chlorophyll-deficient mutants and phytochrome involvement. Plant Physiol. 1988:88(4):1246–1256. 10.1104/pp.88.4.1246 PubMed DOI PMC

Knoppová  J, Komenda  J. Sequential deletions of photosystem II assembly factors Ycf48, Ycf39 and Pam68 result in progressive loss of autotrophy in the cyanobacterium Synechocystis PCC 6803. Folia Microbiol (Praha). 2019:64(5):683–689. 10.1007/s12223-019-00736-w PubMed DOI

Knoppová  J, Sobotka  R, Tichý  M, Yu  J, Koník  P, Halada  P, Nixon  PJ, Komenda  J. Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. Plant Cell. 2014:26(3):1200–1212. 10.1105/tpc.114.123919 PubMed DOI PMC

Knoppová  J, Sobotka  R, Yu  J, Bečková  M, Pilný  J, Trinugroho  JP, Csefalvay  L, Bína  D, Nixon  PJ, Komenda  J. Assembly of D1/D2 complexes of photosystem II: binding of pigments and a network of auxiliary proteins. Plant Physiol. 2022:189(2):790–804. 10.1093/plphys/kiac045 PubMed DOI PMC

Komenda  J, Sobotka  R, Nixon  PJ. The biogenesis and maintenance of PSII: recent advances and current challenges. Plant Cell. 2024:36(10):3997–4013. 10.1093/plcell/koae082 PubMed DOI PMC

Konert  MM, Wysocka  A, Koník  P, Sobotka  R. High-light-inducible proteins HliA and HliB: pigment binding and protein–protein interactions. Photosynth Res. 2022:152(3):317–332. 10.1007/s11120-022-00904-z PubMed DOI

Kopečná  J, Komenda  J, Bučinská  L, Sobotka  R. Long-term acclimation of the Cyanobacterium Synechocystis sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol. 2012:160(4):2239–2250. 10.1104/pp.112.207274 PubMed DOI PMC

Koskela  MM, Skotnicová  P, Kiss  É, Sobotka  R. Purification of protein-complexes from the Cyanobacterium Synechocystis sp. PCC 6803 using FLAG-affinity chromatography. Bio Protoc. 2020:10(10):e3616. 10.21769/BioProtoc.3616 PubMed DOI PMC

Kouřil  R, Strouhal  O, Nosek  L, Lenobel  R, Chamrad  I, Boekema  EJ, Sebela  M, Ilík  P. Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. Plant J. 2014:77(4):568–576. 10.1111/tpj.12402 PubMed DOI

Krynická  V, Skotnicová  P, Jackson  PJ, Barnett  S, Yu  J, Wysocka  A, Kana  R, Dickman  MJ, Nixon  PJ, Hunter  CN, et al.  Ftsh4 protease controls biogenesis of the PSII complex by dual regulation of high light-inducible proteins. Plant Commun. 2023:4(1):100502. 10.1016/j.xplc.2022.100502 PubMed DOI PMC

Li  Y, Liu  B, Zhang  J, Kong  F, Zhang  L, Meng  H, Li  W, Rochaix  JD, Li  D, Peng  L. OHP1, OHP2, and HCF244 form a transient functional complex with the photosystem II reaction center. Plant Physiol. 2019:179(1):195–208.. 10.1104/pp.18.01231 PubMed DOI PMC

Link  S, Meierhoff  K, Westhoff  P. The atypical short-chain dehydrogenases HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of Arabidopsis thaliana. Plant Physiol. 2012:160(4):2202–2218. 10.1104/pp.112.205104 PubMed DOI PMC

Lomize  MA, Pogozheva  ID, Joo  H, Mosberg  HI, Lomize  AL. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012:40(D1):D370–D376. 10.1093/nar/gkr703 PubMed DOI PMC

Maeda  H, Takahashi  K, Ueno  Y, Sakata  K, Yokoyama  A, Yarimizu  K, Myouga  F, Shinozaki  K, Ozawa  SI, Takahashi  Y, et al.  Characterization of photosystem II assembly complexes containing ONE-HELIX PROTEIN1 in Arabidopsis thaliana. J Plant Res. 2022:135(2):361–376. 10.1007/s10265-022-01376-x PubMed DOI

Manna  P, Vermaas  WFJ. Mutational studies on conserved histidine residues in the chlorophyll-binding protein CP43 of photosystem II. Eur J Biochem. 1997:247(2):666–672. 10.1111/j.1432-1033.1997.00666.x PubMed DOI

Meng  EC, Goddard  TD, Pettersen  EF, Couch  GS, Pearson  ZJ, Morris  JH, Ferrin  TE. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 2023:32(11):e4792. 10.1002/pro.4792 PubMed DOI PMC

Minh  BQ, Schmidt  HA, Chernomor  O, Schrempf  D, Woodhams  MD, von Haeseler  A, Lanfear  R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020:37(5):1530–1534. 10.1093/molbev/msaa015 PubMed DOI PMC

Muller  B, Eichacker  LA. Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts. Plant Cell. 1999:11:2365–2377. 10.1105/tpc.11.12.2365 PubMed DOI PMC

Niedzwiedzki  DM, Tronina  T, Liu  H, Staleva  H, Komenda  J, Sobotka  R, Blankenship  RE, Polívka  T. Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase-HliC/D complex. Biochim Biophys Acta. 2016:1857(9):1430–1439. 10.1016/j.bbabio.2016.04.280 PubMed DOI

Ostermeier  M, Garibay-Hernandez  A, Holzer  VJC, Schroda  M, Nickelsen  J. Structure, biogenesis, and evolution of thylakoid membranes. Plant Cell. 2024:36(10):4014–4035. 10.1093/plcell/koae102 PubMed DOI PMC

Pratt  JM, Simpson  DM, Doherty  MK, Rivers  J, Gaskell  SJ, Beynon  RJ. Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc. 2006:1(2):1029–1043. 10.1038/nprot.2006.129 PubMed DOI

Proctor  MS, Chidgey  JW, Shukla  MK, Jackson  PJ, Sobotka  R, Hunter  CN, Hitchcock  A. Plant and algal chlorophyll synthases function in Synechocystis and interact with the YidC/Alb3 membrane insertase. FEBS Lett. 2018:592(18):3062–3073. 10.1002/1873-3468.13222 PubMed DOI PMC

Proctor  MS, Pazderník  M, Jackson  PJ, Pilný  J, Martin  EC, Dickman  MJ, Canniffe  DP, Johnson  MP, Hunter  CN, Sobotka  R, et al.  Xanthophyll carotenoids stabilise the association of cyanobacterial chlorophyll synthase with the LHC-like protein HliD. Biochem J. 2020:477(20):4021–4036. 10.1042/BCJ20200561 PubMed DOI

Promnares  K, Komenda  J, Bumba  L, Nebesářová  J, Vácha  F, Tichý  M. Cyanobacterial small chlorophyll-binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J Biol Chem. 2006:281(43):32705–32713. 10.1074/jbc.M606360200 PubMed DOI

Qian  P, Papiz  MZ, Jackson  PJ, Brindley  AA, Ng  IW, Olsen  JD, Dickman  MJ, Bullough  PA, Hunter  CN. Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: dimerization and quinone channels promoted by PufX. Biochemistry. 2013:52(43):7575–7585. 10.1021/bi4011946 PubMed DOI

Rahimzadeh-Karvansara  P, Pascual-Aznar  G, Bečková  M, Komenda  J. Psb34 protein modulates binding of high-light-inducible proteins to CP47-containing photosystem II assembly intermediates in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res. 2022:152(3):333–346. 10.1007/s11120-022-00908-9 PubMed DOI PMC

Schagger  H, von Jagow  G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991:199(2):223–231. 10.1016/0003-2697(91)90094-A PubMed DOI

Shen  GZ, Eatonrye  JJ, Vermaas  WFJ. Mutation of histidine-residues in CP47 leads to destabilization of the photosystem-II complex and to impairment of light energy-transfer. Biochemistry. 1993:32(19):5109–5115. 10.1021/bi00070a019 PubMed DOI

Shukla  MK, Llansola-Portoles  MJ, Tichý  M, Pascal  AA, Robert  B, Sobotka  R. Binding of pigments to the cyanobacterial high-light-inducible protein HliC. Photosynth Res. 2018:137(1):29–39. 10.1007/s11120-017-0475-7 PubMed DOI

Sinha  RK, Komenda  J, Knoppová  J, Sedlářová  M, Pospíšil  P. Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp PCC 6803. Plant Cell and Environment. 2012:35(4):806–818. 10.1111/j.1365-3040.2011.02454.x PubMed DOI

Skotnicová  P, Srivastava  A, Aggarwal  D, Talbot  J, Karlínova  I, Moos  M, Mareš  J, Bučinská  L, Koník  P, Šimek  P, et al.  A thylakoid biogenesis BtpA protein is required for the initial step of tetrapyrrole biosynthesis in cyanobacteria. New Phytol. 2024:241(3):1236–1249. 10.1111/nph.19397 PubMed DOI

Skotnicová  P, Staleva-Musto  H, Kuznetsova  V, Bína  D, Konert  MM, Lu  S, Polívka  T, Sobotka  R. Plant LHC-like proteins show robust folding and static non-photochemical quenching. Nat Commun. 2021:12(1):6890. 10.1038/s41467-021-27155-1 PubMed DOI PMC

Sobotka  R, Komenda  J, Bumba  L, Tichý  M. Photosystem II assembly in CP47 mutant of Synechocystis sp PCC 6803 is dependent on the level of chlorophyll precursors regulated by ferrochelatase. J Biol Chem. 2005:280(36):31595–31602. 10.1074/jbc.M505976200 PubMed DOI

Staleva  H, Komenda  J, Shukla  MK, Šlouf  V, Kaňa  R, Polívka  T, Sobotka  R. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat Chem Biol. 2015:11(4):287–291. 10.1038/nchembio.1755 PubMed DOI

Tichý  M, Bečková  M, Kopečná  J, Noda  J, Sobotka  R, Komenda  J. Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front Plant Sci. 2016:7:648. 10.3389/fpls.2016.00648 PubMed DOI PMC

Vavilin  D, Yao  D, Vermaas  WFJ. Small cab-like proteins retard degradation of photosystem II-associated chlorophyll in Synechocystis sp PCC 6803—kinetic analysis of pigment labeling with N-15 and C-13. J Biol Chem. 2007:282(52):37660–37668. 10.1074/jbc.M707133200 PubMed DOI

Wang  F, Dischinger  K, Westrich  LD, Meindl  I, Egidi  F, Trosch  R, Sommer  F, Johnson  X, Schroda  M, Nickelsen  J, et al.  One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas. Plant Physiol. 2023:191(3):1612–1633. 10.1093/plphys/kiad015 PubMed DOI PMC

Waterhouse  AM, Procter  JB, Martin  DM, Clamp  M, Barton  GJ. Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009:25(9):1189–1191. 10.1093/bioinformatics/btp033 PubMed DOI PMC

Wittig  I, Karas  M, Schagger  H. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics. 2007:6(7):1215–1225. 10.1074/mcp.M700076-MCP200 PubMed DOI

Yu  J, Knoppová  J, Michoux  F, Bialek  W, Cota  E, Shukla  MK, Strašková  A, Pascual Aznar  G, Sobotka  R, Komenda  J, et al.  Ycf48 involved in the biogenesis of the oxygen-evolving photosystem II complex is a seven-bladed beta-propeller protein. Proc Natl Acad Sci U S A. 2018:115(33):E7824–E7833. 10.1073/pnas.1800609115 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...