Sequential deletions of photosystem II assembly factors Ycf48, Ycf39 and Pam68 result in progressive loss of autotrophy in the cyanobacterium Synechocystis PCC 6803
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
LO1416
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015055
Ministerstvo Školství, Mládeže a Tělovýchovy
19-29225X
Grantová Agentura České Republiky
PubMed
31359262
DOI
10.1007/s12223-019-00736-w
PII: 10.1007/s12223-019-00736-w
Knihovny.cz E-resources
- MeSH
- Autotrophic Processes MeSH
- Bacterial Proteins genetics metabolism MeSH
- Chlorophyll metabolism MeSH
- Gene Deletion MeSH
- Photosystem II Protein Complex genetics metabolism MeSH
- Mutation MeSH
- Synechocystis genetics growth & development metabolism MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Chlorophyll MeSH
- Photosystem II Protein Complex MeSH
The biogenesis of the cyanobacterial photosystem II (PSII) complex requires a number of auxiliary assembly factors that improve efficiency of the process but their precise function is not well understood. To assess a possible synergic action of the Ycf48 and Ycf39 factors acting in early steps of the biogenesis via interaction with the nascent D1 subunit of PSII, we constructed and characterised a double mutant of the cyanobacterium Synechocystis PCC 6803 lacking both these proteins. In addition, we also deleted the ycf39 gene in the double mutant lacking Ycf48 and Pam68, the latter being a ribosomal factor promoting insertion of chlorophyll (Chl) into the CP47 subunit of PSII. The resulting double ΔYcf48/ΔYcf39 and triple ΔYcf48/ΔPam68/ΔYcf39 mutants were deficient in PSII and total Chl, and in contrast to the source mutants, they lost the capacity for autotrophy. Interestingly, autotrophic growth was restored in both of the new multiple mutants by enhancing Chl biosynthesis using a specific ferrochelatase inhibitor. Taking together with the weak radioactive labelling of the D1 protein, these findings can be explained by inhibition of the D1 synthesis caused by the lack and/or incorrect binding of Chl molecules. The results emphasise the key importance of the sufficient Chl supply for the PSII biogenesis and also support the existence of a so far enigmatic regulatory mechanism leading to the reduced overall Chl biosynthesis/accumulation when the PSII assembly is impaired.
See more in PubMed
Ann Bot. 2010 Jul;106(1):1-16 PubMed
Nature. 2011 May 5;473(7345):55-60 PubMed
Biochim Biophys Acta. 2016 Mar;1857(3):274-87 PubMed
Biochim Biophys Acta. 2015 Sep;1847(9):900-9 PubMed
Nat Chem Biol. 2015 Apr;11(4):287-91 PubMed
J Biol Chem. 2005 Sep 9;280(36):31595-602 PubMed
Biochem Soc Trans. 2006 Nov;34(Pt 5):619-31 PubMed
Front Plant Sci. 2016 May 03;7:578 PubMed
J Biol Chem. 2008 Aug 15;283(33):22390-9 PubMed
Planta. 2013 Feb;237(2):471-80 PubMed
Plant Cell. 2014 Mar;26(3):1267-79 PubMed
Front Plant Sci. 2016 Apr 07;7:423 PubMed
Plant Cell. 2014 Mar;26(3):1200-12 PubMed
Front Plant Sci. 2016 May 12;7:648 PubMed
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):E7824-E7833 PubMed
Front Plant Sci. 2016 Jul 20;7:1060 PubMed
Curr Opin Plant Biol. 2012 Jun;15(3):245-51 PubMed
Biochemistry. 1995 Jul 25;34(29):9625-31 PubMed
Plant Physiol. 2009 Feb;149(2):1076-86 PubMed
Plant Cell. 2010 Oct;22(10):3439-60 PubMed
Plant Physiol. 2018 Apr;176(4):2931-2942 PubMed
Biochim Biophys Acta. 2016 Mar;1857(3):288-95 PubMed
Plant Physiol. 2012 Jan;158(1):476-86 PubMed
Annu Rev Plant Biol. 2013;64:609-35 PubMed
Special issue dedicated to the memory of Ivan Šetlík