Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/F020554/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/L003260/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
24681620
PubMed Central
PMC4001378
DOI
10.1105/tpc.114.123919
PII: tpc.114.123919
Knihovny.cz E-zdroje
- MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- proteiny vázající chlorofyl metabolismus MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Synechocystis metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- proteiny vázající chlorofyl MeSH
Efficient assembly and repair of the oxygen-evolving photosystem II (PSII) complex is vital for maintaining photosynthetic activity in plants, algae, and cyanobacteria. How chlorophyll is delivered to PSII during assembly and how vulnerable assembly complexes are protected from photodamage are unknown. Here, we identify a chlorophyll and β-carotene binding protein complex in the cyanobacterium Synechocystis PCC 6803 important for formation of the D1/D2 reaction center assembly complex. It is composed of putative short-chain dehydrogenase/reductase Ycf39, encoded by the slr0399 gene, and two members of the high-light-inducible protein (Hlip) family, HliC and HliD, which are small membrane proteins related to the light-harvesting chlorophyll binding complexes found in plants. Perturbed chlorophyll recycling in a Ycf39-null mutant and copurification of chlorophyll synthase and unassembled D1 with the Ycf39-Hlip complex indicate a role in the delivery of chlorophyll to newly synthesized D1. Sequence similarities suggest the presence of a related complex in chloroplasts.
Zobrazit více v PubMed
Andersson U., Heddad M., Adamska I. (2003). Light stress-induced one-helix protein of the chlorophyll a/b-binding family associated with photosystem I. Plant Physiol. 132: 811–820. PubMed PMC
Apel K., Hirt H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373–399. PubMed
Boehm M., Romero E., Reisinger V., Yu J.F., Komenda J., Eichacker L.A., Dekker J.P., Nixon P.J. (2011). Investigating the early stages of photosystem II assembly in Synechocystis sp. PCC 6803: Isolation of CP47 and CP43 complexes. J. Biol. Chem. 286: 14812–14819. PubMed PMC
Boehm M., Yu J., Reisinger V., Bečková M., Eichacker L.A., Schlodder E., Komenda J., Nixon P.J. (2012a). Subunit composition of CP43-less photosystem II complexes of Synechocystis sp PCC 6803: Implications for the assembly and repair of photosystem II. Philos. Trans. R. Soc. B Biol. Sci. 367: 3444–3454. PubMed PMC
Boehm M., Yu J.F., Krynická V., Barker M., Tichý M., Komenda J., Nixon P.J., Nield J. (2012b). Subunit organization of a Synechocystis hetero-oligomeric thylakoid FtsH complex involved in photosystem II repair. Plant Cell 24: 3669–3683. PubMed PMC
Bollivar D.W. (2006). Recent advances in chlorophyll biosynthesis. Photosynth. Res. 90: 173–194. PubMed
Chi W., Ma J.F., Zhang L.X. (2012). Regulatory factors for the assembly of thylakoid membrane protein complexes. Philos. Trans. R. Soc. B Biol. Sci. 367: 3420–3429. PubMed PMC
Chidgey J.W., Linhartová M., Komenda J., Jackson P.J., Dickman M.J., Canniffe D.P., Koník P., Pilný J., Hunter C.N., Sobotka R. (2014). A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell 26: 10.1105/tpc.114.124495. PubMed PMC
Dobáková M., Tichý M., Komenda J. (2007). Role of the PsbI protein in photosystem II assembly and repair in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 145: 1681–1691. PubMed PMC
Dobáková M., Sobotka R., Tichý M., Komenda J. (2009). Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 149: 1076–1086. PubMed PMC
Dolganov N.A.M., Bhaya D., Grossman A.R. (1995). Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: Evolution and regulation. Proc. Natl. Acad. Sci. USA 92: 636–640. PubMed PMC
Eaton-Rye J.J., Vermaas W.F.J. (1991). Oligonucleotide-directed mutagenesis of psbB, the gene encoding CP47, employing a deletion mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol. Biol. 17: 1165–1177. PubMed
Engelken J., Brinkmann H., Adamska I. (2010). Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol. Biol. 10: 233. PubMed PMC
Ermakova-Gerdes S., Vermaas W. (1999). Inactivation of the open reading frame slr0399 in Synechocystis sp. PCC 6803 functionally complements mutations near the Q(A) niche of photosystem II. A possible role of Slr0399 as a chaperone for quinone binding. J. Biol. Chem. 274: 30540–30549. PubMed
Ferreira K.N., Iverson T.M., Maghlaoui K., Barber J., Iwata S. (2004). Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838. PubMed
Funk C., Vermaas W. (1999). A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38: 9397–9404. PubMed
Guikema J.A., Freeman L., Fleming E.H. (1986). Effects of gabaculine on pigment biosynthesis in normal and nutrient deficient cells of Anacystis nidulans. Plant Physiol. 82: 280–284. PubMed PMC
Guskov A., Kern J., Gabdulkhakov A., Broser M., Zouni A., Saenger W. (2009). Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 16: 334–342. PubMed
Hernandez-Prieto M.A., Tibiletti T., Abasova L., Kirilovsky D., Vass I., Funk C. (2011). The small CAB-like proteins of the cyanobacterium Synechocystis sp. PCC 6803: their involvement in chlorophyll biogenesis for photosystem II. Biochim. Biophys. Acta 1807: 1143–1151. PubMed
Janouškovec J., Sobotka R., Lai D.H., Flegontov P., Koník P., Komenda J., Ali S., Prášil O., Pain A., Oborník M., Lukeš J., Keeling P.J. (2013). Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia. Mol. Biol. Evol. 30: 2447–2462. PubMed
Jansson S., Andersson J., Kim S.J., Jackowski G. (2000). An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Mol. Biol. 42: 345–351. PubMed
Kavanagh K.L., Jörnvall H., Persson B., Oppermann U. (2008). Medium- and short-chain dehydrogenase/reductase gene and protein families: The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell. Mol. Life Sci. 65: 3895–3906. PubMed PMC
Kim J.M., Klein P.G., Mullet J.E. (1991). Ribosomes pause at specific sites during synthesis of membrane-bound chloroplast reaction center protein D1. J. Biol. Chem. 266: 14931–14938. PubMed
Kirilovsky D., Kerfeld C.A. (2012). The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim. Biophys. Acta 1817: 158–166. PubMed
Komenda J. (2000). Role of two forms of the D1 protein in the recovery from photoinhibition of photosystem II in the cyanobacterium Synechococcus PCC 7942. Biochim. Biophys. Acta 1457: 243–252. PubMed
Komenda J., Barber J. (1995). Comparison of psbO and psbH deletion mutants of Synechocystis PCC 6803 indicates that degradation of D1 protein is regulated by the QB site and dependent on protein synthesis. Biochemistry 34: 9625–9631. PubMed
Komenda J., Knoppová J., Kopečná J., Sobotka R., Halada P., Yu J.F., Nickelsen J., Boehm M., Nixon P.J. (2012b). The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 158: 476–486. PubMed PMC
Komenda J., Nickelsen J., Tichý M., Prášil O., Eichacker L.A., Nixon P.J. (2008). The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp. PCC 6803. J. Biol. Chem. 283: 22390–22399. PubMed
Komenda J., Reisinger V., Müller B.C., Dobáková M., Granvogl B., Eichacker L.A. (2004). Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J. Biol. Chem. 279: 48620–48629. PubMed
Komenda J., Sobotka R., Nixon P.J. (2012a). Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant Biol. 15: 245–251. PubMed
Komenda J., Tichý M., Prásil O., Knoppová J., Kuviková S., de Vries R., Nixon P.J. (2007). The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803. Plant Cell 19: 2839–2854. PubMed PMC
Kopečná J., Sobotka R., Komenda J. (2013). Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of Photosystem I and photosystem II in the cyanobacterium Synechocystis PCC 6803. Planta 237: 497–508. PubMed
Kopečná J., Komenda J., Bučinská L., Sobotka R. (2012). Long-term acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol. 160: 2239–2250. PubMed PMC
Kufryk G., Hernandez-Prieto M.A., Kieselbach T., Miranda H., Vermaas W., Funk C. (2008). Association of small CAB-like proteins (SCPs) of Synechocystis sp. PCC 6803 with photosystem II. Photosynth. Res. 95: 135–145. PubMed
Link S., Engelmann K., Meierhoff K., Westhoff P. (2012). The atypical short-chain dehydrogenases HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of Arabidopsis. Plant Physiol. 160: 2202–2218. PubMed PMC
Michoux F., Takasaka K., Boehm M., Nixon P.J., Murray J.W. (2010). Structure of CyanoP at 2.8Å: Implications for the evolution and function of the PsbP subunit of photosystem II. Biochemistry 49: 7411–7413. PubMed
Mulo P., Tyystjarvi T., Tyystjarvi E., Govindjee, Maenpaa P., Aro E.M. (1997). Mutagenesis of the D-E loop of photosystem II reaction centre protein D1. Function and assembly of photosystem II. Plant Mol. Biol. 33: 1059–1071. PubMed
Nagarajan A., Winter R., Eaton-Rye J., Burnap R. (2011). A synthetic DNA and fusion PCR approach to the ectopic expression of high levels of the D1 protein of photosystem II in Synechocystis sp PCC 6803. J. Photochem. Photobiol. B Biol. 104: 212–219. PubMed
Nanba O., Satoh K. (1987). Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc. Natl. Acad. Sci. USA 84: 109–112. PubMed PMC
Nickelsen J., Rengstl B. (2013). Photosystem II assembly: From cyanobacteria to plants. Annu. Rev. Plant Biol. 64: 609–635. PubMed
Nixon P.J., Michoux F., Yu J.F., Boehm M., Komenda J. (2010). Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. (Lond.) 106: 1–16. PubMed PMC
Promnares K., Komenda J., Bumba L., Nebesářová J., Vácha F., Tichý M. (2006). Cyanobacterial small chlorophyll-binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J. Biol. Chem. 281: 32705–32713. PubMed
Rappaport F., Diner B.A. (2008). Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord. Chem. Rev. 252: 259–272.
Roose J.L., Wegener K.M., Pakrasi H.B. (2007). The extrinsic proteins of photosystem II. Photosynth. Res. 92: 369–387. PubMed
Shen G.Z., Boussiba S., Vermaas W.F.J. (1993). Synechocystis sp PCC 6803 strains lacking photosystem I and phycobilisome function. Plant Cell 5: 1853–1863. PubMed PMC
Sinha R.K., Komenda J., Knoppová J., Sedlářová M., Pospíšil P. (2012). Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Environ. 35: 806–818. PubMed
Sobotka R., Komenda J., Bumba L., Tichý M. (2005). Photosystem II assembly in CP47 mutant of Synechocystis sp. PCC 6803 is dependent on the level of chlorophyll precursors regulated by ferrochelatase. J. Biol. Chem. 280: 31595–31602. PubMed
Storm P., Hernandez-Prieto M.A., Eggink L.L., Hoober J.K., Funk C. (2008). The small CAB-like proteins of Synechocystis sp. PCC 6803 bind chlorophyll. In vitro pigment reconstitution studies on one-helix light-harvesting-like proteins. Photosynth. Res. 98: 479–488. PubMed
Tomo T., Akimoto S., Tsuchiya T., Fukuya M., Tanaka K., Mimuro M. (2008). Isolation and spectral characterization of photosystem II reaction center from Synechocystis sp. PCC 6803. Photosynth. Res. 98: 293–302. PubMed
Umena Y., Kawakami K., Shen J.R., Kamiya N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473: 55–60. PubMed
Vavilin D., Vermaas W. (2007). Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1767: 920–929. PubMed
Vavilin D., Yao D., Vermaas W. (2007). Small Cab-like proteins retard degradation of photosystem II-associated chlorophyll in Synechocystis sp. PCC 6803: Kinetic analysis of pigment labeling with 15N and 13C. J. Biol. Chem. 282: 37660–37668. PubMed
Vermaas, W., Charite, J., and Eggers, B. (1990). System for site-directed mutagenesis in the psbDI/C operon of Synechocystis sp. PCC 6803. In Current Research in Photosynthesis. I. M. Baltscheffsky, ed (Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 231–238.
Wellburn A.R. (1994). The spectral determination of chlorophyll a and chlorophyll b as well as carotenoids using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144: 307–313.
Williams J.G.K. (1988). Construction of specific mutations in PSII photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol. 167: 766–778.
Wilson A., Ajlani G., Verbavatz J.M., Vass I., Kerfeld C.A., Kirilovsky D. (2006). A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18: 992–1007. PubMed PMC
Xu H., Vavilin D., Funk C., Vermaas W. (2002). Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol. Biol. 49: 149–160. PubMed
Xu H., Vavilin D., Funk C., Vermaas W. (2004). Multiple deletions of small Cab-like proteins in the cyanobacterium Synechocystis sp. PCC 6803: Consequences for pigment biosynthesis and accumulation. J. Biol. Chem. 279: 27971–27979. PubMed
Yao D., Kieselbach T., Komenda J., Promnares K., Prieto M.A.H., Tichý M., Vermaas W., Funk C. (2007). Localization of the small CAB-like proteins in photosystem II. J. Biol. Chem. 282: 267–276. PubMed
The biogenesis and maintenance of PSII: Recent advances and current challenges
High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions
Binding of pigments to the cyanobacterial high-light-inducible protein HliC
Twisting a β-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection