Binding of pigments to the cyanobacterial high-light-inducible protein HliC

. 2018 Jul ; 137 (1) : 29-39. [epub] 20171226

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29280045

Grantová podpora
17-08755S Grantová Agentura České Republiky
CZ 1.05/2.1.00/19.0392 Czech Ministry of Education
LO1416 Czech Ministry of Education
Initial Training Network SE2B EU program Marie Skłodowska-Curie
Advanced Grant PHOTPROT (contract number 267333) European Research Council - International
ANR-10-INSB-05-01 French Infrastructure for Integrated Structural Biology

Odkazy

PubMed 29280045
DOI 10.1007/s11120-017-0475-7
PII: 10.1007/s11120-017-0475-7
Knihovny.cz E-zdroje

Cyanobacteria possess a family of one-helix high-light-inducible proteins (HLIPs) that are widely viewed as ancestors of the light-harvesting antenna of plants and algae. HLIPs are essential for viability under various stress conditions, although their exact role is not fully understood. The unicellular cyanobacterium Synechocystis sp. PCC 6803 contains four HLIPs named HliA-D, and HliD has recently been isolated in a small protein complex and shown to bind chlorophyll and β-carotene. However, no HLIP has been isolated and characterized in a pure form up to now. We have developed a protocol to purify large quantities of His-tagged HliC from an engineered Synechocystis strain. Purified His-HliC is a pigmented homo-oligomer and is associated with chlorophyll and β-carotene with a 2:1 ratio. This differs from the 3:1 ratio reported for HliD. Comparison of these two HLIPs by resonance Raman spectroscopy revealed a similar conformation for their bound β-carotenes, but clear differences in their chlorophylls. We present and discuss a structural model of HliC, in which a dimeric protein binds four chlorophyll molecules and two β-carotenes.

Zobrazit více v PubMed

Nature. 2007 Nov 22;450(7169):575-8 PubMed

J Biol Chem. 2013 Jun 28;288(26):18758-65 PubMed

J Biol Chem. 2017 Jan 27;292(4):1396-1403 PubMed

Nat Struct Mol Biol. 2015 Sep;22(9):729-35 PubMed

Plant Mol Biol. 1991 Dec;17(6):1165-77 PubMed

Nat Chem Biol. 2015 Apr;11(4):287-91 PubMed

Front Plant Sci. 2017 Jan 23;8:7 PubMed

Biochim Biophys Acta. 2016 Sep;1857(9):1430-1439 PubMed

J Biol Chem. 2007 Jan 5;282(1):267-76 PubMed

J Biol Chem. 2004 Jul 2;279(27):27971-9 PubMed

J Biol Chem. 2006 Oct 27;281(43):32705-13 PubMed

Nature. 2009 Nov 26;462(7272):518-21 PubMed

Plant Cell. 2014 Mar;26(3):1200-12 PubMed

Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4921-6 PubMed

Plant Cell. 2014 Mar;26(3):1267-79 PubMed

FEBS Lett. 2000 Jul 21;477(3):181-5 PubMed

Curr Opin Struct Biol. 2002 Aug;12(4):431-40 PubMed

J Phys Chem B. 2013 Sep 26;117(38):11015-21 PubMed

Plant Physiol. 2009 Feb;149(2):1076-86 PubMed

Photosynth Res. 2010 Nov;106(1-2):57-71 PubMed

Biochim Biophys Acta. 2016 Mar;1857(3):288-95 PubMed

Plant Physiol. 2016 Apr;170(4):1903-16 PubMed

EMBO J. 2005 Mar 9;24(5):919-28 PubMed

J Comput Chem. 2004 Oct;25(13):1605-12 PubMed

Biochemistry. 1997 Jun 24;36(25):7855-9 PubMed

DNA Res. 2014 Oct;21(5):527-39 PubMed

Nature. 2004 Mar 18;428(6980):287-92 PubMed

J Phys Chem A. 2015 Jan 8;119(1):56-66 PubMed

Plant Physiol. 2012 Dec;160(4):2239-50 PubMed

Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):636-40 PubMed

Spectrochim Acta A Mol Biomol Spectrosc. 2011 Apr;78(4):1261-5 PubMed

J Biol Chem. 2007 Dec 28;282(52):37660-8 PubMed

Photosynth Res. 2007 Nov-Dec;94(2-3):387-400 PubMed

Plant Cell Environ. 2015 Oct;38(10):2115-27 PubMed

Nat Methods. 2015 Jan;12(1):7-8 PubMed

Nat Struct Mol Biol. 2011 Mar;18(3):309-15 PubMed

Biochim Biophys Acta. 1977 Jun 9;460(3):408-30 PubMed

Photosynth Res. 2014 Feb;119(1-2):223-32 PubMed

Mol Cell Proteomics. 2007 Jul;6(7):1215-25 PubMed

Appl Environ Microbiol. 2000 Jan;66(1):64-72 PubMed

Plant Mol Biol. 2002 May;49(2):149-60 PubMed

Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):903-15 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The biogenesis and maintenance of PSII: Recent advances and current challenges

. 2024 Oct 03 ; 36 (10) : 3997-4013.

FtsH4 protease controls biogenesis of the PSII complex by dual regulation of high light-inducible proteins

. 2023 Jan 09 ; 4 (1) : 100502. [epub] 20221205

Photosystem II antenna modules CP43 and CP47 do not form a stable 'no reaction centre complex' in the cyanobacterium Synechocystis sp. PCC 6803

. 2022 Jun ; 152 (3) : 363-371. [epub] 20220111

Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins

. 2022 Jun 01 ; 189 (2) : 790-804.

Psb34 protein modulates binding of high-light-inducible proteins to CP47-containing photosystem II assembly intermediates in the cyanobacterium Synechocystis sp. PCC 6803

. 2022 Jun ; 152 (3) : 333-346. [epub] 20220313

High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions

. 2022 Jun ; 152 (3) : 317-332. [epub] 20220226

Electronic and Vibrational Properties of Allene Carotenoids

. 2022 Feb 17 ; 126 (6) : 813-824. [epub] 20220203

Plant LHC-like proteins show robust folding and static non-photochemical quenching

. 2021 Nov 25 ; 12 (1) : 6890. [epub] 20211125

The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration

. 2019 Jul 19 ; 294 (29) : 11131-11143. [epub] 20190605

Molecular Origin of Photoprotection in Cyanobacteria Probed by Watermarked Femtosecond Stimulated Raman Spectroscopy

. 2018 Apr 05 ; 9 (7) : 1788-1792. [epub] 20180326

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace