Synthesis of Chlorophyll-Binding Proteins in a Fully Segregated Δycf54 Strain of the Cyanobacterium Synechocystis PCC 6803

. 2016 ; 7 () : 292. [epub] 20160317

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27014315

Grantová podpora
BB/G021546/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M000265/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M012166/1 Biotechnology and Biological Sciences Research Council - United Kingdom

In the chlorophyll (Chl) biosynthesis pathway the formation of protochlorophyllide is catalyzed by Mg-protoporphyrin IX methyl ester (MgPME) cyclase. The Ycf54 protein was recently shown to form a complex with another component of the oxidative cyclase, Sll1214 (CycI), and partial inactivation of the ycf54 gene leads to Chl deficiency in cyanobacteria and plants. The exact function of the Ycf54 is not known, however, and further progress depends on construction and characterization of a mutant cyanobacterial strain with a fully inactivated ycf54 gene. Here, we report the complete deletion of the ycf54 gene in the cyanobacterium Synechocystis 6803; the resulting Δycf54 strain accumulates huge concentrations of the cyclase substrate MgPME together with another pigment, which we identified using nuclear magnetic resonance as 3-formyl MgPME. The detection of a small amount (~13%) of Chl in the Δycf54 mutant provides clear evidence that the Ycf54 protein is important, but not essential, for activity of the oxidative cyclase. The greatly reduced formation of protochlorophyllide in the Δycf54 strain provided an opportunity to use (35)S protein labeling combined with 2D electrophoresis to examine the synthesis of all known Chl-binding protein complexes under drastically restricted de novo Chl biosynthesis. We show that although the Δycf54 strain synthesizes very limited amounts of photosystem I and the CP47 and CP43 subunits of photosystem II (PSII), the synthesis of PSII D1 and D2 subunits and their assembly into the reaction centre (RCII) assembly intermediate were not affected. Furthermore, the levels of other Chl complexes such as cytochrome b 6 f and the HliD- Chl synthase remained comparable to wild-type. These data demonstrate that the requirement for de novo Chl molecules differs completely for each Chl-binding protein. Chl traffic and recycling in the cyanobacterial cell as well as the function of Ycf54 are discussed.

Zobrazit více v PubMed

Albus C. A., Salinas A., Czarnecki O., Kahlau S., Rothbart M., Thiele W., et al. (2012). LCAA, a novel factor required for magnesium protoporphyrin monomethylester cyclase accumulation and feedback control of aminolevulinic acid biosynthesis in Tobacco. Plant Physiol. 160 1923–1939. 10.1104/pp.112.206045 PubMed DOI PMC

Aoki K., Itoh S., Furukawa H., Nakazato M., Iwamoto K., Shiraiwa Y., et al. (2011). “Enzymatic and non-enzymatic conversion of Chl a to Chl d,” in Proceedings of the 5th Asia and Oceania Conference on Photobiology Nara.

Boehm M., Romero E., Reisinger V., Yu J., Komenda J., Eichacker L. A., et al. (2011). Investigating the early stages of Photosystem II assembly in Synechocystis sp PCC 6803: isolation of CP47 and CP43 complexes. J. Biol. Chem. 286 14812–14819. 10.1074/jbc.M110.207944 PubMed DOI PMC

Boehm M., Yu J., Reisinger V., Bečková M., Eichacker L. A., Schlodder E., et al. (2012). Subunit composition of CP43-less photosystem II complexes of Synechocystis sp PCC 6803: implications for the assembly and repair of photosystem II. Philos. Trans. R. Soc. B Biol. Sci. 367 3444–3454. 10.1098/rstb.2012.0066 PubMed DOI PMC

Boldareva-Nuianzina E. N., Bláhová Z., Sobotka R., Koblížek M. (2013). Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria. Appl. Environ. Microbiol. 79 2596–2604. 10.1128/AEM.00104-13 PubMed DOI PMC

Bollivar D., Braumann I., Berendt K., Gough S. P., Hansson M. (2014). The Ycf54 protein is part of the membrane component of Mg-protoporphyrin IX monomethyl ester cyclase from barley (Hordeum vulgare L.). FEBS J. 281 2377–2386. 10.1111/febs.12790 PubMed DOI

Canniffe D. P., Jackson P. J., Hollingshead S., Dickman M. J., Hunter C. N. (2013). Identification of an 8-vinyl reductase involved in bacteriochlorophyll biosynthesis in Rhodobacter sphaeroides and evidence for the existence of a third distinct class of the enzyme. Biochem. J. 450 397–405. 10.1042/BJ20121723 PubMed DOI

Chidgey J. W., Linhartová M., Komenda J., Jackson P. J., Dickman M. J., Canniffe D. P., et al. (2014). A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell 26 1267–1279. 10.1105/tpc.114.124495 PubMed DOI PMC

Chua N. H., Blobel G., Siekevitz P., Palade G. E. (1976). Periodic variations in the ratio of free to thylakoid-bound chloroplast ribosomes during the cell cycle of Chlamydomonas reinhardtii. J. Cell Biol. 71 497–514. 10.1083/jcb.71.2.497 PubMed DOI PMC

Dobáková M., Sobotka R., Tichý M., Komenda J. (2009). Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 149 1076–1086. 10.1104/pp.108.130039 PubMed DOI PMC

Eichacker L., Paulsen H., Rüdiger W. (1992). Synthesis of chlorophyll a regulates translation of chlorophyll a apoproteins P700, CP47, CP43 and D2 in barley etioplasts. Eur. J. Biochem. 205 17–24. 10.1111/j.1432-1033.1992.tb16747.x PubMed DOI

Eichacker L. A., Helfrich M., Rüdiger W., Muller B. (1996). Stabilization of chlorophyll a-binding apoproteins P700, CP47, CP43, D2, and D1 by chlorophyll a or Zn-pheophytin a. J. Biol. Chem. 271 32174–32179. 10.1074/jbc.271.50.32174 PubMed DOI

Fukusumi T., Matsuda K., Mizoguchi T., Miyatake T., Ito S., Ikeda T., et al. (2012). Non-enzymatic conversion of chlorophyll-a into chlorophyll-d in vitro: a model oxidation pathway for chlorophyll-d biosynthesis. FEBS Lett. 586 2338–2341. 10.1016/j.febslet.2012.05.036 PubMed DOI

Hollingshead S., Kopečná J., Jackson P. J., Canniffe D. P., Davison P. A., Dickman M. J., et al. (2012). Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803. J. Biol. Chem. 287 27823–27833. 10.1074/jbc.M112.352526 PubMed DOI PMC

Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W., Krauss N. (2001). Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411 909–917. 10.1038/35082000 PubMed DOI

Kalb V. F., Bernlohr R. W. (1977). A new spectrophotometric assay for protein in cell extracts. Anal. Biochem. 82 362–371. 10.1016/0003-2697(77)90173-7 PubMed DOI

Kanesaki Y., Shiwa Y., Tajima N., Suzuki M., Watanabe S., Sato N., et al. (2012). Identification of substrain-specific mutations by massively parallel whole-genome resequencing of Synechocystis sp. PCC 6803. DNA Res. 19 67–79. 10.1093/dnares/dsr042 PubMed DOI PMC

Kauss D., Bischof S., Steiner S., Apel K., Meskauskiene R. (2012). FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of the Mg++-branch of this pathway. FEBS Lett. 586 211–216. 10.1016/j.febslet.2011.12.029 PubMed DOI

Ke S. H., Madison E. L. (1997). Rapid and efficient site-directed mutagenesis by single-tube ‘megaprimer’ PCR method. Nucleic Acids Res. 25 3371–3372. 10.1093/nar/25.16.3371 PubMed DOI PMC

Knoppová J., Sobotka R., Tichý M., Yu J., Koník P., Halada P., et al. (2014). Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. Plant Cell 26 1200–1212. 10.1105/tpc.114.123919 PubMed DOI PMC

Koizumi H., Itoh Y., Hosoda S., Akiyama M., Hoshino T., Shiraiwa Y., et al. (2005). Serendipitous discovery of Chl d formation from Chl a withpapain. Sci. Technol. Adv. Mater. 6 551–557. 10.1016/j.stam.2005.06.022 DOI

Komenda J., Nickelsen J., Tichý M., Prášil O., Eichacker L. A., Nixon P. J. (2008). The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp PCC 6803. J. Biol. Chem. 283 22390–22399. 10.1074/jbc.M801917200 PubMed DOI

Komenda J., Reisinger V., Müller B. C., Dobáková M., Granvogl B., Eichacker L. A. (2004). Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J. Biol. Chem. 279 48620–48629. 10.1074/jbc.M405725200 PubMed DOI

Komenda J., Sobotka R., Nixon P. J. (2012). Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant Biol. 15 245–251. 10.1016/j.pbi.2012.01.017 PubMed DOI

Kopečná J., Pilný J., Krynická V., Tomèala A., Kis M., Gombos Z., et al. (2015). Lack of phosphatidylglycerol inhibits chlorophyll biosynthesis at multiple sites and limits chlorophyllide reutilization in Synechocystis sp. Strain PCC 6803. Plant Physiol. 169 1307–1317. 10.1104/pp.15.01150 PubMed DOI PMC

Kopečná J., Sobotka R., Komenda J. (2013). Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of Photosystem I and Photosystem II in the cyanobacterium Synechocystis PCC 6803. Planta 237 497–508. 10.1007/s00425-012-1761-4 PubMed DOI

Kurisu G., Zhang H. M., Smith J. L., Cramer W. A. (2003). Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302 1009–1014. 10.1126/science.1090165 PubMed DOI

Minamizaki K., Mizoguchi T., Goto T., Tamiaki H., Fujita Y. (2008). Identification of two homologous genes, chlAI and chlAII, that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp PCC 6803. J. Biol. Chem. 283 2684–2692. 10.1074/jbc.M708954200 PubMed DOI

Miyashita H., Ikemoto H., Kurano N., Adachi K., Chihara M., Miyachi S. (1996). Chlorophyll d as a major pigment. Nature 383 402 10.1038/383402a0 DOI

Müller B., Eichacker L. A. (1999). Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts. Plant Cell 11 2365–2377. 10.2307/3870961 PubMed DOI PMC

Mullet J. E., Klein P. G., Klein R. R. (1990). Chlorophyll regulates accumulation of the plastid encoded chlorophyll apoprotein CP43 and apoprotein D1 by increasing apoprotein stability. Proc. Natl. Acad. Sci. U.S.A. 87 4038–4042. 10.1073/pnas.87.11.4038 PubMed DOI PMC

Nixon P. J., Michoux F., Yu J., Boehm M., Komenda J. (2010). Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106 1–16. 10.1093/aob/mcq059 PubMed DOI PMC

Peter E., Salinas A., Wallner T., Jeske D., Dienst D., Wilde A., et al. (2009). Differential requirement of two homologous proteins encoded by sll1214 and sll1874 for the reaction of Mg protoporphyrin monomethylester oxidative cyclase under aerobic and micro-oxic growth conditions. Biochim. Biophys. Acta 1787 1458–1467. 10.1016/j.bbabio.2009.06.006 PubMed DOI

Pinta V., Picaud M., Reiss-Husson F., Astier C. (2002). Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J. Bacteriol. 184 746–753. 10.1128/JB.184.3.746-753.2002 PubMed DOI PMC

Porra R., Thompson W., Kriedemann P. (1989). Determination of accurate extinction coefficients and simulataneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975 384–389. 10.1016/S0005-2728(89)80347-0 DOI

Porra R. J., Schafer W., Gadon N., Katheder I., Drews G., Scheer H. (1996). Origin of the two carbonyl oxygens of bacteriochlorophyll alpha – Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mechanism for 3-acetyl group formation. Eur. J. Biochem. 239 85–92. 10.1111/j.1432-1033.1996.0085u.x PubMed DOI

Promnares K., Komenda J., Bumba L., Nebesarova J., Vacha F., Tichy M. (2006). Cyanobacterial small chlorophyll-binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J. Biol. Chem. 281 32705–32713. 10.1074/jbc.M606360200 PubMed DOI

Rebeiz C. A., Mattheis J. R., Smith B. B., Rebeiz C., Dayton D. F. (1975). Chloroplast biogenesis. Biosynthesis and accumulation of Mg-protoprophyrin IX monoester and longer wavelength metalloporphyrins by greening cotyledons. Arch. Biochem. Biophys. 166 446–465. 10.1016/0003-9861(75)90408-7 PubMed DOI

Rippka R., Deruelles J., Waterbury J., Herdman M., Stanier R. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111 1–61. 10.1099/00221287-111-1-1 DOI

Sobotka R., Duerhring U., Komenda J., Peter E., Gardian Z., Tichy M., et al. (2008). Importance of the cyanobacterial GUN4 protein for chlorophyll metabolism and assembly of photosynthetic complexes. J. Biol. Chem. 283 25794–25802. 10.1074/jbc.M803787200 PubMed DOI PMC

Sobotka R., Tichy M., Wilde A., Hunter C. N. (2011). Functional assignments for the carboxyl-terminal domains of the ferrochelatase from Synechocystis PCC 6803: the CAB domain plays a regulatory role, and region II is essential for catalysis. Plant Physiol. 155 1735–1747. 10.1104/pp.110.167528 PubMed DOI PMC

Staleva H., Komenda J., Shukla M. K., Šlouf V., Kaòa R., Polívka T., et al. (2015). Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 11 287–291. 10.1038/nchembio.1755 PubMed DOI

Stott K., Stonehouse J., Keeler J., Hwang T., Shaka A. (1995). Excitation sculpting in high-resolution nuclear magnetic resonance spectroscopy: application to selective NOE experiments. J. Am. Chem. Soc. 117 4199–4200. 10.1021/ja00119a048 DOI

Swingley W. D., Chen M., Cheung P. C., Conrad A. L., Dejesa L. C., Hao J., et al. (2008). Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc. Natl. Acad. Sci. U.S.A. 105 2005–2010. 10.1073/pnas.0709772105 PubMed DOI PMC

Tottey S., Block M. A., Allen M., Westergren T., Albrieux C., Scheller H. V., et al. (2003). Arabidopsis CHL27 located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc. Natl. Acad. Sci. U.S.A. 100 16119–16124. 10.1073/pnas.2136793100 PubMed DOI PMC

Trautmann D., Voss B., Wilde A., Al-Babili S., Hess W. R. (2012). Microevolution in cyanobacteria: re-sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Res. 19 435–448. 10.1093/dnares/dss024 PubMed DOI PMC

Umena Y., Kawakami K., Shen J. R., Kamiya N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473 55–60. 10.1038/nature09913 PubMed DOI

van de Meene A. M., Hohmann-Marriott M. F., Vermaas W. F., Roberson R. W. (2006). The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch. Microbiol. 184 259–270. PubMed

Vavilin D., Vermaas W. (2007). Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp PCC 6803. Biochim. Biophys. Acta 1767 920–929. 10.1016/j.bbabio.2007.03.010 PubMed DOI

Wilde A., Mikolajczyk S., Alawady A., Lokstein H., Grimm B. (2004). The gun4 gene is essential for cyanobacterial porphyrin metabolism. FEBS Lett. 571 119–123. 10.1016/j.febslet.2004.06.063 PubMed DOI

Zhang H., Liu H., Blankenship R. E., Gross M. L. (2015). Isotope-encoded carboxyl group footprinting for mass spectrometry-based protein conformational studies. J. Am. Soc. Mass Spectrom. 27 178–181. 10.1007/s13361-015-1260-5 PubMed DOI PMC

Zouni A., Witt H. T., Kern J., Fromme P., Krauss N., Saenger W., et al. (2001). Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409 739–743. 10.1038/35055589 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace